首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to the ethylene formed at the onset of tomato fruit ripening, three peaks of ethylene are produced during earlier periods of in vitro development of tomato flower to fruit. This is the first report characterizing ethylene production during early development of tomato fruit. Previous reports from this laboratory showed that VFNT Cherry tomato calyces are transformed into fruit tissue when cultured in vitro at lower temperatures (16–23 °C). Early ethylene production was also measured in these ripening calyces, as well as in fruit and calyces of other tomato cultivars cultured in vitro. Calyces from Ailsa Craig and rin tomato flowers, which are not transformed into fruit tissue at these lower temperatures, also form ethylene during early periods of in vitro culture, but to a much smaller extent. Unlike ethylene formed at the onset of fruit ripening, the earlier peaks are resistant to the inhibitors, aminovinylglycine (AVG) and CoCl2. The data suggest that ethylene produced during earlier periods of tomato fruit development is formed by an alternative biosynthetic pathway.  相似文献   

2.
Ishida BK 《The Plant cell》1991,3(3):219-223
To develop a system with which to study fruit ripening, in vitro ovary cultures were initiated from tomato flowers. As reported previously [Nitsch, J.P. (1951). Am. J. Bot. 38, 566-577], tomato fruit ripened after 6 to 7 weeks, but calyces swelled unexpectedly, lost their green color, and gradually became red and succulent. Investigations were conducted, therefore, to verify the occurrence of the ripening process in the calyx. Ethylene production increased in both ripening fruit and red calyx, as did tissue contents of its immediate precursor, 1-aminocyclopropane-1-carboxylic acid. In addition, an increase in the mRNA of polygalacturonase [poly(1,4-[alpha]-D-galacturonide) glucanohydrolase, EC 3.2.1.15], an enzyme that in tomato is present in large amounts only in ripening fruit, was established in both ripe fruit and red calyx by RNA gel blot analysis. Ultrastructural studies showed that the disruption of cell walls in red calyx was indistinguishable from that occurring in ripe tomato fruit. Thus, the developmental program of the calyx changed in several aspects to resemble that of tomato fruit.  相似文献   

3.
In vitro culture of VFNT Cherry tomato sepals (calyx) at 16–21 °C results in developmental changes that are similar to those that occur in fruit tissue [10]. Sepals become swollen, red, and succulent, produce ethylene, and have increased levels of polygalacturonase RNA. They also produce many flavor volatiles characteristic of ripe tomato fruit and undergo similar changes in sugar content [11]. We examined the expression of the tomato AGAMOUS gene, TAG1, in ripening, in vitro sepal cultures and other tissues from the plant and found that TAG1 RNA accumulates to higher levels than expected from data from other plants. Contrary to reports on the absence of AGAMOUS in sepals, TAG1 RNA levels in green sepals from greenhouse-grown plants is detectable, its concentration increasing with in vitro ripening to levels that were even higher than in red, ripe fruit. Sepals of fruit on transgenic tomato plants that expressed TAG1 ectopically were induced by low temperature to ripen in vivo, producing lycopene and undergoing cell wall softening as is characteristic of pericarpic tissue. We therefore propose that the induction of elevated TAG1 gene expression plays a key role in developmental changes that result in sepal ripening.  相似文献   

4.
The pressure microprobe was used to determine whether the turgor pressure in tomato (Lycopersicon esculentum Mill., variety “Castelmart”) pericarp cells changed during fruit ripening. The turgor pressure of cells located 200 to 500 micrometers below the fruit epidermis was uniform within the same tissue (typically ± 0.02 megapascals), and the highest turgors observed (<0.2 megapascals) were much less than expected, based on tissue osmotic potential (−0.6 to −0.7 megapascals). These low turgor values may indicate the presence of apoplastic solutes. In both intact fruit and cultured discs of pericarp tissue, a small increase in turgor preceded the onset of ripening, and a decrease in turgor occurred during ripening. Differences in the turgor of individual intact fruit occurred 2 to 4 days before parallel differences in their ripening behavior were apparent, indicating that changes in turgor may reflect physiological changes at the cell level that precede expression of ripening at the tissue level.  相似文献   

5.
Changes in gene expression during foliar senescence and fruit ripening in tomato (Lycopersicon esculentum Mill.) were examined using in-vitro translation of isolated RNA and hybridization against cDNA clones.During the period of chlorophyll loss in leaves, changes occurred in mRNA in-vitro translation products, with some being reduced in prevalence, whilst others increased. Some of the translation products which changed in abundance had similar molecular weights to those known to increase during tomato fruit ripening. By testing RNA from senescing leaves against a tomato fruit ripening-related cDNA library, seven cDNA clones were identified for mRNAs whose prevalence increased during both ripening and leaf senescence. Using dot hybridization, the pattern of expression of the mRNAs corresponding to the seven clones was examined. Maximal expression of the majority of the mRNAs coincided with the time of greatest ethylene production, in both leaves and fruit. Treatment of mature green leaves or unripe fruit with the ethylene antagonist silver thiosulphate prevented the onset of senescence or ripening, and the expression of five of the seven ripening- and senescence-related genes.The results indicate that senescence and ripening in tomato involve the expression of related genes, and that ethylene may be an important factor in controlling their expression.Abbreviations cDNA copy-DNA - MW molecular weight - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate  相似文献   

6.
It has been reported that PG is a key enzyme related to the tomato fruit ripening. In this study tomato fruits were harvested at the mature-green stage and stored at room temperature. The cell ultrastructure of pericarp tissue was observed at different ripening stages, and the effects of treatments with ethylene and calcium on PG activity and fruit ripening were examined. The object of this study is to elucidate the role of PG in regulation of tomato fruit ripening by ethylene and calcium. PG activity, was undetectable at mature-green stage, but it rose rapidly as fruif ripening. The rise in PG activity was coincided with the dechnmg of fruit firmness during ripening of tomato fruits. The observation of cell ultrastructure showed that the most of grana in chloroplast were lost and the mitochondrial cristae decreased as fruit ripening. Striking changes of cell wall structure was most noted, beginning with dissolution of the middle lamella and eventual disruption of primary cell wall. A similar pattern of changes of cell wall and chloroplast have been observed in pericarp tissue treated with PG extract. In fruits treated with calcium and other divalent metal ions atmature-green stage, the lycopene content and PG activity decreased dramatically. Ethylene application enhanced the formation of lycopene and PG activity. The inhibition of Ca2+ on PG ac ivity was removed by ethylene. Based on the above results, it was demonstrated that PG played a major role in ripening of tomato fruits, and suggested that the regulation of fruit ripening by ethylene and Ca2+ was all mediated by PG. PG induced the hydrolysis of cell wall and released the other hydrolytic enzymes, then effected the ripening processes follow up.  相似文献   

7.
对采后番茄果实的电镜观察表明:当果实成熟衰老时,叶绿体数量减少,多数基粒结构丧失;成熟果实胞壁中胶层水解成中空的电子透明区,初生壁的纤丝也发生一定程度的水解,相邻细胞分离;外源 PG(多聚半乳糖醛酸酶)提取物处理绿熟期果实组织,也可引起胞壁结构和叶绿体发生与正常衰老相同的变化。Ca~(2+)、Mg~(2+)、Co~(2+)二价金属离子处理果实,可明显降低番茄红素含量和 PG 活性,延缓果实软化。外源乙烯处理果实,可促进番茄红素的形成,提高 PG活性,并能解除钙对 PG 活性的抑制。本文也对 PG 在乙烯和 Ca~(2+)调节果实成熟中的作用进行了讨论。  相似文献   

8.
Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca2+) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue–tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.  相似文献   

9.
10.
Ultrastructural changes in the pericarp of tomato (Lycopersicon esculentum Mill) fruit were followed during ripening. Ethylene production was monitored by gas chromatography and samples analyzed at successive stages of the ripening process.

Changes in the cytoplasmic ultrastructure were not consistent with the suggestion that ripening is a `senescence' phenomenon. A large degree of ultrastructural organization, especially of the mitochondria, chromoplasts, and rough endoplasmic reticulum, was retained by ripe fruit.

Striking changes in the structure of the cell wall were noted, beginning with dissolution of the middle lamella and eventual disruption of the primary cell wall. These changes were correlated with appearance of polygalacturonase (EC 3.2.1.15) isoenzymes. Application of purified tomato polygalacturonase isoenzymes to mature green fruit tissue duplicated the changes in the cell wall noted during normal ripening. Possible roles of the polygalacturonase isoenzymes in cell wall disorganization are discussed.

  相似文献   

11.
12.
13.
In developing plants, free N-glycans occur ubiquitously at micromolar concentrations. Such oligosaccharides have been proposed to be signaling molecules in plant development. As a part of a study to elucidate the physiological roles of de-N-glycosylation machinery involved in fruit ripening, we analyzed changes in the amounts and structural features of free N-glycans in tomato fruits at four ripening stages. The amount of high-mannose type free N-glycans increased significantly in accordance with fruit ripening, and the relative amounts of high-molecular size N-glycans, such as Man(8-9)GlcNAc(1), became predominant. These observations suggest that the de-N-glycosylation machinery, including endo-beta-N-acetylglucosaminidase (ENGase) activity, is stimulated in the later stages of fruit ripening. But contrary to expectation, we found that total ENGase activities in the tomato fruits did not vary significantly with the ripening process, suggesting that ENGase activity must be maintained at a certain level, and that the expression of alpha-mannosidase involved in the clearance of free N-glycans decreases during tomato fruit ripening.  相似文献   

14.
Inhibition of tomato (Lycopersicon esculentum Mill.) fruit ripening by exogenously applied ethanol was shown to be caused by elevated endogenous levels of acetaldehyde (AA). Exposure of excised pericarp discs of mature-green tomato fruit to ethanol or AA vapors produced elevated levels of both compounds in the tissue, but only the levels of AA were associated with ripening inhibition. Ripening inhibition was dependent on both the applied concentration and the duration of exposure. Discs treated with inhibitory levels of AA had levels of ethanol that were elevated but below that associated with inhibition of ripening. The in vivo activity of alcohol dehydrogenase was inhibited 40 to 60% by 4-methylpyrazole (4-MP), a competitive inhibitor of this enzyme. The inhibitory effect of ethanol on ripening was reduced by the simultaneous application of 4-MP. Tissue treated with 4-MP plus AA vapors had higher endogenous levels of AA and ripening was inhibited longer than in tissue without 4-MP. The tissue AA level resulting from ethanol or AA application appears to be the critical determinant of ripening inhibition.  相似文献   

15.
16.
A cDNA library produced from mRNA isolated from the pericarp of wild-type tomato fruit (Lycopersicon esculentum Mill. cv Ailsa Craig) at the first visible sign of fruit ripening was differentially screened to identify clones whose homologous mRNAs were present at reduced levels in fruit of the tomato ripening mutant, ripening inhibitor,rin. Five clones were isolated (pERT 1, 10, 13, 14, 15). Accumulation of mRNA homologous to each of these clones increased during the ripening of wild-type fruit and showed reduced accumulation in ripening rin fruit. The levels of three of them (homologous to ERT 1, 13 and 14) were increased by ethylene treatment of the mutant fruit. A further clone, ERT 16 was identified for a mRNA present at a high level in both normal and mutant fruit at early stages of ripening. Database searches revealed no significant homology to the DNA sequence of ERT 14 and 15; however, DNA and derived amino acid sequence of ERT 1 both contain regions of homology with several reported UDP-glucosyl and glucuronosyl transferases (UDPGT) and with a conserved UDPGT motif. A derived amino acid sequence from the ERT 10 cDNA contains a perfect match to a consensus sequence present in a number of dehydrogenases. The ERT 13 DNA sequence has homology with an mRNA present during potato tuberisation. The presence of these mRNAs in tomato fruit is unreported and their role in ripening is unknown. The ERT 16 DNA sequence has homology with a ripening/stress-related cDNA isolated from tomato fruit pericarp.  相似文献   

17.
Apoplastic pH and ionic conditions exert strong influence on cell wall metabolism of many plant tissues; however, the nature of the apoplastic environment of ripening fruit has been the subject of relatively few studies. In this report, a pressure-bomb technique was used to extract apoplastic fluid from tomato fruit ( Lycopersicon esculentum Mill.) pericarp at several developmental stages. pH and the levels of K+, Na+, Ca2+, Mg2+, Cl and P were determined and compared with the values for the bulk pericarp and locule tissues. The pH of the apoplastic fluid from pericarp tissue decreased from 6.7 in immature and mature-green fruits to 4.4 in fully-ripe fruit. During the same period, the K+ concentration increased from 13 to 37 m M . The levels of Na+ and divalent cations did not change, whereas the anions P and Cl increased in ripe fruit. Ca2+ levels remained relatively constant during ripening at 4–5 m M , concentrations that effectively limit pectin solubilization. The electrical conductivity of the apoplastic liquid increased 3-fold during ripening, whereas osmotically active solutes increased 2-fold. Pressure-treated fruit retained the capacity to ripen. The decline in apoplastic pH and increase in ionic strength during tomato fruit ripening may regulate the activity of cell wall hydrolases. The potential role of apoplastic changes in fruit ripening and softening is discussed.  相似文献   

18.
Avocado (Persea americana) fruit experience a rapid and extensive loss of firmness during ripening. In this study, we examined whether the chelator solubility and molecular weight of avocado polyuronides paralleled the accumulation of polygalacturonase (PG) activity and loss in fruit firmness. Polyuronides were derived from ethanolic precipitates of avocado mesocarp prepared using a procedure to rapidly inactivate endogenous enzymes. During ripening, chelator (cyclohexane-trans-1,2-diamine tetraacetic acid [CDTA])-soluble polyuronides increased from approximately 30 to 40 [mu]g of galacturonic acid equivalents (mg alcohol-insoluble solids)-1 in preripe fruit to 150 to 170 [mu]g mg-1 in postclimacteric fruit. In preripe fruit, chelator-extractable polyuronides were of high molecular weight and were partially excluded from Sepharose CL- 2B-300 gel filtration media. Avocado polyuronides exhibited marked downshifts in molecular weight during ripening. At the postclimacteric stage, nearly all chelator-extractable polyuronides, which constituted from 75 to 90% of total cell wall uronic acid content, eluted near the total volume of the filtration media. Rechromatography of low molecular weight polyuronides on Bio-Gel P-4 disclosed that oligomeric uronic acids are produced in vivo during avocado ripening. The gel filtration behavior and pattern of depolymerization of avocado polyuronides were not influenced by the polyuronide extraction protocol (imidazole versus CDTA) or by chromatographic conditions designed to minimize interpolymeric aggregation. Polyuronides from ripening tomato (Lycopersicon esculentum) fruit extracted and chromatographed under conditions identical with those used for avocado polyuronides exhibited markedly less rapid and less extensive downshifts in molecular weight during the transition from mature-green to fully ripe. Even during a 9-d period beyond the fully ripe stage, tomato fruit polyuronides exhibited limited additional depolymerization and did not include oligomeric species. A comparison of the data for the avocado and tomato fruit indicates that downshifts in polyuronide molecular weight are a prominent feature of avocado ripening and may also explain why molecular down-regulation of PG (EC 3.2.1.15) in tomato fruit has resulted in minimal effects on fruit performance until the terminal stages of ripening.  相似文献   

19.
20.
Loss-of-function ethylene insensitive 2 (EIN2) mutations showed ethylene insensitivity in Arabidopsis, which indicated an essential role of EIN2 in ethylene signaling. However, the function of EIN2 in fruit ripening has not been investigated. To gain a better understanding of EIN2, the temporal regulation of LeEIN2 expres- sion during tomato fruit development was analyzed. The expression of LeEIN2 was constant at different stages of fruit development, and was not regulated by ethylene. Moreover, LeEIN2-silenced tomato fruits were developed using a virus-induced gene silencing fruit system to study the role of LeEIN2 in tomato fruit ripening. Silenced fruits had a delay in fruit development and ripening, related to greatly descended expression of ethylene-related and ripening-related genes in comparison with those of control fruits. These results suggested LeEIN2 positively mediated ethylene signals during tomato development. In addition, there were fewer seeds and Iocules in the silenced fruit than those in the control fruit, like the phenotype of parthenocarpic tomato fruit. The content of auxin and the expression of auxin-regulated gene were declined in silenced fruit, which indicated that EIN2 might be important for crosstalk between ethylene and auxin hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号