首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY. 1. Differences in decay rates of autumn and spring balsam poplar (Populus balsamifera L.) leaf litter input to a stream and their effects on a lotic detritivore Tipula commiscibilis Diane were investigated.
2. Autumnal leaf litter decay rates were significantly greater than spring decay rates despite higher initial quality of spring leaves. Reduced spring/summer decomposition rates were the result of decreased microbial activity and biomass, and significantly lower numbers, kinds and biomass of macroinvertebrate detritivores.
3. Growth of the detritivore Tipula commiscibilis was significantly lower when fed spring leaves indicating that they were a poorer quality food source than autumn leaves.
4. Lower numbers of detritivores coupled with reduced leaf quality resulted in lower leaf litter decay rates characteristic of spring/summer.  相似文献   

2.
1. We characterised the fungal communities of eight streams in Portugal, four bordered by native deciduous forest and four bordered by pure stands of Eucalyptus globulus .
2. Aquatic hyphomycete species richness and evenness, but not numbers of water-borne conidia, of aquatic hyphomycetes were significantly lower in eucalypt bordered streams.
3. Multivariate analyses subdivided the fungal communities into two distinct groups corresponding to riparian vegetation.
4. Despite these differences in the dominant decomposer community, decay rates of eucalypt leaves (accounting for ≥98% of naturally occurring leaves in eucalypt bordered streams, absent in native forest) and chestnut leaves (occurring naturally in native forests) did not differ between the two groups of streams.  相似文献   

3.
The high biodiversity of tropical forest streams depends on the strong input of organic matter, yet the leaf litter decomposition dynamics in these streams are not well understood. We assessed how seasonal litterfall affects leaf litter breakdown, density and biomass of aquatic invertebrates, and the microbial biomass and sporulation of aquatic hyphomycetes in a South American grassland ‘vereda’ landscape. Although litter production in the riparian area was low, leaf litter breakdown was high compared with other South American systems, with maximum values coinciding with the rainy season. Fungal biomass in decomposing leaves was high, but spore densities in water and sporulation rates were very low. Invertebrates were not abundant in litter bags, suggesting they play a minor role in leaf litter decomposition. Chironomids accounted for ~70 percent of all invertebrates; only 10 percent of non‐Chironomidae invertebrates were shredders. Therefore, fungi appear to be the drivers of leaf litter decomposition. Our results show that despite low productivity and relatively fast litter decomposition, organic matter accumulated in the stream and riparian area. This pattern was attributed to the wet/dry cycles in which leaves falling in the flat riparian zone remain undecomposed (during the dry period) and are massively transported to the riverbed (rainy season).  相似文献   

4.
Up to 99% of the carbon fuelling the food webs of temperate woodland streams is derived from inputs of terrestrial leaf litter. Aquatic bacteria, fungi, and detritivore invertebrates directly utilize these inputs, transferring this energy to other components of the food web. Increases in atmospheric CO2 could indirectly impact woodland stream food webs by chemically altering leaf litter. This study evaluated CO2-induced chemical changes in aspen ( Populus tremuloides ) leaf litter, and the corresponding effects on stream bacteria, fungi and leaf-shredding cranefly larvae ( Tipula abdominalis : Diptera). Leaf litter from plants grown under elevated CO2 had decreased nutritional value to aquatic decomposers and detritivores because of higher levels of structural compounds and lower nitrogen content. Consequently, elevated CO2-grown leaf litter supported 59% lower bacterial production in a stream than litter grown at ambient CO2 levels, while not affecting fungal biomass. Larval craneflies fed elevated CO2-grown microbially colonized leaves consumed less, assimilated less, and grew 12 times slower than their ambient fed counterparts.  相似文献   

5.
Invasion by exotic trees into riparian areas has the potential to impact aquatic systems. We examined the effects of the exotic Salix fragilis (crack willow) on the structure and functioning of small streams in northern Patagonian Andes via a field survey of benthic invertebrates and leaf litter and an in situ experiment. We compared leaf decomposition of the native Ochetophila trinervis (chacay) and S. fragilis in reaches dominated by native vegetation versus reaches dominated by crack willow. We hypothesized that S. fragilis affects the quality of leaf litter entering the streams, changing the aquatic biota composition and litter decomposition. Our study showed that crack willow leaves decomposed slower than chacay, likely related to leaf properties (i.e., leaf toughness). Benthic leaf litter mass was similar between the two riparian vegetation types, though in stream reaches dominated by crack willow, leaves of this species represented 82% of the total leaf litter. Benthic invertebrate abundance and diversity were similar between reaches but species composition differed. Our study found little evidence for strong impacts of crack willow on those small streams. Further studies on other aspects of ecosystem functioning, such as primary production, would enhance our understanding of the impacts of crack willow on Patagonian streams.  相似文献   

6.
1. We examined the role of flooding on the leaf nutrient content of riparian trees by comparing the carbon : nitrogen : phosphorus (C : N : P) ratio of leaves and litter of Rio Grande cottonwood (Populus deltoides ssp. wislizenii) in flood and non‐flood sites along the Middle Rio Grande, NM, U.S.A. The leaf C : N : P ratio was also examined for two non‐native trees, saltcedar (Tamarix chinensis) and Russian olive (Elaeagnus angustifolia), and six species of dominant riparian arthropods. 2. Living leaves and leaf litter of cottonwoods at flood sites had a significantly lower leaf N : P ratio and higher %P compared with leaves and litter at non‐flood sites. A non‐flood site downstream from wastewater effluent had a significantly lower litter C : N ratio than all other sites, suggesting N fertilisation through ground water. The non‐native trees, saltcedar and Russian olive, had higher mean leaf N content, N : P ratio, and lower C : N ratio compared with cottonwoods across study sites. 3. Riparian arthropods ranged from 5.2 to 7.1 for C : N ratio, 56–216 for C : P ratio, and 8.9–34 for N : P ratio. C content ranged from 25 to 52% of dry mass, N content from 4.7 to 10.8%, and P content from 0.59 to 1.2%. Differences in stoichiometry between high C : nutrient leaf litter and low C : nutrient invertebrates suggests possible food‐quality constraints for detritivores. 4. These results suggest that spatial and temporal variation in the C : N : P ratio of cottonwood leaves and leaf litter is influenced by surface and subsurface hydrologic connection within the floodplain. Reach‐scale variation in the elemental composition of riparian organic matter inputs may have important implications for decomposition, nutrient cycling, and food webs in river floodplain systems.  相似文献   

7.
Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m?2 day?1) was 25 % higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon’s H′) was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these results challenge the notion that leaf quality is a simple function of decomposition, suggesting instead that aquatic insects benefit differentially from different leaf types, such that some use slow-decomposing litter for habitat and its temporal longevity and others utilize fast-decomposing litter with more immediate nutrient release.  相似文献   

8.
In forest headwater streams where the riparian canopy limits autochthonous primary production, leaf litter decomposition is a key process controlling nutrient and carbon cycling. Any alteration of the riparian vegetation may influence litter decomposition and detrital food webs. We evaluated the effect of non-native Platanus hybrida riparian plantations on leaf litter decomposition in Mediterranean streams. The experiment was conducted in six headwater streams; three lined by native riparian vegetation and three crossing P. hybrida plantations. We have characterized the processing rates of alder leaves and the assemblages of shredder macroinvertebrates and fungi. Litter decomposition was significantly faster in the P. hybrida than in the reference streams. Although the dissolved inorganic nitrogen concentration was higher in P. hybrida, no significant effect was observed in decomposition rates. Differences in decomposition rates reflected the macroinvertebrate and shredder colonization in alder litter, with higher abundance and richness in the P. hybrida streams. However, aquatic hyphomycete sporulation rate was higher in reference streams, suggesting that the variation in decomposition rates is a direct consequence of shredder abundance. Our findings support part of the substrate quality-matrix quality (SMI) hypothesis, which expects that high-quality litter will show increased decomposition rates in a low-quality litter matrix.  相似文献   

9.
《Fungal biology》2022,126(10):631-639
The fungi associated with leaf litter play a key role in decomposition and can be affected both by the warming water and the invasion of non-native species in riparian vegetation. Warming water and invasion of non-native riparian species on stream fungal communities have been studied mainly in temperate ecosystems. We tested the effects of warming water and non-native plant Psidium guajava on leaf litter decomposition, conidia density, species richness and beta diversity of tropical stream fungi. Thus, we carried out an experiment using the current mean temperature of streams from northwestern Paraná in South Brazil (22 °C) and two temperatures above the current mean temperature (26 °C and 29 °C). We also used the leaves of a non-native plant (P. guajava), and two native plants (one of similar nutritional quality, and the other of higher nutritional quality than the non-native species) occurring in Neotropical streams riparian vegetation. Warming water accelerated leaf litter decomposition and reduced conidia density and fungal richness in native and non-native plants. However, species composition and beta diversity were not affected by water temperature. Our study showed that warming affects the fungi of streams, the main microorganisms responsible for decomposition and that the nutritional quality of the leaves may be more important than the origin of riparian plant species. Despite this, further investigations should be conducted on the interaction of P. guajava with the flow of nutrients in these environments and how it can affect other ecosystem processes and the food chain. Efforts to study the effects of water warming and biological invasion on the attributes and distribution of fungi in streams are vital, making them a tool for the conservation of riparian ecosystems.  相似文献   

10.
1. Detrital inputs from riparian forests can provide the main source of energy to aquatic consumers in stream communities. However, the supply of coarse organic detritus to stream communities is difficult to predict. Patchy riparian inputs and connectivity between reaches have complicated studies and disrupted patterns of the distribution of suspended coarse particulate organic matter within streams and rivers.
2. In this study we emphasize the importance of spatial and temporal scales in determining potential distribution of instream leaf litter. Although large pulses of detritus are transported by streams during storm flows, the main supply of benthic leaf litter used by shredders and of suspended particulate organic matter used by filter feeders is transported during prolonged periods of baseflow. The local, fine-scale distribution of this organic matter is determined by the location and continuity of leaf litter sources (riparian vegetation) and specific features of channel roughness (such as woody debris, roots and rocks).
3. Viewing riparian vegetation at several scales results in variable conclusions regarding the amount of potential source area of leaf detritus. The percentage of suspended whole leaves at sites in the Little Washita River, Oklahoma, U.S.A. was best explained by the percentage of riparian forest cover in 500 m and 1000 m reaches upstream of the sites, as viewed by remote sensing imagery. The amount of leaf fragments was best explained by distance downstream along the longitudinal gradient. Ash-free dry mass of suspended coarse particulate matter did not correlate with any measures of riparian cover.
4. Our results suggest that leaves originate over longer reach lengths than those generally considered as source areas. Scale is an important consideration in studies of riparian patterns and related instream processes because of the need to integrate point dynamics as well as upstream influences.  相似文献   

11.
1. Detrital inputs from riparian forests can provide the main source of energy to aquatic consumers in stream communities. However, the supply of coarse organic detritus to stream communities is difficult to predict. Patchy riparian inputs and connectivity between reaches have complicated studies and disrupted patterns of the distribution of suspended coarse particulate organic matter within streams and rivers.
2. In this study we emphasize the importance of spatial and temporal scales in determining potential distribution of instream leaf litter. Although large pulses of detritus are transported by streams during storm flows, the main supply of benthic leaf litter used by shredders and of suspended particulate organic matter used by filter feeders is transported during prolonged periods of baseflow. The local, fine-scale distribution of this organic matter is determined by the location and continuity of leaf litter sources (riparian vegetation) and specific features of channel roughness (such as woody debris, roots and rocks).
3. Viewing riparian vegetation at several scales results in variable conclusions regarding the amount of potential source area of leaf detritus. The percentage of suspended whole leaves at sites in the Little Washita River, Oklahoma, U.S.A. was best explained by the percentage of riparian forest cover in 500 m and 1000 m reaches upstream of the sites, as viewed by remote sensing imagery. The amount of leaf fragments was best explained by distance downstream along the longitudinal gradient. Ash-free dry mass of suspended coarse particulate matter did not correlate with any measures of riparian cover.
4. Our results suggest that leaves originate over longer reach lengths than those generally considered as source areas. Scale is an important consideration in studies of riparian patterns and related instream processes because of the need to integrate point dynamics as well as upstream influences.  相似文献   

12.
Invasion by exotic trees into riparian areas has the potential to impact terrestrial and aquatic systems. To test the effect of different streamside tree species on the aquatic food web in a stream in Montana, we compared decomposition rates of leaf litter and invertebrate assemblages associated with the leaf litter of the exotic Acer platanoides and the dominant native Populus trichocarpa trees. Macroinvertebrate family richness, evenness, and diversity increased with days of aquatic processing; however, there was no effect of leaf species. Leaves of the A. platanoides were associated with 70% greater density of macroinvertebrates of the family Nemouridae. This family consists primarily of detritivores and had the greatest overall density and frequency of occurrence relative to other macroinvertebrate families. The density of a family of predatory macroinvertebrates (Rhyacophilidae) was also generally (73%) greater in association with A. platanoides than P. trichocarpa leaves. The density of Ephemerellidae and Rhyacophilidae increased over time. In contrast to studies comparing leaves of exotic vs. native trees, we observed no difference in leaf decomposition rates; however, the amount of leaf inputs are likely to differ between native and invaded forests. The results indicate that replacement of native riparian trees with exotics affected the most common family of macroinvertebrates and possibly a common family of predatory macroinvertebrates (Rhyacophilidae), which may affect the detrital food web.  相似文献   

13.
Tropical montane ecosystems of the Andes are critically threatened by a rapid land‐use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest–pasture–urban) on stream physico‐chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico‐chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land‐use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf‐shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land‐use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of native vegetation and riparian buffers to promote ecological integrity and functioning of tropical Andean stream ecosystems.  相似文献   

14.
European bird cherry (Prunus padus) (EBC) is an invasive ornamental tree that is spreading rapidly in riparian forests of urban Alaska. To determine how the spread of EBC affects leaf litter processing by aquatic invertebrate shredders, we conducted complementary leaf pack experiments in two streams located in Anchorage, Alaska. The first experiment contrasted invasive EBC with three native tree species—thin-leaf alder (Alnus tenuifolia), paper birch (Betula neoalaskana), and black cottonwood (Populus trichocarpa)—in one reach of Chester Creek; finding that EBC leaf litter broke down significantly faster than birch and cottonwood, but at a similar rate to alder. The second experiment contrasted EBC with alder in four reaches of Campbell and Chester creeks; finding that while EBC leaf litter broke down significantly faster than alder in Chester Creek, EBC broke down at a similar rate to alder in Campbell Creek. Although EBC sometimes supported fewer shredders by both count and mass, shredder communities did not differ significantly between EBC and native plants. Collectively, these data suggest that invasive EBC is not currently exhibiting strong negative impacts on leaf litter processing in these streams, but could if it continues to spread and further displaces native species over time.  相似文献   

15.
1. The functioning of many aquatic ecosystems is controlled by surrounding terrestrial ecosystems. In a view of growing interest in linking biodiversity to ecosystem‐level processes, we examined whether and how leaf diversity influences litter decomposition and consumers in streams. 2. We tested experimentally the hypothesis that the effects of leaf diversity on decomposition are determined by the responses of leaf consumers to resource–habitat heterogeneity. Leaves from three common riparian trees, beech (Fagus sylvatica), hazel (Corylus avellana) and ash (Fraxinus excelsior), were exposed alone and in all possible mixtures of two and three species in a stream. We analysed individual leaf species for decomposition rate, microbial respiration and mycelial biomass, and we determined the species composition, abundance and biomass of shredders in leaf bags. 3. We found that the decomposition of the fastest decomposing leaves (hazel and ash) was substantially stimulated (up to twofold higher than single species leaf packs) in mixtures containing beech leaves, which are refractory. In contrast, the decomposition of beech leaves was not affected by leaf mixing. Such species‐specific behaviour of leaves in species mixtures has been overlooked in previous studies that examined the overall decomposition of litter mixtures. 4. The effects of leaf diversity on decomposition varied with the abundance and biomass of shredders but not with microbial parameters. Beech leaves alone were less attractive to shredders than leaf packs made of hazel, ash or any mixture of species. Moreover, the presence of beech leaves in mixtures led to higher shredder abundance and biomass than we had expected from data from single species exposed alone. Lastly, we found that early instars of the caddisfly Potamophylax (the dominant shredder in terms of biomass) almost exclusively used the toughest material (i.e. beech leaves) to construct their cases. 5. Leaf pack heterogeneity may have altered shredder‐mediated decomposition. Shredders colonising diverse leaf packs benefited from the stable substratum provided by beech leaves, whereas ash and hazel leaves were primarily used as food. Thus, our findings provide strong evidence for an intimate linkage between the diversity of riparian vegetation and aquatic communities.  相似文献   

16.
1. We investigated the effects of riparian plant diversity (species number and identity) and temperature on microbially mediated leaf decomposition by assessing fungal biodiversity, fungal reproduction and leaf mass loss. 2. Leaves of five riparian plant species were first immersed in a stream to allow microbial colonisation and were then exposed, alone or in all possible combinations, at 16 or 24 °C in laboratory microcosms. 3. Fungal biodiversity was reduced by temperature but was not affected by litter diversity. Temperature altered fungal community composition with species of warmer climate, such as Lunulospora curvula, becoming dominant. 4. Fungal reproduction was affected by litter diversity, but not by temperature. Fungal reproduction in leaf mixtures did not differ or was lower than that expected from the weighted sum of fungal sporulation on individual leaf species. At the higher temperature, the negative effect of litter diversity on fungal reproduction decreased with the number of leaf species. 5. Leaf mass loss was affected by the identity of leaf mixtures (i.e. litter quality), but not by leaf species number. This was mainly explained by the negative correlation between leaf decomposition and initial lignin concentration of leaves. 6. At 24 °C, the negative effects of lignin on microbially mediated leaf decomposition diminished, suggesting that higher temperatures may weaken the effects of litter quality on plant litter decomposition in streams. 7. The reduction in the negative effects of lignin at the higher temperature resulted in an increased microbially mediated litter decomposition, which may favour invertebrate‐mediated litter decomposition leading to a depletion of litter stocks in streams.  相似文献   

17.
1. We examined the relative importance of litter quality and stream characteristics in determining decomposition rate and the macroinvertebrate assemblage living on autumn‐shed leaves. 2. We compared the decomposition rates of five native riparian tree species (Populus fremontii, Alnus oblongifolia, Platanus wrightii, Fraxinus velutina and Quercus gambelii) across three south‐western streams in the Verde River catchment (Arizona, U.S.A.). We also compared the decomposition of three‐ and five‐species mixtures to that of single species to test whether plant species diversity affects rate. 3. Decomposition rate was affected by both litter quality and stream. However, litter quality accounted for most of the variation in decomposition rates. The relative importance of litter quality decreased through time, explaining 97% of the variation in the first week but only 45% by week 8. We also found that leaf mixtures decomposed more quickly than expected, when all the species included were highly labile or when the stream environment led to relatively fast decomposition. 4. In contrast to decomposition rate, differences in the invertebrate assemblage were more pronounced across streams than across leaf litter species within a stream. We also found significant differences between the invertebrate assemblage colonising leaf mixtures compared with that colonising pure species litter, indicating non‐additive properties of litter diversity on stream invertebrates. 5. This study shows that leaf litter diversity has the capacity to affect in‐stream decomposition rates and stream invertebrates, but that these effects depend on both litter quality and stream characteristics.  相似文献   

18.
Breakdown of leaves from three native riparian tree species, and their colonisation by shredding and collecting insect larvae, were investigated in three streams on Banks Peninsula, New Zealand. Leaves were introduced in baskets at the time of leaf fall. Breakdown rates of leaves were faster than previously recorded in New Zealand streams and were comparable to those of many northern hemisphere deciduous species. Shredder and total detritivore densities and biomass in leaf baskets were also greater than previously found in New Zealand streams. Peaks of shredder biomass on red beech and mahoe leaves were found when only about 20% of leaf biomass remained. No shredder peak was recorded on fuchsia leaves, and no collector peaks occurred in any of the streams. Relative shredder and collector biomass (per g DW leaf) in leaf baskets did not exceed or was smaller than in leaf litter accumulations of mixed origin and conditioning throughout the streams during leaf breakdown although absolute shredder and collector biomass (per m2 stream bottom) was occasionally larger in baskets than in the rest of the stream. These findings support contentions that spatial and temporal relationships between detrital inputs and detritivore biomass and life histories are weak in New Zealand streams.  相似文献   

19.
Hans Malicky 《Hydrobiologia》1990,206(2):163-173
In the southern parts of the Mediterranean region, as in the island of Crete, there are few species of riparian trees and shrubs among the dominant Platanus orientalis. Feeding tests have shown that leaves of Platanus are not eaten by aquatic shredders of continental and Cretean origin. The large quantities of organic matter are therefore not used as a source of food and energy by the stream communities. In addition, the high winter flow shortly after leaf fall, and the short courses of rivers result in loss of most of the leaf litter to the sea. The River Continuum Concept does therefore not apply to this region. Field observations have shown that amphipods and limnephilid larvae are shifting from shredding to scraping habits if no leaf litter except Platanus was available.  相似文献   

20.
1. Breakdown of four leaf species ( Platanus orientalis , Populus nigra , Salix atrocinerea , Rubus ulmifolius ) was studied in a Mediterranean second-order stream characterised by abundant travertine precipitation, a history of fire in its catchment, and a recently revegetated alluvial corridor.
2. Compared to breakdown rates reported in the literature for congeneric species, breakdown of the four species was slow (k = 0.0024–0.0069 day−1 for the tree species, and 0.0103 and 0.0111 day−1 for Rubus ), in spite of high water temperatures, indicating that the travertine layer that quickly covered submerged leaves impeded decomposer activity and physical fragmentation losses.
3. Breakdown rates nevertheless differed between leaf species in a predictable manner, suggesting that the observed mass loss was largely due to biological processes.
4. The observed tendency towards increasing leaf nitrogen and phosphorus concentrations during breakdown suggests that microorganisms were actively involved in leaf breakdown; however, this interpretation must be viewed with caution because of potentially confounding effects by nutrients contained in the travertine layer.
5. Leaf breakdown of the three indigenous species was faster than that of the exotic species P. orientalis . Due to the recalcitrance of its leaves, the frequent use of Platanus in revegetation schemes following the destruction of indigenous vegetation by fire, exacerbates the negative effect of travertine precipitation on leaf breakdown and, by extension, energy flow in Mediterranean karst streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号