首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we studied alpha-actinin and tubulin sites in rabbit fibroblasts in culture. Antibodies anti-alpha-actinin were used for indirect PAP-reaction while antibodies anti-tubulin were used for indirect immunofluorescence method. The observations were carried out by light microscopy, phase-contrast and interference-contrast microscopy, with regard to actinin, and by fluorescence microscopy, with regard to tubulin. During the early mitotic phase, alpha-actinin is localized all over the cell membrane of the fibroblasts, forming a sort strong protective cap, while during diacinesis it forms only rings, localizing below the cell membrane and the philopodia. Thus tubulin forms the bundle fibres during mitotic phases.  相似文献   

2.
A battery of monoclonals to the rabbit skeletal muscle alpha-actinin has been produced. The majority of monoclonals proved to be species-specific by indirect immunofluorescence on the isolated rabbit skeletal myofibrils and on the differentiating cultures of chicken and rat skeletal muscles. One monoclonal, EA-53, reacts with the skeletal muscle alpha-actinin of various species (rat, rabbit, chicken) in immunofluorescence and immunoblotting. The monoclonal EA-53 recognizes also heart muscle alpha-actinin in cultured cardiomyocytes of human, rat and mouse origin. EA-53 does not stain alpha-actinin in myoblasts, fibroblasts, and endothelial cells. The monoclonal antibody EA-53 discriminating muscle and nonmuscle alpha-actinin isoforms could be used as a tool to study the mechanisms of skeletal and cardiac myogenesis.  相似文献   

3.
Antibodies to chicken gizzard myosin, subfragment 1, light chain 20, and light meromyosin were used to visualize myosin in stress fibers of cultured chicken cells. The antibody specificity was tested on purified gizzard proteins and total cell lysates using immunogold silver staining on protein blots. Immunofluorescence on cultured chicken fibroblasts and epithelial cells exhibited a similar staining pattern of antibodies to total myosin, subfragment 1, and light chain 20, whereas the antibodies to light meromyosin showed a substantially different reaction. The electron microscopic distribution of these antibodies was investigated using the indirect and direct immunogold staining method on permeabilized and fixed cells. The indirect approach enabled us to describe the general distribution of myosin in stress fibers. Direct double immunogold labeling, however, provided more detailed information on the orientation of myosin molecules and their localization relative to alpha-actinin: alpha-actinin, identified with antibodies coupled to 10-nm gold, was concentrated in the dense bodies or electron-dense bands of stress fibers, whereas myosin was confined to the intervening electron-lucid regions. Depending on the antibodies used in combination with alpha-actinin, the intervening regions revealed a different staining pattern: antibodies to myosin (reactive with the head portion of nonmuscle myosin) and to light chain 20 (both coupled to 5-nm gold) labeled two opposite bands adjacent to alpha-actinin, and antibodies to light meromyosin (coupled to 5-nm gold) labeled a single central zone. Based on these results, we conclude that myosin in stress fibers is organized into bipolar filaments.  相似文献   

4.
In the stress fibers of two types of nonmuscle cells, epithelia (PtK2, bovine lens) and fibroblasts (Gerbil fibroma, WI-38, primary human) the spacing between sites of alpha-actinin localization differs by a factor of about 1.6 as determined by indirect immunofluorescence and ultrastructural localization with peroxidase-labeled antibody. Both methods reveal striations along the stress fibers with a center-to- center spacing in the range of 0.9 mum in epithelial cells and 1.5 mum in fibroblasts. Periodic densities spaced at comparable distances are seen in PtK2 and in gerbil fibroma cells when they are treated with tannic acid and examined in the electron microscope. In such cells, densities are found not only along stress fibers but also at cell-cell junctions, attachment plaques, and foci from which stress fibers radiate. These latter three sites all stain with alpha-actinin antibody on the light and electron microscope level. Stress fibers in the two cell types also vary in the periodicity produced by indirect immunofluorescence with tropomyosin antibodies. As is the case for alpha-actinin, the tropomyosin center-to-center banding is approximately 1.6 times as long in gerbil fibroma cells (1.7 mum) as it is in PtK2 cells (1.0 mum). These results suggest that the densities seen in the electron microscope are sites of alpha-actinin localization and that the proteins in stress fibers have an arrangement similar to that in striated muscle. We propose a sarcomeric model of stress fiber structure based on light and electron microscopic findings.  相似文献   

5.
6.
The aim of the study was to determine the level of infection in mosquitoes with spirochetes Borrelia burgdorferi sensu lato in the woody areas of Szczecin. The mosquitoes were collected from May to September 2003. The spirochetes, Borrelia burgdorferi s. l., present in mosquitoes were detected in mosquitoes with indirect immunofluorescence assay (IFA) using rabbit anti-Borrelia burgdorferi antibodies and goat anti-rabbit IgG marked with fluorescein isocyanate (FITC). A total of 1557 females and 58 males were collected. They represented the genera Aedes (63%) and Culex (37%). The infection level of the mosquitoes from the area studied amounted to 1.7%. The results of the present study confirm the potential of these arthropods to spread Lyme borreliosis.  相似文献   

7.
We introduce two new, rapid procedures. One is specifically designed for isolating alpha-actinin from skeletal and the other for isolating alpha-actinin from smooth muscle. Approximately 20 mg of greater than 95% pure alpha-actinin can be obtained/100 g of ground chicken pectoral muscle in just 4 days. The smooth muscle protocol yields 2.7 mg of greater than 99% pure alpha-actinin/100 g of ground gizzard after just 5 days. Differences in protein contaminants and in the extractability of alpha-actinin necessitated the development of separate isolation procedures for the two muscle types. Antibody prepared against the purified gizzard alpha-actinin reacted with alpha-actinin from skeletal, cardiac, and smooth muscle in immunodiffusion. Anti-alpha-actinin reacted only with alpha-actinin from crude extracts of skeletal and smooth muscle on Staph A gels. Anti-alpha-actinin stained Z-bands from skeletal muscle in indirect immunofluorescence microscopy and stress fibers from baby hamster kidney fibroblasts and mouse mammary epithelial cells in the characteristic punctate pattern observed by other workers (Lazarides, E., and Burridge, K. (1975) Cell 6, 289-298). These two methods for purifying alpha-actinin from skeletal and smooth muscle represent a significant improvement over that published previously.  相似文献   

8.
Batches of rabbit anti-human immunoglobulin G antibodies were labeled either with horseradish peroxidase, using the two-step glutaraldehyde method or the periodate method, or with fluorescein isothiocyanate (FITC). The peroxidase conjugates were isolated by chromatography using two different gel types. The five types of conjugates thus obtained were standardized to the same amount of rabbit immunoglobulin G. The antibody activity, as estimated by means of single radial immunodiffusion and passive hemagglutination, and the enzyme activity, determined with orthodianisidine, were compared. The ultimate dilutions and absolute amounts of the five conjugates giving positive reactions were determined in direct and indirect immunohistochemical tests, using both cryostat sections of skin and the agarose bead model system. It appeared that during the peroxidase conjugation procedures there was a considerable loss of abtibody and enzyme activity, whereas in the FITC conjugation procedure the antibody activity remained intact. Neverthe less, peroxidase conjugates prepared with glutaraldehyde still gave positive staining reactions in equal or somewhat higher dilutions than the fluorescin conjugate did. The peroxidase conjugates prepared with periodate could not be diluted to the same extent. For the detection of antibodies by indirect immunohistochemical methods, the peroxidase conjugate, prepared with glutaraldehyde, was comparable to the FITC conjugate. The peroxidase conjugate, prepared with periodate, was less effective.  相似文献   

9.
Anti-rat islet serum was prepared in guinea pigs by multiple subcutaneous inoculations of rat islets homogenates emulsified in complete Freund's adjuvant (CFA). The anti-rat islet serum was cytotoxic against rat spleen cells in the presence of complement and the nonspecific antibodies were observed with homogenates of rat livers and spleens. After absorption, the serum lost the cytotoxicity against the rat spleen cells yet showed specific cytotoxicity against the rat islet cells. The binding capacity of anti-rat islet antibody was determined by the indirect immunofluorescence test using FITC conjugated rabbit anti-guinea pig IgG serum. As the guinea pig anti-rat islet serum contained anti-insulin antibody, the role of this antibody in this cytotoxic activity and surface immunofluorescence was studied. However, the anti-insulin antibody used as the control showed neither cytotoxicity nor surface immunofluorescence. After neutralizing the anti-insulin antibody in the antiserum with insulin, the serum remained cytotoxic to the rat islet cells and a surface immunofluorescence appeared. These data show that specific anti-rat islet cell surface antibody can be produced in guinea pigs by multiple inoculations of rat islets homogenates with CFA.  相似文献   

10.
Antibodies to chicken fast skeletal muscle (pectoralis) alpha-actinin and to smooth muscle (gizzard) alpha-actinin were absorbed with opposite antigens by affinity chromatography, and four antibody fractions were thus obtained: common antibodies reactive with both pectoralis and gizzard alpha-actinins ([C]anti-P alpha-An and [C]anti-G alpha-An), antibody specifically reactive with pectoralis alpha-actinin ([S]anti-P alpha-An), and antibody specifically reactive with gizzard alpha-actinin ([S]anti-G alpha-An). In indirect immunofluorescence microscopy, (C)anti-P alpha-An, (S)anti-P alpha-An, and (C)anti-G alpha- An stained Z bands of skeletal muscle myofibrils, whereas (S)anti-G alpha-An did not. Although (S)anti-G alpha-An and two common antibodies stained smooth muscle cells, (S)anti-P alpha-An did not. We used (S)anti-P alpha-An and (S)anti-G alpha-An for immunofluorescence microscopy to investigate the expression and distribution of skeletal- and smooth-muscle-type alpha-actinins during myogenesis of cultured skeletal muscle cells. Skeletal-muscle-type alpha-actinin was found to be absent from myogenic cells before fusion but present in them after fusion, restricted to Z bodies or Z bands. Smooth-muscle-type alpha- actinin was present diffusely in the cytoplasm and on membrane- associated structures of mononucleated and fused myoblasts, and then confined to membrane-associated structures of myotubes. Immunoblotting and peptide mapping by limited proteolysis support the above results that skeletal-muscle-type alpha-actinin appears at the onset of fusion and that smooth-muscle-type alpha-actinin persists throughout the myogenesis. These results indicate (a) that the timing of expression of skeletal-muscle-type alpha-actinin is under regulation coordination with other major skeletal muscle proteins; (b) that, with respect to expression and distribution, skeletal-muscle-type alpha-actinin is closely related to alpha-actin, whereas smooth-muscle-type alpha- actinin is to gamma- and beta-actins; and (c) that skeletal- and smooth- muscle-type alpha-actinins have complementary distribution and do not co-exist in situ.  相似文献   

11.
Monoclonal mouse antibodies to the "framework" determinants of the class I and II molecules of the major histocompatibility complex (MHC) were used to demonstrate the presence of the MHC antigens in human liver. First, the localization of these antigens was demonstrated from frozen section histology with indirect FITC immunofluorescence and the cell component(s) binding the mouse antibody were identified by rabbit marker antisera and indirect TRITC immunofluorescence. Second, the antigen expression on the cell surface was analyzed by the Staphylococcus aureus rosette method from cytological cell smears. All antibodies reacted with cells in the liver sinusoids, both with the Kupffer cells and at least partially with the sinusoidal endothelial cells. The same antisera reacted also with the bile duct cells, though weaker, and with some stromal cells in close proximity of the blood vessels. The vascular endothelial cells of hepatic artery, hepatic vein, and portal vein displayed no reaction. Thus human liver differs strikingly from, e.g., human kidney, where the vascular endothelial cells contain large amounts of MHC antigens on the cell surface. This difference may be one explanation to why liver allografts are less promptly rejected than renal allografts in man.  相似文献   

12.
13.
Twelve monoclonal antibodies have been raised against proteins in preparations of Z-disks isolated from Drosophila melanogaster flight muscle. The monoclonal antibodies that recognized Z-band components were identified by immunofluorescence microscopy of flight muscle myofibrils. These antibodies have identified three Z-disk antigens on immunoblots of myofibrillar proteins. Monoclonal antibodies alpha:1-4 recognize a 90-100-kD protein which we identify as alpha-actinin on the basis of cross-reactivity with antibodies raised against honeybee and vertebrate alpha-actinins. Monoclonal antibodies P:1-4 bind to the high molecular mass protein, projectin, a component of connecting filaments that link the ends of thick filaments to the Z-band in insect asynchronous flight muscles. The anti-projectin antibodies also stain synchronous muscle, but, surprisingly, the epitopes here are within the A-bands, not between the A- and Z-bands, as in flight muscle. Monoclonal antibodies Z(210):1-4 recognize a 210-kD protein that has not been previously shown to be a Z-band structural component. A fourth antigen, resolved as a doublet (approximately 400/600 kD) on immunoblots of Drosophila fibrillar proteins, is detected by a cross reacting antibody, Z(400):2, raised against a protein in isolated honeybee Z-disks. On Lowicryl sections of asynchronous flight muscle, indirect immunogold staining has localized alpha-actinin and the 210-kD protein throughout the matrix of the Z-band, projectin between the Z- and A-bands, and the 400/600-kD components at the I-band/Z-band junction. Drosophila alpha-actinin, projectin, and the 400/600-kD components share some antigenic determinants with corresponding honeybee proteins, but no honeybee protein interacts with any of the Z(210) antibodies.  相似文献   

14.
The sheep hydatid fluid and scolex antigens of Echinococcus granulosus were precipitated by increasing ammonium sulphate concentrations. The antigenic profiles, obtained by complement fixation and indirect hemagglutination inhibition tests on the ammonium sulphate precipitates after linear sucrose gradient ultracentrifugation, were different comparing the hydatid fluid and the scolex extracts. Antigenic non-identity was found between sheep hydatid fluid and scolex extracts by immunodiffusion and indirect hemagglutination inhibition tests. The ammonium sulphate precipitates of hydatid fluid and scolex extracts revealed several different bands by slab-gel examination.  相似文献   

15.
Summary Fluorescein antibodies were labelled with 7-aminocoumarin (AMC) derivatives, the 3-acetic acid and the 3-propionic acidN-hydroxysuccinimide esters. The labelled antibodies were used in conjunction with fluorescein isothiocyanate (FITC) and carboxyfluorescein-conjugated primary and secondary antibodies to develop novel immunofluorescent staining procedures. These methods combine the advantages of the fluorescence properties of AMC and the ready availability of FITC-labelled antisera to provide an amplified fluorescence signal as well as overcoming the photobleaching problems in FITC staining. The method is easy to perform and is expected to make an important contribution to the improvement of the quality of staining achieved with immunofluorescence. Details of the procedure used to stain human fibroblasts with antifibronectin antibodies are reported in order to illustrate the method.  相似文献   

16.
Fluorescence microscopy in combination with multiple, simultaneous labeling of biomolecules has been a key breakthrough in cell biology. However, the spatiotemporal resolution of this approach is limited by bleaching of the fluorescence label and illegitimate cross-reference of the label. CdSe-based semiconductor nanocrystals with their excellent bleaching stability would be an alternative to overcome this limitation. We therefore explored direct immunofluorescence based on nanocrystal-conjugated antibodies using plant microtubules as model. We compared two strategies of bioconjugation, covalent coupling of antitubulin antibodies to BSA-coated nanocrystals and covalent coupling to nanocrystals that were surrounded by functionalized silica shells. Both nanoparticle-antibody conjugates were used to follow the dynamic reorganization of microtubules through the cell cycle of a tobacco cell culture in double and triple staining with FITC as conventional fluorochrome and Hoechst 33258 as marker for mitotic duplication of DNA. BSA-coated nanocrystals visualized fluorescent dots that decorated the various arrays of microtubules. The specificity of the antibody was maintained after conjugation with the nanocrystals, and the antibodies correctly represented the dynamics of cell-cycle-dependent microtubular reorganization. However, this approach did not yield a contiguous signal. In contrast, silica-shelled nanocrystals visualized contiguous microtubules in the same pattern as found for the conventional fluorochrome FITC and thus can be used as labels for direct immunofluorescence in plant cells.  相似文献   

17.
The aim of this study was to investigate the in vitro role of the complement membrane attack complex (MAC) in the injury induced by nephritogenic anti-brush border vesicle (Fx1A) antibodies on rat glomerular visceral epithelial cells (GEC). Both sheep and rabbit anti-rat brush border vesicle IgG-induced complement-dependent lysis of cultured GEC. Fab fragments of sheep anti-rat brush border vesicles and polyclonal or monoclonal gp330 IgG were devoid of lytic activity. Shedding of cell-surface antigens induced by sheep or rabbit anti-rat brush border vesicle IgG protected GEC from subsequent exposure to lytic antibodies and complement, an effect that was not obtained with Fab fragments. When GEC were incubated with sheep or rabbit anti-rat brush border vesicle IgG in capping conditions, the C3 component was co-redistributed with Heymann immune complexes; in contrast, the MAC remained diffusely bound to the cell surface, indicating that it was not associated with the antigen-antibody complexes. The MAC was demonstrated on the surface of GEC by immunofluorescence staining with anti-MAC neoantigen and by electron microscopy of negatively stained membranes showing focal clusters of 110 A MAC lesions. When GEC were treated with sheep IgG or rabbit IgG plus C6-deficient sera, the cells were not lysed and MAC was not demonstrable on the surface; however, lytic activity was restored when C6-deficient sera were reconstituted with purified C6. The results are consistent with the interpretation that injury induced by Heymann antibodies on GEC is MAC-dependent.  相似文献   

18.
In this paper we describe an indirect fluorescence double staining procedure for the simultaneous detection of IdUrd and CldUrd in the same cell nucleus. Two commercially available antibodies were selected for this purpose. A rat anti-BrdUrd monoclonal antibody from Sera-lab was found to bind specifically to CldUrd and BrdUrd. A mouse monoclonal anti-BrdUrd antibody from Becton Dickinson used in a 1:2 dilution binds to all halogenated deoxyuridines but, when the cells were extensively washed with Tris buffer with a high salt concentration, almost no binding to CldUrd was observed. An immunofluorescence procedure was developed, based on these primary antibodies, raised in different species (rat and mouse), in combination with highly purified second antibodies: FITC conjugated goat antirat and Texas-Red conjugated goat antimouse.  相似文献   

19.
Nine monoclonal antibodies to rabbit T cells and B subpopulations have been generated from three separate fusions of spleen cells from mice immunized with fractionated populations of rabbit lymphocytes. These monoclonal antibodies, as well as a previously described rabbit T cell monoclonal antibody, 9AE10, have been analyzed by immunofluorescence staining on frozen tissue sections of rabbit thymus, spleen, and appendix. This screening method permits rapid identification of the lymphocyte subdomains in each tissue which is not possible by other screening methods. Each monoclonal antibody selected has a unique tissue staining pattern. Flow cytometric analysis of these monoclonal antibodies, using indirect immunofluorescence techniques on thymocytes, splenocytes, and PBL, revealed varying percentages of positive cells and individual mean fluorescence intensities indicating different epitope densities for each antigen. These monoclonal antibodies are now being used to characterize normal lymphocyte function and the role of specific lymphocyte subpopulations in experimental disease models in the rabbit.  相似文献   

20.
An interaction between zyxin and alpha-actinin   总被引:11,自引:0,他引:11       下载免费PDF全文
Zyxin is an 82-kD protein first identified as a component of adhesion plaques and the termini of stress fibers near where they associate with the cytoplasmic face of the adhesive membrane. We report here that zyxin interacts with the actin cross-linking protein alpha-actinin. Zyxin cosediments with filamentous actin in an alpha-actinin-dependent manner and an association between zyxin and alpha-actinin is observed in solution by analytical gel filtration. The specificity of the interaction between zyxin and alpha-actinin was demonstrated by blot overlay experiments in which 125I-zyxin recognizes most prominently alpha-actinin among a complex mixture of proteins extracted from avian smooth muscle. By these blot overlay binding studies, we determined that zyxin interacts with the NH2-terminal 27-kD domain of alpha-actinin, a region that also contains the actin binding site. Solid phase binding assays were performed to evaluate further the specificity of the binding and to determine the affinity of the zyxin-alpha-actinin interaction. By these approaches we have demonstrated a specific, saturable, moderate-affinity interaction between zyxin and alpha-actinin. Furthermore, double-label immunofluorescence reveals that zyxin and alpha-actinin exhibit extensive overlap in their subcellular distributions in both chicken embryo fibroblasts and pigmented retinal epithelial cells. The significant colocalization of the two proteins is consistent with the possibility that the interaction between zyxin and alpha-actinin has a biologically relevant role in coordinating membrane-cytoskeletal interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号