共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of context on synonymous codon usage in genes with low codon usage bias. 总被引:3,自引:6,他引:3 下载免费PDF全文
M Bulmer 《Nucleic acids research》1990,18(10):2869-2873
The effect of neighbouring bases on the usage of synonymous codons in genes with low codon usage bias in yeast and E. coli is examined. The codon adaptation index is employed to identify a group of genes in each organism with low codon usage bias, which are likely to be weakly expressed. A similar pattern is found in complementary sequences with respect to synonymous usage of A vs G or of U vs C. It is suggested that this may reflect an effect of context on mutation rates in weakly expressed genes. 相似文献
2.
Background
In many bacteria, intragenomic diversity in synonymous codon usage among genes has been reported. However, no quantitative attempt has been made to compare the diversity levels among different genomes. Here, we introduce a mean dissimilarity-based index (Dmean) for quantifying the level of diversity in synonymous codon usage among all genes within a genome. 相似文献3.
In Drosophila melanogaster, synonymous codons corresponding to the most abundant cognate tRNAs are used more frequently, especially in highly expressed genes. Increased use of such "optimal" codons is considered an adaptation for translational efficiency. Need it always be the case that selection should favor the use of a translationally optimal codon? Here, we investigate one possible confounding factor, namely, the need to specify information in exons necessary to enable correct splicing. As expected from such a model, in Drosophila many codons show different usage near intron-exon boundaries versus exon core regions. However, this finding is in principle also consistent with Hill-Robertson effects modulating usage of translationally optimal codons. However, several results support the splice model over the translational selection model: 1) the trends in codon usage are strikingly similar to those in mammals in which codon usage near boundaries correlates with abundance in exonic splice enhancers (ESEs), 2) codons preferred near boundaries tend to be enriched for A and avoid C (conversely those avoided near boundaries prefer C rather than A), as expected were ESEs involved, and 3) codons preferred near boundaries are typically not translationally optimal. We conclude that usage of translationally optimal codons usage is compromised in the vicinity of splice junctions in intron-containing genes, to the effect that we observe higher levels of usage of translationally optimal codons at the center of exons. On the gene level, however, controlling for known correlates of codon bias, the impact on codon usage patterns is quantitatively small. These results have implications for inferring aspects of the mechanism of splicing given nothing more than a well-annotated genome. 相似文献
4.
Many genes in higher eukaryotes show sexually dimorphic expression, and these genes tend to be among the most divergent between species. In most cases, however, it is not known whether this rapid divergence is caused by positive selection or if it is due to a relaxation of selective constraint. To distinguish between these two possibilities, we surveyed DNA sequence polymorphism in 91 Drosophila melanogaster genes with male-, female-, or nonsex-biased expression and determined their divergence from the sister species D. simulans. Using several single- and multilocus statistical tests, we estimated the type and strength of selection influencing the evolution of the proteins encoded by genes of each expression class. Adaptive evolution, as indicated by a relative excess of nonsynonymous divergence between species, was common among the sex-biased genes (both male and female). Male-biased genes, in particular, showed a strong and consistent signal of positive selection, while female-biased genes showed more variation in the type of selection they experience. Genes expressed equally in the two sexes, in contrast, showed no evidence for adaptive evolution between D. melanogaster and D. simulans. This suggests that sexual selection and intersexual coevolution are the major forces driving genetic differentiation between species. 相似文献
5.
Duret L 《Current opinion in genetics & development》2002,12(6):640-649
The vast amount of data generated by genome projects and the recent development of population genetics models make comparative sequence analyses a very powerful approach with which to detect the footprints of selection. Studies on synonymous codon usage show that traits with minuscule phenotypic effects can be molded by natural selection. But variations in mutation patterns and processes of biased gene conversion make it difficult to distinguish between selective and neutral evolutionary processes. 相似文献
6.
We have evaluated codon usage bias in Drosophila histone genes and have
obtained the nucleotide sequence of a 5,161-bp D. hydei histone gene repeat
unit. This repeat contains genes for all five histone proteins (H1, H2a,
H2b, H3, and H4) and differs from the previously reported one by a second
EcoRI site. These D. hydei repeats have been aligned to each other and to
the 5.0-kb (i.e., long) and 4.8-kb (i.e., short) histone repeat types from
D. melanogaster. In each species, base composition at synonymous sites is
similar to the average genomic composition and approaches that in the small
intergenic spacers of the histone gene repeats. Accumulation of synonymous
changes at synonymous sites after the species diverged is quite high. Both
of these features are consistent with the relatively low codon usage bias
observed in these genes when compared with other Drosophila genes. Thus,
the generalization that abundantly expressed genes in Drosophila have high
codon bias and low rates of silent substitution does not hold for the
histone genes.
相似文献
7.
Analysis of synonymous codon usage bias in Chlamydia 总被引:9,自引:0,他引:9
Chlamydiae are obligate intracellular bacterial pathogens that cause ocular and sexuallytransmitted diseases,and are associated with cardiovascular diseases.The analysis of codon usage mayimprove our understanding of the evolution and pathogenesis of Chlamydia and allow reengineering of targetgenes to improve their expression for gene therapy.Here,we analyzed the codon usage of C.muridarum,C.trachomatis(here indicating biovar trachoma and LGV),C.pneumoniae,and C.psittaci using the codonusage database and the CUSP(Create a codon usage table)program of EMBOSS(The European MolecularBiology Open Software Suite).The results show that the four genomes have similar codon usage patterns,with a strong bias towards the codons with A and T at the third codon position.Compared with Homosapiens,the four chlamydial species show discordant seven or eight preferred codons.The ENC(effectivenumber of codons used in a gene)-plot reveals that the genetic heterogeneity in Chlamydia is constrained bythe G+C content,while translational selection and gene length exert relatively weaker influences.Moreover,mutational pressure appears to be the major determinant of the codon usage variation among the chlamydialgenes.In addition,we compared the codon preferences of C.trachomatis with those of E.coli,yeast,adenovirus and Homo sapiens.There are 23 codons showing distinct usage differences between C.trachomatisand E.coli,24 between C.trachomatis and adenovirus,21 between C.trachomatis and Homo sapiens,butonly six codons between C.trachomatis and yeast.Therefore,the yeast system may be more suitable for theexpression of chlamydial genes.Finally,we compared the codon preferences of C.trachomatis with those ofsix eukaryotes,eight prokaryotes and 23 viruses.There is a strong positive correlation between the differ-ences in coding GC content and the variations in codon bias(r=0.905,P<0,001).We conclude that thevariation of codon bias between C.trachomatis and other organisms is much less influenced by phylogeneticlineage and primarily determined by the extent of disparities in GC content. 相似文献
8.
9.
昆虫质型多角体病毒(cypovirus,CPV)是害虫种群重要调节因子,可用作生物防治剂。本研究采用多元统计分析方法对7种CPV进行密码子使用模式分析,结果表明:CPV密码子使用偏好性较弱,多数基因密码子使用模式受碱基组成影响,少数基因密码子使用模式除碱基组成外还有其它影响因素;中性绘图分析表明碱基组成主要受选择压力影响,受突变影响较小。同一电泳型CPV之间比同一宿主CPV之间共有的偏好性密码子多。CPV基因组内10个基因组片段之间密码子偏好性存在差异。CPV密码子偏好性与宿主昆虫密码子偏好性存在差异,所有CPV与其宿主昆虫共有的偏好性密码子均较少。对应分析进一步证明碱基组成是影响密码子使用的主要因素,不同电泳型CPV具有不同的密码子使用模式。聚类分析表明同一电泳型CPV密码子使用模式相似,同一宿主CPV密码子使用模式差异较大。 相似文献
10.
自然界中,同义密码子的存在使得众多氨基酸能够同时被多种密码子编码合成。随着研究的深入,同义密码子使用偏嗜性发挥出的生物学功能已经渗透到了基因复制、转录、翻译以及化学修饰等生命活动过程中。基于同义密码子使用偏嗜性的生物学特性,陆续发现密码子对(codon pair)和密码子共现(codon co-occurrence)同样在使用模式上存在明显的偏嗜性。在基因表达的过程中,针对编码序列的密码子优化能够显著提升基因的表达水平,这在生物工程领域对于蛋白表达有着重要的生物学意义。此外,同义密码子使用模式在调控基因转录、化学修饰以及翻译过程中间接控制着细胞内生命活动的有序性。而这些与同义密码子使用模式有着千丝万缕联系的生命过程主要是受精微翻译选择压力来调控运行的。本文中,我们结合当前同义密码子使用模式介导的精微翻译选择压力,简述密码子使用模式如何从转录、化学修饰以及翻译等方面来影响基因表达及蛋白产物生物学功能。这将为今后生物工程学领域如何优化蛋白高效表达以及深入研究重要生物学活动中基因表达调控提供可参考的思路与理念。 相似文献
11.
Codon usage bias varies considerably among genomes and even within the genes of the same genome.In eukaryotic organisms,energy production in the form of oxidative phosphorylation(OXPHOS)is the only process under control of both nuclear and mitochondrial genomes.Although factors affecting codon usage in a single genome have been studied,this has not occurred when both interactional genomes are involved.Consequently, we investigated whether or not other factors influence codon usage of coevolved genes.We used Drosophila melanogaster as a model organism.Our χ2 test on the number of codons of nuclear and mitochondrial genes involved in the OXPHOS system was significantly different (χ2=7945.16,P<0.01).A plot of effective number of codons against GC3s content of nuclear genes showed that few genes lie on the expected curve,indicating that codon usage was random.Correspondence analysis indicated a significant correlation between axis 1 and codon adaptation index(R=0.947,P<0.01)in every nuclear gene sequence.Thus,codon usage bias of nuclear genes appeared to be affected by translational selection.Correlation between axis 1 coordinates and GC content(R=0.814.P<0.01)indicated that the codon usage of nuclear genes was also affected by GC composition.Analysis of mitochondrial genes did not reveal a significant correlation between axis 1 and any parameter.Statistical analyses indicated that codon usages of both nDNA and mtDNA were subjected to context-dependent mutations. 相似文献
12.
Robert W.Murphy 《Acta Genetica Sinica》2008,(12)
Codon usage bias varies considerably among genomes and even within the genes of the same genome.In eukaryotic organisms,energy production in the form of oxidative phosphorylation(OXPHOS) is the only process under control of both nuclear and mitochondrial ge-nomes.Although factors affecting codon usage in a single genome have been studied,this has not occurred when both interactional ge-nomes are involved.Consequently,we investigated whether or not other factors influence codon usage of coevolved genes.We us... 相似文献
13.
Matsuo Y 《Molecular phylogenetics and evolution》2000,15(2):283-291
The nucleotide divergence in the protein-coding region for replication-dependent and replication-independent histone 3 and 4 genes of Drosophila melanogaster and Drosophila hydei occurred mostly at the synonymous site. Therefore, the pattern of codon usage was analyzed in the two species, considering the genomic codon bias, which is proposed for estimating the genomic composition pressure in the protein-coding regions. The results indicated that the codon usage in the histone gene family could be explained mostly by the genomic codon bias. However, biases for Ala and Arg were commonly observed for the histone 3 and histone 4 gene families, and biases for Ser, Leu, and Glu were observed in a gene-specific manner. This suggests that both genomic codon bias and gene- or codon-specific bias are responsible for the nucleotide differentiation in the protein-coding region of the histone genes. 相似文献
14.
The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias 总被引:31,自引:14,他引:31
Genes sequences from Escherichia coli, Salmonella typhimurium, and other
members of the Enterobacteriaceae show a negative correlation between the
degree of synonymous-codon usage bias and the rate of nucleotide
substitution at synonymous sites. In particular, very highly expressed
genes have very biased codon usage and accumulate synonymous substitutions
very slowly. In contrast, there is little correlation between the degree of
codon bias and the rate of protein evolution. It is concluded that both the
rate of synonymous substitution and the degree of codon usage bias largely
reflect the intensity of selection at the translational level. Because of
the high variability among genes in rates of synonymous substitution,
separate molecular clocks of synonymous substitution might be required for
different genes.
相似文献
15.
Translation initiation AUG context varies with codon usage bias and gene length in Drosophila melanogaster 总被引:4,自引:0,他引:4
Miyasaka H 《Journal of molecular evolution》2002,55(1):52-64
The relationship between the codon usage bias and the sequence context surrounding the AUG translation initiation codon was examined in 1100 Drosophila melanogaster mRNA sequences. The codon usage bias measured by the "codon adaptation index" (CAI), and the effectiveness of the AUG context for translation initiation assessed by the "AUG context adaptation index" (AUGCAI), showed a significant positive relationship (correlation coefficient: r = 0.34, p <0.0001), indicating that these two factors are evolutionally under a similar natural selection constraint at the translational level. The importance of each position of the AUG context in relation to codon usage bias was examined, and the preference for the nucleotide at the -13, -12, -11, -10, -7, -6, -5, -4, -3, -2, and -1 positions showed a significant positive correlation to the codon usage bias, suggesting the action of natural selection on these very specific positions of the Drosophila genome. The relationship between AUGCAI value and gene length was also examined, and a significant negative relationship was found (r = -0.15, p <0.0001), suggesting a general tendency of higher expressivity of shorter genes, and of lower expressivity of longer genes in D. melanogaster. 相似文献
16.
Human Bocavirus (HBoV) is a novel virus which can cause respiratory tract disease in infants or children. In this study, the codon usage bias and the base composition variations in the available 11 complete HBoV genome sequences have been investigated. Although, there is a significant variation in codon usage bias among different HBoV genes, codon usage bias in HBoV is a little slight, which is mainly determined by the base compositions on the third codon position and the effective number of codons (ENC) value. The results of correspondence analysis (COA) and Spearman's rank correlation analysis reveals that the G + C compositional constraint is the main factor that determines the codon usage bias in HBoV and the gene's function also contributes to the codon usage in this virus. Moreover, it was found that the hydrophobicity of each protein and the gene length are also critical in affecting these viruses’ codon usage, although they were less important than that of the mutational bias and the genes’ function. At last, the relative synonymous codon usage (RSCU) of 44 genes from these 11 HBoV isolates is analyzed using a hierarchical cluster method. The result suggests that genes with same function yet from different isolates are classified into the same lineage and it does not depend on geographical location. These conclusions not only can offer an insight into the codon usage patterns and gene classification of HBoV, but also may help in increasing the efficiency of gene delivery/expression systems. 相似文献
17.
Xinxin Wang Liang Wu Ping Zhou Shengfeng Zhu Wei An Yu Chen Lin Zhao 《World journal of microbiology & biotechnology》2013,29(11):2015-2024
The codon usage patterns of rhizobia have received increasing attention. However, little information is available regarding the conserved features of the codon usage patterns in a typical rhizobial genus. The codon usage patterns of six completely sequenced strains belonging to the genus Rhizobium were analysed as model rhizobia in the present study. The relative neutrality plot showed that selection pressure played a role in codon usage in the genus Rhizobium. Spearman’s rank correlation analysis combined with correspondence analysis (COA) showed that the codon adaptation index and the effective number of codons (ENC) had strong correlation with the first axis of the COA, which indicated the important role of gene expression level and the ENC in the codon usage patterns in this genus. The relative synonymous codon usage of Cys codons had the strongest correlation with the second axis of the COA. Accordingly, the usage of Cys codons was another important factor that shaped the codon usage patterns in Rhizobium genomes and was a conserved feature of the genus. Moreover, the comparison of codon usage between highly and lowly expressed genes showed that 20 unique preferred codons were shared among Rhizobium genomes, revealing another conserved feature of the genus. This is the first report of the codon usage patterns in the genus Rhizobium. 相似文献
18.
Guy Drouin 《Journal of molecular evolution》1991,33(3):237-240
Summary In species where actin genes exist as single copies, analysis of their synonymous codon usage and of the substitutions occurring between the genes of closely related species shows that there is a positive selection for codons that do not have highly mutable CpG dinucleotides in codon positions 2 and 3 when the GC content of these genes is less than 57%. 相似文献
19.
Summary Observed patterns of synonymous codon usage are explained in terms of the joint effects of mutation, selection, and random drift. Examination of the codon usage in 165Escherichia coli genes reveals a consistent trend of increasing bias with increasing gene expression level. Selection on codon usage appears to be unidirectional, so that the pattern seen in lowly expressed genes is best explained in terms of an absence of strong selection. A measure of directional synonymous-codon usage bias, the Codon Adaptation Index, has been developed. In enterobacteria, rates of synonymous substitution are seen to vary greatly among genes, and genes with a high codon bias evolve more slowly. A theoretical study shows that the patterns of extreme codon bias observed for someE. coli (and yeast) genes can be generated by rather small selective differences. The relative plausibilities of various theoretical models for explaining nonrandom codon usage are discussed.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986 相似文献
20.
Synonymous codon usage and cellular tRNA abundance are thought to be co-evolved in optimizing translational efficiencies in highly expressed genes. Here in this communication by taking the advantage of publicly available gene expression data of rice and Arabidopsis we demonstrated that tRNA gene copy number is not the only driving force favoring translational selection in all highly expressed genes of rice. We found that forces favoring translational selection differ between GC-rich and GC-poor classes of genes. Supporting our results we also showed that, in highly expressed genes of GC-poor class there is a perfect correspondence between majority of preferred codons and tRNA gene copy number that confers translational efficiencies to this group of genes. However, tRNA gene copy number is not fully consistent with models of translational selection in GC-rich group of genes, where constraints on mRNA secondary structure play a role to optimize codon usage in highly expressed genes. 相似文献