首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have extended the study of a mild case of type II achondrogenesis-hypochondrogenesis to include biochemical analyses of cartilage, bone, and the collagens produced by dermal fibroblasts. Type I collagen extracted from bone and types I and III collagen produced by dermal fibroblasts were normal, as was the hexosamine ratio of cartilage proteoglycans. Hyaline cartilage, however, contained approximately equal amounts of types I and II collagen and decreased amounts of type XI collagen. Unlike the normal SDS-PAGE mobility. Two-dimensional SDS-PAGE revealed extensive overmodification of all type II cyanogen bromide peptides in a pattern consistent with heterozygosity for an abnormal pro alpha 1(II) chain which impaired the assembly and/or folding of type II collagen. This interpretation implies that dominant mutations of the COL2A1 gene may cause type II achondrogenesis-hypochondrogenesis. More generally, emerging data implicating defects of type II collagen in the type II achondrogenesis-hypochondrogenesis-spondyloepiphyseal dysplasia congenita spectrum and in the Kniest-Stickler syndrome spectrum suggest that diverse mutations of this gene may be associated with widely differing phenotypic outcome.  相似文献   

2.
Previous observations (Stolle, C.A., Pyeritz, R.E., Myers, J.C., and Prockop, D.J. (1985) J. Biol. Chem. 260, 1937-1944) indicated that fibroblasts from a proband with dominantly inherited Ehlers-Danlos syndrome type IV synthesized type III procollagen with a structural defect near the collagenase cleavage site at amino acid 781 and near the trypsin-sensitive site at 789. The type III procollagen was unusually sensitive to proteinases and cleaved by trypsin into a three-quarter fragment at 0 degrees C. Here we demonstrate that the mutation in the type III procollagen gene is a single base mutation that converts the codon for glycine at amino acid 790 of the alpha 1(III) chain to a codon for serine. The mutation probably makes the procollagen molecule unusually sensitive to proteases because it causes local unfolding of the triple helix and exposes the adjacent arginine residue. The results provide the first indication that not all glycine substitutions in the triple helices of fibrillar collagens are equivalent in terms of their effects of the biological function of the molecule.  相似文献   

3.
Mutations in collagen genes: causes of rare and some common diseases in humans   总被引:48,自引:0,他引:48  
More than 70 mutations in the two structural genes for type I procollagen (COL1A1 and COL1A2) have been found in probands with osteogenesis imperfecta, a heritable disease of children characterized by fragility of bone and other tissues rich in type I collagen. The mutations include deletions, insertions, RNA splicing mutations, and single-base substitutions that convert a codon for glycine to a codon for an amino acid with a bulkier side chain. With a few exceptions, the most severe phenotypes of the disease are explained largely by synthesis of structurally defective pro alpha chains of type I procollagen that either interfere with the folding of the triple helix or with self-assembly of collagen into fibrils. The results emphasize the extent to which the zipperlike folding of the collagen triple helix and the self-assembly of collagen fibrils depend on the principle of nucleated growth whereby a few subunits form a nucleus and the nucleus is then propagated to generate a large structure with a precisely defined architecture. The principle of nucleated growth is a highly efficient mechanism for the assembly of large structures, but biological systems that depend extensively on nucleated growth are highly vulnerable to mutations that cause synthesis of structurally abnormal but partially functional subunits. Recently, several mutations in three other collagen genes (COL2A1, COL3A1, and COL4A5) have been found in probands with genetic diseases involving tissues rich in these collagens. Most of the probands have rare genetic diseases but a few appear to have phenotypes that are difficult to distinguish from more common disorders such as osteoarthritis, osteoporosis, and aortic aneurysms. Therefore, the results suggest that mutations in procollagen genes may cause a wide spectrum of both rare and common human diseases.  相似文献   

4.
Kniest dysplasia is a heritable chondrodysplasia that severely affects skeletal growth. Recent evidence suggests that the etiology is based on mutations in COL2A1, the gene for collagen type II. We report the detection and partial characterization of an identical defect in type II collagen in two unrelated patients with Kniest dysplasia. Analysis of cyanogen bromide (CB)-digested cartilage samples from both probands by SDS-PAGE revealed an abnormal band for peptide alpha 1(II)CB12. The peptide was purified and digested with endoproteinase Asp-N. Fragments unique to the Kniest tissues were identified by reverse-phase high-pressure liquid chromatography and by sequence analysis. The results established a deletion of amino acids 102-108 of the alpha 1(II) triple-helical domain, which disrupted the (gly-X-Y)n repeat needed for helix formation. This was confirmed by sequence analysis of DNA amplified from both probands, revealing the molecular basis to be a single nucleotide mutation at a CpG dinucleotide (GCG-->GTG) in the codon for alanine 102. The mutation created a new splice donor site, which would account for the absence of the last seven amino acids from the 3' end of exon 12 in alpha 1(II)CB12. Light and electron micrographs of the probands' cartilage showed the perilacunar foamy matrix ("Swiss cheese") characteristic of Kniest dysplasia and chondrocytes containing dilated rough endoplasmic reticulum, which earlier studies had shown were filled with type II procollagen. These two cases strengthen the concept that Kniest dysplasia is based on mutations of COL2A1 and belongs within the broad spectrum of chondrodysplasias caused by type II collagenopathies.  相似文献   

5.
Recent reports have demonstrated that a series of probands with severe osteogenesis imperfecta had single base mutations in one of the two structural genes for type I procollagen that substituted amino acids with bulkier side chains for glycine residues and decreased the melting temperature of the triple helix. Here we demonstrate that the type I procollagen synthesized by cultured fibroblasts from a proband with a severe form of osteogenesis imperfecta consisted of normal molecules and molecules over-modified by post-translational reactions. The thermal stability of the intact type I collagen was normal as assayed by protease digestion under conditions in which a decrease in thermal stability was previously observed with eight other substitutions for glycine in the alpha 1(I) chain. In contrast, the thermal stability of the one-quarter length B fragment generated by digestion with vertebrate collagenase was decreased by 2-3 degrees C under the same conditions. Nucleotide sequencing of cDNAs and genomic DNA established that the proband had a substitution of A for G in one allele of the pro alpha 1(I) gene that converted the codon for alpha 1-glycine 844 to a codon for serine. The results also established that the alpha 1-serine 844 was the only mutation that could account for the decrease in thermal stability of the collagenase B fragment. There are at least two possible explanations for the failure of the alpha 1-serine 844 substitution to decrease the thermal stability of the collagen molecule whereas eight similar mutations decreased the melting temperature. One possibility is that the effects of glycine substitutions are position specific because not all glycine residues make equivalent contributions to cooperative blocks of the triple helix that unfold in the predenaturation range of temperatures. A second possible explanation is that substitutions of glycine by serine have much less effect on the stability of protein than the substitutions by arginine, cysteine, and aspartate previously studied.  相似文献   

6.
Cultured dermal fibroblasts from an infant with the lethal perinatal form of osteogenesis imperfecta (type II) synthesize normal and abnormal forms of type I procollagen. The abnormal type I procollagen molecules are excessively modified during their intracellular stay, have a lower than normal melting transition temperature, are secreted at a reduced rate, and form abnormally thin collagen fibrils in the extracellular matrix in vitro. Overmodification of the abnormal type I procollagen molecules was limited to the NH2-terminal three-fourths of the triple helical domain. Two-dimensional mapping of modified and unmodified alpha chains of type I collagen demonstrated neither charge alterations nor large insertions or deletions in the region of alpha 1(I) and alpha 2(I) in which overmodification begins. Both the structure and function of type I procollagen synthesized by cells from the parents of this infant were normal. The simplest interpretation of the results of this study is that the osteogenesis imperfecta phenotype arose from a new dominant mutation in one of the genes encoding the chains of type I procollagen. Given the requirement for glycine in every third position of the triple helical domain, the mutation may represent a single amino acid substitution for a glycine residue. These findings demonstrate further heterogeneity in the biochemical basis of osteogenesis imperfecta type II and suggest that the nature and location of mutations in type I procollagen may determine phenotypic variation.  相似文献   

7.
8.
Identification of genomic DNA coding for chicken type II procollagen   总被引:9,自引:0,他引:9  
A segment of the type II procollagen gene has been isolated by screening a lambda Charon 4A library containing fragments of chicken genomic DNA. The specific clone, LgCOL(II), was selected by hybridization using overlapping inserts from two cDNA clones which are specific for a cartilage procollagen (Vuorio, E., Sandell, L., Kravis, D., Sheffield, V. C., Vuorio, T., Dorfman, A., and Upholt, W. B. (1982) Nucleic Acids Res. 10, 1175-1192). DNA sequence analysis of LgCOL(II) in the COOH-telopeptide region of the protein, shows conclusively that this DNA corresponds to the chicken type II procollagen gene. Hybridization of cDNA probes to restriction fragment gel blots together with DNA sequence analysis have established the orientation and position of the procollagen gene within the lambda Charon 4A vector and indicate that LgCOL(II) contains approximately 6 kilobase pairs of the type II procollagen gene plus additional DNA flanking the 3' end of the gene. DNA sequence analysis shows directly that LgCOL(II) contains DNA sequences identical with those in the cDNA clones. The portion of the gene from amino acid 578 of the triple helical region to the COOH-terminal end of the protein (approximately 700 amino acids) is contained within the clone, corresponding to approximately 50% of the amino acid coding sequence of the gene. This region of the chicken alpha 1 (type II) procollagen gene is encoded within a shorter segment of the chicken genome than is the corresponding region of the alpha 2(type I) procollagen gene.  相似文献   

9.
Using a cDNA probe specific for the bovine Type II procollagen, a series of overlapping genomic clones containing 45 kb of contiguous human DNA have been isolated. Sequencing of a 54 bp exon, number 29, provided direct evidence that the recombinant clones bear human Type II collagen sequences. Localization of the 5' and 3' ends of the gene indicated that the human Type II collagen gene is 30 kb in size. This value is significantly higher than that of the homologous avian gene. The segregation of a polymorphic restriction site in informative families conclusively demonstrated that the Type II gene is found in a single copy in the human haploid genome. Finally, sequencing of a triple helical domain exon has confirmed that a rearrangement leading to the fusion of two exons occurred in the pro alpha 1(I) gene, following the divergence of the fibrillar collagens.  相似文献   

10.
We have studied the folding, processing, and association with two endoplasmic reticulum (ER) resident proteins of the abnormal type I procollagen molecules produced by a strain of fibroblasts harboring a 4.5 kilobase deletion in an allele of COL1A2 (Willing, M. C., Cohn, D.H., Starman, B. Holbrook, K.A., Greenberg, C.R., and Byers, P.H. (1988) J. Biol. Chem. 263, 8398-8404). By sequencing cDNA, we found that the mutant allele encodes pro alpha 2(I) chains that are shortened by 180 amino acids but retain the Gly-X-Y repeat pattern crucial for collagen triple helix formation. The type I procollagen molecules that incorporated the shortened chain were retained intracellularly and were stable. The triple helical domain in these molecules did not attain a normal conformation and remained accessible to posttranslational modifying enzymes amino-terminal to the deletion site for a prolonged period. The abnormal molecules folded into a triple helical conformation more slowly than the normal molecules, and the amino-terminal ends of the pro alpha 1(I) chains failed to become protease-resistant. While the abnormal procollagen molecules were not bound by the ER-resident protein BiP, they stably associated with protein disulfide isomerase, the beta-subunit of prolyl-4-hydroxylase. These results indicate that some mutations in type I collagen genes both transiently delay folding and permanently disrupt the structure of the triple helix and suggest that binding to prolyl-4-hydroxylase helps to retain certain abnormal procollagen molecules within the ER.  相似文献   

11.
12.
Du F  Acland GM  Ray J 《Gene》2000,255(2):307-316
The disease phenotype of oculo-skeletal dysplasia (OSD) detected in Labrador retrievers and Samoyeds shows a large degree of similarity with human Stickler and Kniest dysplasia. Type II collagen (COL2A1) mRNA, which is defective in a larger number of Stickler and Kniest patients, has been cloned and characterized from normal dog. The amino acid sequence of the canine type II procollagen is predicted to contain 1487 residues, with high degree of homology with its human homologue, and maintains all the characteristic structural domains. In addition to cartilage, expression of COL2A1 has also been detected in canine retina and testes. In testes, the N-propeptide region of COL2A1 displayed differential splicing and expressed both splice variants, IIA (with exon 2) and IIB (without exon 2), suggesting the importance of both forms in testis maturation and maintenance. Despite a severe decrease of type II collagen protein in the vitreous of OSD affected Labrador retrievers, COL2A1 gene has been excluded from having any causal association with the disease locus by linkage analysis. Using an intragenic RFLP marker, COL2A1 gene has also been tested as a candidate gene for the non-allelic form of the other canine OSD identified in Samoyeds, and excluded by linkage analysis. Oculo-skeletal dysplastic Labrador retriever and Samoyed provide two animal models for chondrodysplasia with genetic heterogeneity.  相似文献   

13.
Skin fibroblasts from a proband with a lethal variant of osteogenesis imperfecta synthesized both apparently normal type I procollagen and a type I procollagen that had slow electrophoretic mobility because of posttranslational overmodifications. The thermal unfolding of the collagen molecules as assayed by protease digestion was about 2 degrees C lower than normal. It is surprising, however, that collagenase A and B fragments showed an essentially normal melting profile. Assay of cDNA heteroduplexes with a new technique involving carbodiimide modification indicated a mutation at about the codon for amino acid 550 of the alpha 1(I) chain. Subsequent amplification of the cDNA by the PCR and nucleotide sequencing revealed a single-base mutation that substituted an aspartate codon for glycine at position alpha 1-541 in the COL1A1 gene. The results here confirm previous indications that the effects of glycine substitutions in type I procollagen are highly position specific. They also demonstrate that a recently described technique for detecting single-base differences by carbodiimide modification of DNA heteroduplexes can be effectively employed to locate mutations in large genes.  相似文献   

14.
15.
The expression of stable recombinant human collagen requires an expression system capable of post-translational modifications and assembly of the procollagen polypeptides. Two genes were expressed in the yeast Saccharomyces cerevisiae to produce both propeptide chains that constitute human type I procollagen. Two additional genes were expressed coding for the subunits of prolyl hydroxylase, an enzyme that post-translationally modifies procollagen and that confers heat (thermal) stability to the triple helical conformation of the collagen molecule. Type I procollagen was produced as a stable heterotrimeric helix similar to type I procollagen produced in tissue culture. A key requirement for glutamate was identified as a medium supplement to obtain high expression levels of type I procollagen as heat-stable heterotrimers in Saccharomyces. Expression of these four genes was sufficient for correct assembly and processing of type I procollagen in a eucaryotic system that does not produce collagen.  相似文献   

16.
We have used the polymerase chain reaction and single strand conformation polymorphism (SSCP) methods to analyse the COL10A1 gene, which encodes collagen type X, in DNA samples from patients with metaphyseal dysplasia type Schmid (SMCD) and other related forms of metaphyseal dysplasia. Five cases of SMCD were sporadic and three others were familial. Abnormal SSCP profiles were observed in six instances. In two families, the altered pattern segregated with the phenotype. The heterozygous mutations corresponded to a glycine substitution by glutamic acid at position 595 and to an asparagine substitution by lysine at position 617. In one sporadic case, the sequence studies demonstrated that the individual was heterozygous for a single base deletion (del T 1908) that produced a premature stop codon. Three additional mutations were single base substitutions that affected highly conserved residues at positions 597, 644 and 648. In two additional individuals with SMCD, in two patients with unclassifiable forms of metaphyseal dysplasia, and in one family with epiphyso-metaphyseal dysplasia, SSCP analysis detected neutral polymorphisms in the entire coding sequence of the gene but no mutations. Our results demonstrate that mutations in the carboxy-terminal region of collagen X are specific for the SMCD phenotype. Mutations appear to be clustered into three small subdomains: one of them is rich an aromatic residues, the second includes the putative N-linked oligosaccharide attachment site and the third contains mostly hydrophilic residues. The absence of clinical variability between patients carrying heterozygous single base substitutions or small deletions suggests that, in both instances, the mutant collagen chains either fail to be incorporated into stable trimers or disturb type X collagen assembly.  相似文献   

17.
Genetic linkage analyses suggest that mutations in type II collagen may be responsible for Stickler syndrome, or arthro-ophthalmopathy (AO), in many families. In the present study oligonucleotide primers were developed to amplify and directly sequence eight of the first nine exons of the gene for type II procollagen (COL2A1). Analysis of the eight exons in 10 unrelated probands with AO revealed that one had a single-base mutation in one allele that changed the codon of -CGA- for arginine at amino acid position alpha 1-9 in exon 7 to a premature termination signal for translation. The second mutation found to cause AO was, therefore, similar to the first in that both created premature termination signals in the COL2A1 gene. Since mutations producing premature termination signals have not previously been detected in genes for fibrillar collagens, the results raise the possibility that such mutations in the COL2A1 gene are a common cause of AO.  相似文献   

18.
We have generated transgenic mice harboring the deletion of exon 48 in the mouse 1(II) procollagen gene (Col2a1). This was the first dominant negative mutation identified in the human 1(II) procollagen gene (COL2A1). Patients carrying a single allele with this mutation suffer from a severe skeletal disorder called spondyloepiphyseal dysplasia congenita (SED). Transgenic mice phenotype was neonatally lethal with severe respiratory failure, short bones, and cleft palate. Transgene mRNA was expressed at high levels. Growth plate cartilage of transgenic mice presented morphological abnormalities and reduced number of collagen type II fibrils. Chondrocytes carrying the mutation showed altered expression of several differentiation markers, like fibroblast growth factor receptor 3 (Fgfr3), Indian hedgehog (Ihh), runx2, cyclin-dependent kinase inhibitor P21CIP/WAF (Cdkn1a), and collagen type X (Col10a1), suggesting that a defective extracellular matrix (ECM) depleted of collagen fibrils affects chondrocytes differentiation and that this defect participates in the reduced endochondral bone growth observed in chondrodysplasias caused by mutations in COL2A1. skeletal dyplasias; growth plate; cartilage extracellular matrix; spondyloepiphyseal dysplasia congenita  相似文献   

19.
Type VII procollagen has been characterized as a product of epithelial cell lines. As secreted, it contains a large triple-helical domain terminated by a multi-globular-domained carboxyl terminus (NC-1), and a smaller amino-terminal globule (NC-2). The triple helix and the NC-1 domain have previously been identified in anchoring fibril-containing tissues by biochemical and immunochemical means, leading to the conclusion that type VII collagen is a major component of anchoring fibrils. In order to better characterize the tissue form of type VII collagen, we have produced a panel of monoclonal antibodies which recognize the NC-1 domain. Peptide mapping of these epitopes indicate that they are independent and span approximately 125,000 kDa of the total 150,000 kDa of each alpha chain contained in NC-1. All these antibodies elicit immunofluorescent staining of the basement membrane zone in tissues. Type VII collagen has been extracted from tissues. As previously reported, it is smaller than type VII procollagen, (Woodley, D. T., Burgeson, R. E., Lunstrum, G. P., Bruckner-Tuderman, L., and Briggaman, R. A., submitted for publication), and we now find that it predominantly occurs as a dimer. Following clostridial collagenase digestion, intact NC-1 has been recognized, indicating that the difference in apparent Mr between the tissue form of the molecule and type VII procollagen results from modification of the amino terminus. The size of the amino-terminal globule has been determined to be between approximately 96 and 102 kDa. Rotary shadowing analyses of extracted molecules indicate that dimeric molecules contain the NC-1 domain, but are missing intact NC-2. We propose that the tissue form monomer, Mr = 960,000, be referred to as "type VII collagen." These studies strongly suggest that anchoring fibrils contain dimeric molecules with intact NC-1 domains. The data also support the previous suggestion that the NC-2 domain is involved in the formation of disulfide bond-stabilized type VII collagen dimers, and is subsequently removed by physiological proteolytic processing.  相似文献   

20.
Osteogenesis imperfecta (OI), commonly known as "brittle bone disease", is a dominant autosomal disorder characterized by bone fragility and abnormalities of connective tissue. Biochemical and molecular genetic studies have shown that the vast majority of affected individuals have mutations in either the COL1A1 or COL1A2 genes that encode the chains of type I procollagen. OI is associated with a wide spectrum of phenotypes varying from mild to severe and lethal conditions. The mild forms are usually caused by mutations which inactivate one allele of COL1A1 gene and result in a reduced amount of normal type I collagen, while the severe and lethal forms result from dominant negative mutations in COL1A1 or COL1A2 which produce structural defects in the collagen molecule. The most common mutations are substitutions of glycine residues, which are crucial to formation and function of the collagen triple helix, by larger amino acids. Although type I collagen is the major structural protein of both bone and skin, the mutations in type I collagen genes cause a bone disease. Some reports showed that the mutant collagen can be expressed differently in bone and in skin. Since most mutations identified in OI are dominant negative, the gene therapy requires a fundamentally different approach from that used for genetic-recessive disorders. The antisense therapy, by reducing the expression of mutant genes, is able to change a structural mutation into a null mutation, and thus convert severe forms of the disease into mild OI type I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号