首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pharmacological and biochemical characteristics of the partially purified -aminobutyric acid (GABA)B receptor using baclofen affinity column chromatography have been examined. The Scatchard analysis of [3H]GABA binding to the purified GABAB receptor showed a linear relationship and the KD and Bmax values were 60 nM and 118 pmol/mg of protein, respectively. Although GTP and Mg2+ did not affect on the GABAB receptor binding, Ca2+ significantly increased [3H]GABA binding to the purified GABAB receptor in a dose-dependent manner and showed its maximum effect at 2 mM. The enhancement of the binding by Ca2+ was found to be due to the increase of Bmax by the Scatchard analysis. The treatments with pronase and trypsin significantly decreased the binding of [3H]GABA, but phospholipase A2 had no significant effect on the binding. In addition, treatment with glycosidases such as glycopeptidase A and -galactosidase significantly decreased the binding of [3H]GABA to the purified GABAB receptor. These results suggest that purification of the solubilized GABAB receptor by the affinity column chromatography may result in the functional uncoupling of GABAB receptor with GTP-binding protein. Furthermore, the present results suggest that cerebral GABAB receptor may be a glycoprotein and membrane phospholipids susceptible to phospholipase A2 treatment may not be involved in the exhibition of the binding activity.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

2.
Effects of bicuculline in vitro, and acute and chronic treatment of a subconvulsive dose of bicuculline on [3H]SR 95531 binding to discrete regions of rat brains were studied in Sprague-Dawley rats. Scatchard analysis of the binding isotherms exhibited two populations of binding sites for [3H]SR 95531 in frontal cortex, cerebellum, striatum and substantia nigra. The apparent KD for high-affinity sites was significantly increased in the frontal cortex and cerebellum in the presence of bicuculline (1 M) with no change in Bmax. In contrast, the apparent affinity for low-affinity sites was not altered in the presence of bicuculline in these regions, whereas the Bmax was significantly decreased in the cerebellum. Following acute (2 mg/kg, i.p.) or chronic (2 mg/kg, i.p. for 10 days) bicuculline treatment, [3H]SR 95531 binding was also investigated in various regions of brains. The acute bicuculline treatment did not affect the [3H]SR 95531 binding in any of the regions studied. In contrast, apparent affinity for [3H]SR 95531 was significantly decreased in low-affinity sites of all regions studied in rats treated chronically with bicuculline. The Bmax values of high and low-affinity sites were significantly increased in the cerebellum with no change in the frontal cortex, striatum and substantia nigra. The present study demonstrates that chronic bicuculline treatment decreases apparent affinity of [3H]SR 95531 binding whereas the treatment increases apparent affinity of [3H]SR 95531 and [3H]muscimol binding in the cerebellum may be due to true up-regulation of GABA binding sites, involving increased de novo synthesis of receptor protein. These results also suggest that properties of cerebellar GABAA receptors are different from those in other regions.Abbreviations used GABA -aminobutyric acid - FC frontal cortex - CB cerebellum - ST striatum - SN substantia nigra  相似文献   

3.
Specific β1-adrenoreceptors antagonist [3H]CGP 26505 binding was characterized in rat cerebral cortex and heart sinus atrial node. In both tissues [3H]CGP 26505 binding was maximal at 25°C, it was specific, saturable and protein concentration dependent. Scatchard analysis of saturation isotherms of specific [3H]CGP 26505 binding in cerebral cortex showed that [3H]CGP 26505 binds a single class of high affinity sites with a dissociation constant (KD) of 1±0.3 nM and a maximal number of binding sites (Bmax) of 40±2 fmol/mg of protein. In sinus atrial node, [3H]-CGP 26505 binds a single class of high affinity sites (KD=1.9±0.4 nM, Bmax=28±2 fmol/mg of protein).  相似文献   

4.
The effects of chronic pentobarbital (PB) treatment on the binding characteristics of [3H]flunitrazepam (FLU) in rat brain were examined. Saline or sodium PB (500 g/10l/hr) was infused into the lateral cerebral ventricles of rats for 6 days using osmotic pumps. Immediately before withdrawal, there were no significant differences in [3H]FLU binding constants (KD and Bmax) between saline and PB groups. However, 24 hr withdrawal caused an increase in Bmax with no changes in KD. The enhancement of [3H]FLU binding by in vitro addition of chloride ions and PB was not affected after the PB infusion. The PB enhancement of [3H]FLU binding was inhibited by the convulsant, picrotoxicin. PB withdrawal did not cause significant differences in the binding constants of [3H]Ro 15-1788, a benzodiazepine (BZ) antagonist, between the saline and PB groups. Pretreatment of membranes with 0.02 mM of 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS), a zwitterionic detergent, caused decreases in both KD and Bmax in FLU binding in PB-withdrawal membrane, but not in the saline-treated membrane. The enhancement of [3H]FLU binding by chloride ions and PB was not affected by the CHAPS treatment. These results suggest that the change in BZ receptors induced by PB withdrawal is functionally linked to the GABA-BZ-barbiturate receptor complex and that PB withdrawal induces some conformational changes in BZ receptors.  相似文献   

5.
Oh S  Ho IK 《Neurochemical research》1999,24(12):1603-1609
Effects of continuous pentobarbital administration on binding characteristics of [3H]muscimol were examined by autoradiography, and levels of GABAA receptor 2-subunit mRNA were investigated by in situ hybridization histochemistry in the rat brain. In order to eliminate the induction of hepatic metabolism by systemic administration of pentobarbital, an i.c.v. infusion model of tolerance to and withdrawal from pentobarbital was used. An experimental model of barbiturate tolerance and withdrawal was developed using i.c.v. infusion of pentobarbital (300 g/10 l/hr for 7 days) by osmotic minipumps and abrupt withdrawal from pentobarbital. The levels of [3H]muscimol binding were elevated in cingulate of frontal cortex (46%) and granule layer of cerebellum (32%) of rats 24-hr after withdrawal from pentobarbital, while it was only elevated in cingulate (58%) of tolerant rats. The GABAA receptor 2-subunit mRNA was increased in the withdrawal rats only: in the cortex (9–14%), hippocampus (15–21%), inferior colliculus (21%), and granule layer of cerebellum (24%). These results show the involvement of GABAA receptor and its 2-subunit up-regulations in pentobarbital withdrawal rats, and suggest that the levels of [3H]muscimol binding and GABAA receptor 2-subunit mRNA are altered in a region-specific manner during pentobarbital withdrawal.  相似文献   

6.
Subchronic treatment with MAP (4.6 mg/kg, i.p., once daily for 11 days) significantly decreased the Kd, but not Bmax, values of [3H]1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX) binding to adenosine A1 receptors in the prefrontal cortex and hippocampus, but not striatum, of rat brain. However, subchronic treatment with PCP (10 mg/kg, i.p., once daily for 11 days) did not alter the Kd and Bmax values of [3H]DPCPX binding to adenosine A1 receptors in these three regions. Subchronic treatment with MAP or PCP did not alter the Bmax and Kd values of [3H]2-p-(2-carboxyehyl)phenethylamino-5-N-ethylcarboxyamidoadenosine ([3H]CGS21680) binding to adenosine A2A receptors in the striatum. Furthermore, subchronic treatment with MAP or PCP significantly decreased the specific binding of [3H]CGS21680 to adenosine A2A receptors in the hippocampus, but not in the prefrontal cortex. Thus, these results suggest that MAP and PCP may produce differential effects on the adenosine A2A receptors, but not adenosine A1 receptors in rat brain.  相似文献   

7.
Abstract: The binding of radioactive piperidine-4-sulphonic acid ([3H]P4S) to thoroughly washed, frozen, and thawed membranes isolated from cow and rat brains has been studied. Quantitative computer analysis of the binding curves for four regions of bovine brain revealed the general presence of two binding sites. In these brain regions less satisfactory computer fits were obtained for receptor models showing one or three binding sites or negative cooperativity. With the use of Tris-citrate buffer at 0°C the two affinity classes for P4S in bovine cortex membranes revealed the following binding parameters: KD= 17 ± 7 nM (Bmax= 0.15 ± 0.07 pmol/mg protein) and KD= 237 ± 100 nM (Bmax= 0.80 ± 0.20 pmol/mg protein). Heterogeneity was also observed for association and dissociation rates of [3H]P4S. The slow binding component (kon= 5.6 × 107 or 8.8 × 107 M-1 min-1, kOff= 0.83 min-1, and KD= 14.7 or 9.4 nM, determined by two different methods in phosphate buffer containing potassium chloride) corresponds to the high-affinity component of the equilibrium binding curve (KD= 11 nM, Bmax= 0.12 pmol/mg protein in the same buffer system). The association and dissociation rates for the subpopulation of rapidly dissociating sites, apparently corresponding to the low-affinity sites, were too rapid to be measured accurately. The binding of [3H]P4S appears to involve the same two populations of sites with Bmax values similar to those for [3H]GABA binding to the same tissue, although the kinetic parameters for the two ligands are somewhat different. Furthermore, comparative studies on the inhibition of [3H]P4S and [3H]GABA binding by various GABA analogues, strongly suggest that P4S binds to the GABA receptors. The different effects of P4S and GABA on benzodiazepine binding are discussed.  相似文献   

8.
Cerebellar granule cells in culture express receptors for GABA belonging to the GABAA and GABAB classes. In order to characterize the ability of the insecticide lindane to interact with these receptors cells were grown in either plain culture media or media containing 150 M THIP as this is known to influence the properties of both GABAA and GABAB receptors. It was found that lindane regardless of the culture condition inhibited evoked (40 mM K+) release of neurotransmitter ([3H]D-aspartate as label for glutamate). In naive cells both GABAA and GABAB receptor active drugs prevented the inhibitory action of lindane but in THIP treated cultures none of the GABAA and GABAB receptor active drugs had any effect on the inhibitory action of lindane. This lack of effect was not due to inability of baclofen itself to inhibit transmitter release. It is concluded that lindane dependent on the state of the GABAA and GABAB receptors is able to indirectly interfere with both GABAA and GABAB receptors. In case of the latter receptors it was shown using [3H]baclofen to label the receptors that lindane could not displace the ligand confirming that lindane is likely to exert its action at a site different from the agonist binding site.  相似文献   

9.
Summary. GABA is synthesized within GABA terminals through a highly compartmentalized process in which glial-derived glutamine is a major precursor and its release is modulated by GABAB autoreceptors. The aim of this work was to ascertain whether or not GABA synthesis and release are coupled in the rat brain through a GABAB autoreceptor-mediated modulation. It was found that (−)baclofen (30 μM) reduces the K+ stimulated release of [3H]GABA in synaptosomes and prisms (10 μM) from cerebral cortex, while at the same concentrations (−)baclofen failed to modify the synthesis of [3H]GABA from [3H]glutamine in cortical and hypothalamic slices, prisms and in cortical synaptosomes. In this latter preparation, identical results were observed when (−)baclofen was added to Krebs-Tris media, containing 5 or 15 mM K+ concentration. In agreement with these latter results, glutamic acid decarboxylase (GAD) activity from cortical and hypothalamic prisms was not affected by 1–100 μM (−)baclofen. Similar results on GABA synthesis were also observed when 1–100 μM 3-aminopropil(methyl)-phosphinic acid or GABA was used instead of (−)baclofen to stimulate GABAB autoreceptors. [3H]GABA release, [3H]GABA synthesis from [3H]glutamine and GAD activity were also insensitive to the action of the GABAB antagonist CGP 52432 (10–100 μM). Likewise, muscimol (0.3–100 μM) did not affect GABA synthesis. Our results indicate that unlike GABA release, GABA synthesis is not modulated by GABAB autoreceptors. Received August 31, 1999 Accepted September 20, 1999  相似文献   

10.
Abstract: Previous pharmacological studies have indicated that impairment of GABAergic transmission may be involved in the pathophysiology of dystonia in the mutant dtsz hamster, i.e., a genetic animal model for idiopathic dystonia. In the present experiments, the kinetic constants of [3H]flumazenil binding to the benzodiazepine site of the GABAA receptor were calculated from equilibrium binding measurements in various brain regions of genetically dystonic hamsters and age-matched controls. Because dystonia in mutant dtsz hamsters is transient and disappears after ~60–70 days of age, [3H]flumazenil binding was studied at the age of maximum severity of dystonia (30–40 days) and after disappearance of the disease, to examine which neurochemical changes were related to dystonia. In mutant hamsters with the maximum severity of dystonia, receptor affinity of [3H]flumazenil was increased in olfactory bulb,striatum, tectum, and cerebellum, as exemplified by significantly decreased dissociation constants (KD) in these regions. An increased number of binding sites (Bmax) were seen in striatum and frontal cortex but not in the other eight regions studied in this regard. All these changes in [3H]flumazenil binding disappeared in parallel with dystonia, implicating a causal relationship between altered benzodiazepine receptor binding and dystonia in mutant dtsz hamsters. In view of the antidystonic effect of benzodiazepines, such as diazepam, and recent neurochemical findings indicating impaired function of the GABA-gated Cl? channel in dystonic hamsters, the present data might be interpreted as up-regulation of benzodiazepine receptors in response to impaired GABAergic function. Furthermore, the present data represent the first evidence that GABAA receptors are altered in the basal ganglia in idiopathic (primary)dystonia.  相似文献   

11.
The release of [3H]noradrenaline from rat hippocampal synaptosomes by 25 mM K+ and 5 μM veratridine, but not by the Ca2+ ionophore A23187 was depressed by baclofen. This depression was reversed by 8-Bromo-cAMP. This action of baclofen was stereospecific and mimicked both that of GABA in the presence of bicuculline and that of clonidine. The α2-adrenoceptor antagonists yohimbine and Wy25309 antagonised the action of clonidine and baclofen but not that of GABA. Specific binding of [3H]clonidine was displaced by Wy25309 and baclofen, but not by GABA. Specific binding of [3H]GABA in the presence of Ca2+ was displaced by baclofen but not by Wy25309. It is concluded that baclofen is not a specific agonist at GABAB receptors in the brain.  相似文献   

12.
《Life sciences》1995,57(5):PL63-PL69
Changes in benzodiazepine binding sites labeled by [3H]flunitrazepam (FNZ) in twenty discrete brain regions of rats made tolerant to and dependent upon pentobarbital were examined. Animals were rendered tolerant by intracerebroventricular (i.c.v) infusion with pentobarbital (300 μg/ 10 μ1/ hr for six days) through pre-implanted cannulae connected to osmotic mini-pumps. The pentobarbital dependence was assessed 24 hr after abrupt withdrawal from pentobarbital. In the tolerant rats, a significant increase in [3H]FNZ binding sites was found in layer IV of frontal cortex and the molecular layer of olfactory bulb. [3H]FNZ binding sites in the pentobarbital dependent rats were significantly increased in layers I-III and V-VI of frontal cortex, caudate-putamen, olfactory tubercle, globus pallidus and ventral pallidum, in addition to those observed in the tolerant group. There was, however, no significant difference in the hippocampus and several regions in the hindbrain in either pentobarbital-treated group. Taken together with characteristics of subtypes of benzodiazepine receptors and changes in GABA-benzodiazepine receptor complexes elucidated in our previous studies, these findings suggest that both types of benzodiazepine receptors are involved in the development of pentobarbital intoxication mediated by GABAA receptors.  相似文献   

13.
5-Hydroxytryptamine2A (5-HT2A) receptor kinetics was studied in cerebral cortex and brain stem of streptozotocin (STZ) induced diabetic rats. Scatchard analysis with [3H] (±) 2,3dimethoxyphenyl-1-[2-(4-piperidine)-methanol] ([3H]MDL100907) in cerebral cortex showed no significant change in maximal binding (Bmax) in diabetic rats compared to controls. Dissociation constant (Kd) of diabetic rats showed a significant decrease (p < 0.05) in cerebral cortex, which was reversed to normal by insulin treatment. Competition studies of [3H]MDL100907 binding in cerebral cortex with ketanserin showed the appearance of an additional low affinity site for 5-HT2A receptors in diabetic state, which was reversed to control pattern by insulin treatment. In brain stem, scatchard analysis showed a significant increase (p < 0.05) in Bmax accompanied by a significant increase (p < 0.05) in Kd. Competition analysis in brain stem also showed a shift in affinity towards a low affinity State for 5-HT2A receptors. All these parameters were reversed to control level by insulin treatment. These results show that in cerebral cortex there is an increase in affinity of 5-HT2A receptors without any change in its number and in the case of brain stem there is an increase in number of 5HT2A receptors accompanied by a decrease in its affinity during diabetes. Thus, from the results we suggest that the increase in affinity of 5-HT2A receptors in cerebral cortex and upregulation of 5-HT2A receptors in brain stem may lead to altered neuronal function in diabetes.  相似文献   

14.
In vivo effects of chronic lithium administration on dopaminergic and serotonergic receptor binding were studied in the striatum and cerebral cortex of the rat. [3H]Domperidone was used as the ligand for the dopaminergic receptor, and [3H]ketanserin for the serotonergic system. Long-term ingestion of lithium (2–3 months) resulted in high levels of lithium in the cerebral cortex and significantly higher potassium levels; the sodium content remained at normal levels. The kinetic constants (K d andB max) of [3H]domperidone binding sites measured in the striatum did not show any deviation from control values, but the receptor concentration (B max) of [3H]ketanserin binding sites was significantly reduced in the cerebral cortex of lithium-treated rats. The apparent dissociation constant (K d) was not changed. The results indicate that the serotonergic component of the [3H]spiperone binding site, which we had previously found to be affected by chronic lithium treatment and which was shown by Peroutka and Snyder (1) to be the 5-HT2 receptor, is selectively affected by lithium.Special Issue dedicated to Prof. Eduardo De Robertis.  相似文献   

15.
Summary The specific binding of [3H]corticosterone to hepatocytes is a nonsaturable, reversible and temperature-dependent process. The binding to liver purified plasma membrane fraction is also specific, reversible and temperature dependent but it is saturable. Two types of independent and equivalent binding sites have been determined from hepatocytes. One of them has high affinity and low binding capacity (K D=8.8nm andB max=1477 fmol/mg protein) and the other one has low affinity and high binding capacity (K D=91nm andB max=9015 fmol/mg). In plasma membrane only one type of binding site has been characterized (K D=11.2nm andB max=1982 fmol/mg). As it can be deduced from displacement data obtained in hepatocytes and plasma membrane the high affinity binding sites are different from the glucocorticoid, progesterone nuclear receptors and the Na+,K+-ATPase digitalis receptor. Probably it is of the same nature that the one determinate for [3H]cortisol and [3H]corticosterone in mouse liver plasma membrane. Beta-and alpha-adrenergic antagonists as propranolol and phentolamine did not affect [3H]corticosterone binding to hepatocytes and plasma membranes; therefore, these binding sites are independent of adrenergic receptors. The binding sites in hepatocytes and plasma membranes are not exclusive for corticosterone but other steroids are also bound with very different affinities.  相似文献   

16.
Adenosine A2B receptors of native human and rodent cell lines were investigated using [3H]PSB-298 [(8-{4-[2-(2-hydroxyethylamino)-2-oxoethoxy]phenyl}-1-propylxanthine] in radioligand binding studies. [3H]PSB-298 showed saturable and reversible binding. It exhibited a KD value of 60 ± 1 nM and limited capacity (Bmax = 3.511 fmol per milligram protein) at recombinant human adenosine A2B receptors expressed in human embryonic kidney cells (HEK-293). The addition of sodium chloride (100 mM) led to a threefold increase in the number of binding sites recognized by the radioligand. The curve of the agonist 5′-N-ethylcarboxamidoadenosine (NECA) was shifted to the right in the presence of NaCl, while the curve of the antagonist PSB-298 was shifted to the left, indicating that PSB-298 may be an inverse agonist at A2B receptors. Adenosine A2B receptors were shown to be the major adenosine A2 receptor subtype on the mouse neuroblastoma x rat glioma hybrid cell line NG108-15 cells. Binding studies at rat INS-1 cells (insulin secreting cell line) demonstrated that [3H]PSB-298 is a selective radioligand for adenosine A2B binding sites in this cell line.  相似文献   

17.
The age-related development of GABABreceptors and their coupling to adenylate cyclase were studied in the brains of spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Compared with WKY rats, the specific [3H]GABA binding to GABABreceptors showed a significant decrease not only in the posterior hypothalamus, midbrain, hippocampus and striatum of eleven-week-old SHR, which maintain a hypertensive state, but also in the posterior hypothalamus of four-week-old normotensive SHR. Similarly, the GABABreceptor agonists (baclofen and DN-2327)-induced suppression of adenylate cyclase activity showed a decrease in the posterior hypothalamus of four-week-old SHR as well as in the posterior hypothalamus and striatum of eleven-week-old SHR. These results suggest that the functions of the GABABreceptor in the brain of SHR may be decreased independently from the occurrence of blood pressure elevation and that such changes may even be involved in the pathogenesis of SHR.  相似文献   

18.
The binding of [3H]SCH 23390 to dopamine (DA) D1-receptors was measured in the nucleus accumbens of rats treated chronically with desipramine for 14 days. DA D1 — and D2-receptor binding using [3H]SCH 23390 and [3H]spiperone, respectively as ligands, was determined in rats treated for 28 days. NeitherB max norK d values were influenced by chronic desipramine treatment. In addition, chronic desipramine treatment (28 days) did not influence the dose dependent, quinpirole (10–1000 nM)-mediated inhibition of the electrically stimulated release of [3H]DA and [14C]ACh from nucleus accumbens slices or the dose dependent increase in [3H]DA release and decrease in [14C]ACh release in the presence of 1 and 10 M nomifensine. Therefore, our results suggest that the effect of chronic antidepressant treatment cannot be attributed to changes in either DA D11-or D2-receptor binding or DA D2-receptor function in the nucleus accumbens.  相似文献   

19.
An endogenous inhibitor of γ-aminobutyric acid (GABA) receptors was partially purified from bovine brain striatum. It was obtained as a low molecular weight fraction by gel filtration on Biogel P-2 and was adsorbed to Dowex AG 50W-X8, but not to Dowex AG 1-X8. It was ninhydrin-negative, basic, heat-stable substance. It caused dose-dependent inhibition of Na+-independent [3H]GABA bindings. Scatchard plot analysis of the [3H]GABA binding to GABA “B” receptor recognition site showed this inhibitor increased the Kd value (24.1 nM to 3.6 nM) without changing the Bmax. On the other hand, Scatchard plot analysis of the [3H]GABA binding to GABA “A” receptor recognition site showed that the inhibitor decreased number of binding sites (706 fmol/mg protein to 494 fmol/mg protein) without affecting the Kd value. These results suggest that the endogenous inhibitor functions as a modulator for GABAB and GABAA receptors.  相似文献   

20.
Specific dopaminergic receptors were found in the rat adrenal zona glomerulosa. Specific binding as defined by the difference in [3H]-spiroperidol binding in the presence or absence of excess dopamine was saturable and of high affinity. Stereospecificity of binding to the dopaminergic receptor was demonstrated by the fact that (+)-butaclamol was 300-fold more active at displacing [3H]-spiroperidol from the binding site than (?)-butaclamol. A Scatchard analysis of the data revealed a KD = 6.9 nM and a Bmax = 173 pmol/gm for the binding of [3H]-spiroperidol to adrenal capsular homogenate binding site. Characteristics of this receptor place it in the recently defined D2 dopamine receptor subclass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号