首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acute renal effects of hypoxemia and the ability of the co-administration of an angiotensin converting enzyme inhibitor (perindoprilat) and an adenosine receptor antagonist (theophylline) to prevent these effects were assessed in anesthetized and mechanically-ventilated rabbits. Renal blood flow (RBF) and glomerular filtration rate (GFR) were determined by the clearances of para-aminohippuric acid and inulin, respectively. Each animal acted as its own control. In 8 untreated rabbits, hypoxemia induced a significant drop in mean blood pressure (-12 +/- 2%), GFR (-16 +/- 3%) and RBF (-12 +/- 3%) with a concomitant increase in renal vascular resistance (RVR) (+ 18 +/- 5%), without changes in filtration fraction (FF) (-4 +/- 2%). These results suggest the occurrence of both pre- and postglomerular vasoconstriction during the hypoxemic stress. In 7 rabbits pretreated with intravenous perindoprilat (20 microg/kg), the hypoxemia-induced changes in RBF and RVR were prevented. FF decreased significantly (-18 +/- 2%), while the drop in GFR was partially blunted. These results could be explained by the inhibition of the angiotensin-mediated efferent vasoconstriction by perindoprilat. In 7 additional rabbits, co-administration of perindoprilat and theophylline (1 mg/kg) completely prevented the hypoxemia-induced changes in RBF (+ 11 +/- 3%) and GFR (+ 2 +/- 3%), while RVR decreased significantly (-14 +/- 3%). Since adenosine and angiotensin II were both shown to participate, at least in part, in the renal changes induced by hypoxemia, the beneficial effects of perindoprilat and theophylline in this model could be mediated by complementary actions of angiotensin II and adenosine on the renal vasculature.  相似文献   

2.
Nitric oxide, atrial natriuretic factor, and dynamic renal autoregulation   总被引:2,自引:0,他引:2  
Inhibition of nitric oxide (NO) synthase by N(omega)-nitro-L-arginine methyl ester (L-NAME) increases arterial pressure (PA) and profoundly reduces renal blood flow (RBF). Here we report that L-NAME causes changes in the PA-RBF transfer function which suggest augmentation of the approximately 0.2 Hz autoregulatory mechanism. Attenuation of PA fluctuations from 0.06 to 0.11 Hz was enhanced, indicating increased efficacy of autoregulation. Also, the rate of gain reduction between 0.1 and 0.2 Hz increased while the associated phase peak became > or = pi/2 radians, indicating emergence of a substantial rate-sensitive component in this system so that autoregulatory responses to rapid PA changes become more vigorous. Infusion of L-arginine partly reversed the pressor response to L-NAME, but not the renal vasoconstriction or the changes in the transfer function. The ability of atrial natriuretic factor (ANF), which also acts via cGMP, to replace NO was assessed. ANF dose dependently reversed but did not prevent the pressor response to L-NAME, indicating additive responses. ANF did not restore RBF or reverse the changes in the transfer function induced by L-NAME. The rate-sensitive component that was enhanced by L-NAME remained prominent, suggesting that either ANF did not adequately replace cGMP or provision of a basal level of cGMP was not able to replace cGMP generated in response to NO. It is concluded that NO synthase inhibition changes RBF dynamics with the most notable change being increased contribution by a rate-sensitive component of the myogenic system.  相似文献   

3.
The effect of synthetic atrial natriuretic factor (ANF 101-126) has been studied on regional blood flow distribution. Microspheres (15 +/- 3 microns), labelled with either 113Sn or 57Co, were injected through an intraventricular cannula into conscious rats while a reference blood sample was withdrawn. Two minutes after the first microspheres injection either ANF or NaCl were injected. Five minutes later, the second microspheres injection was administered, and after two minutes the animals were sacrificed, and several tissues removed and counted. Percent of flow distribution, cardiac output and tissue blood flow were calculated by standard formulas. ANF produced a significant increase in absolute blood flow in lungs, heart, spleen, kidneys and testes. Total renal blood flow and total splanchnic blood flow were also increased in ANF-injected animals. No significant changes were observed in cardiac output. It is suggested that the natriuretic and hypotensive responses to ANF in vivo may be, at least partially, explained by its hemodynamic effects.  相似文献   

4.
McGrath MF  de Bold AJ 《Peptides》2005,26(6):933-943
The cardiac natriuretic peptides (NP) atrial natriuretic factor or peptide (ANF or ANP) and brain natriuretic peptide (BNP) are polypeptide hormones synthesized, stored and secreted mainly by cardiac muscle cells (cardiocytes) of the atria of the heart. Both ANF and BNP are co-stored in storage granules referred to as specific atrial granules. The biological properties of NP include modulation of intrinsic renal mechanisms, the sympathetic nervous system, the rennin-angiotensin-aldosterone system (RAAS) and other determinants, of fluid volume, vascular tone and renal function. Studies on the control of baseline and stimulated ANF synthesis and secretion indicate at least two types of regulated secretory processes in atrial cardiocytes: one is stretch-stimulated and pertussis toxin (PTX) sensitive and the other is Gq-mediated and is PTX insensitive. Baseline ANF secretion is also PTX insensitive. In vivo, it is conceivable that the first process mediates stimulated ANF secretion brought about by changes in central venous return and subsequent atrial muscle stretch as observed in acute extracellular fluid volume expansion. The second type of stimulation is brought about by sustained hemodynamic and neuroendocrine stimuli such as those observed in congestive heart failure.  相似文献   

5.
Heme oxygenase (HO) catalyzes the degradation of heme to form iron, biliverdin, and carbon monoxide (CO). The vascular actions of CO include direct vasodilation of vascular smooth muscle and indirect vasoconstriction through inhibition of nitric oxide synthase (NOS). This study was performed to examine the effects in the kidney of inhibition of heme oxygenase alone or combined with NOS inhibition. Chromium mesoporphyrin (CrMP; 45 μmol/kg ip), a photostable HO inhibitor, was given to control rats and N(G)-nitro-l-arginine methyl ester (l-NAME)-treated hypertensive rats (50 mg·kg?1·day?1), 12 h, 4 days). In control animals, CrMP decreased CO levels, renal HO-1 levels, urine volume, and sodium excretion, but had no effect on arterial pressure, renal blood flow (RBF), plasma renin activity (PRA), or glomerular filtration rate (GFR). In l-NAME-treated hypertensive rats, CrMP decreased endogenous CO and renal HO-1 levels and had no effect on arterial pressure, RBF, or GFR but decreased sodium and water excretion in a similar manner to control animals. An increase in PRA was observed in untreated rats but not in l-NAME-infused rats, indicating that this effect is associated with an absent NO system. The results suggest that inhibition of HO promotes water and sodium excretion by a direct tubular action that is independent of renal hemodynamics or the NO system.  相似文献   

6.
To investigate the participation of purinergic P2 receptors in the regulation of renal function in ANG II-dependent hypertension, renal and glomerular hemodynamics were evaluated in chronic ANG II-infused (14 days) and Sham rats during acute blockade of P2 receptors with PPADS. In addition, P2X1 and P2Y1 protein and mRNA expression were compared in ANG II-infused and Sham rats. Chronic ANG II-infused rats exhibited increased afferent and efferent arteriolar resistances and reductions in glomerular blood flow, glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and glomerular ultrafiltration coefficient. PPADS restored afferent and efferent resistances as well as glomerular blood flow and SNGFR, but did not ameliorate the elevated arterial blood pressure. In Sham rats, PPADS increased afferent and efferent arteriolar resistances and reduced GFR and SNGFR. Since purinergic blockade may influence nitric oxide (NO) release, we evaluated the role of NO in the response to PPADS. Acute blockade with N(ω)-nitro-l-arginine methyl ester (l-NAME) reversed the vasodilatory effects of PPADS and reduced urinary nitrate excretion (NO(2)(-)/NO(3)(-)) in ANG II-infused rats, indicating a NO-mediated vasodilation during PPADS treatment. In Sham rats, PPADS induced renal vasoconstriction which was not modified by l-NAME, suggesting blockade of a P2X receptor subtype linked to the NO pathway; the response was similar to that obtained with l-NAME alone. P2X1 receptor expression in the renal cortex was increased by chronic ANG II infusion, but there were no changes in P2Y1 receptor abundance. These findings indicate that there is an enhanced P2 receptor-mediated vasoconstriction of afferent and efferent arterioles in chronic ANG II-infused rats, which contributes to the increased renal vascular resistance observed in ANG II-dependent hypertension.  相似文献   

7.
Schmidt BM 《Steroids》2008,73(9-10):961-965
There is increasing evidence for the importance of rapid non-genomic effects of aldosterone on the human vasculature including renal vessels. Arima and colleagues by examining isolated perfused afferent and efferent arterioles from rabbit kidneys found a vasoconstriction in both. In another study the same group showed that endothelium-derived nitric oxide (NO) modulates the vasoconstrictor response to aldosterone in rabbit preglomerular afferent arterioles. Disrupting the endothelium as well as blockade of endothelial NO synthase (eNOS) augmented aldosterone-induced vasoconstriction in this study. Uhrenholt et al. found no effect of aldosterone alone to afferent arterioles but a suppression of depolarisation-induced vasoconstriction. After the blockade of eNOS the aldosterone effect was completely suppressed. In a clinical study in healthy male volunteers injection of aldosterone had no statistically significant effects. Co-infusion of the eNOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA) changed the effect of aldosterone on renal hemodynamics. Aldosterone in co-infusion with L-NMMA decreased renal plasma flow (RPF) much stronger than L-NMMA alone. Infusion of L-NMMA alone increased GFR whereas aldosterone/L-NMMA lowered GFR slightly. Aldosterone co-infused with L-NMMA strongly increased renal vascular resistance (RVR). The increase was on top of the smaller increase that was induced by L-NMMA infusion. These data indicate that aldosterone acts via rapid non-genomic effects in vivo in humans at the renal vasculature. Antagonizing the endothelial nitric oxide synthase unmasks these effects. Therefore, rapid non-genomic aldosterone effects increase renal vascular resistance and thereby may mediate arterial hypertension if endothelial dysfunction is present.  相似文献   

8.
We studied the interaction between synthetic atrial natriuretic peptide (ANP) and various vasoactive substances, which included isoproterenol (ISO), aminophylline (AMI), and dibutyryl cyclic AMP (dBcAMP) as vasodilators, and angiotensin II (AII) and norepinephrine (NE) as vasoconstrictors, and prazosin as an alpha-blocker in isolated perfused rat kidneys (IPK). When 10(-9) mol of ANP was administered in 75 ml of a perfusate, the renal vascular resistance (RVR) was transiently decreased for 5 min, and increased thereafter. Simultaneously, ANP increased the glomerular filtration rate (GFR), urine flow (UV), absolute Na excretion (UNaV) and absolute K excretion (UKV). All of the above mentioned effects of ANP were significantly inhibited by administering ISO, AMI or dBcAMP. On the other hand, the administration of AII and NE significantly enhanced the increases in UV and UNaV and the fractional excretion of Na induced by ANP, although AII and NE had no influence on the changes in RVR and GFR induced by ANP. Prazosin did not modify the renal effects of ANP. These results suggest that the natriuretic effect of ANP is inhibited by agents that increase cyclic AMP in vascular smooth muscle cells. It is also suggested that the natriuretic effects of ANP can be explained by an increase in GFR and changes in intrarenal hemodynamics, rather than by the direct effect of ANP on renal tubules.  相似文献   

9.
Atrial natriuretic factor (ANF) is present in high concentration in atria but in very low concentration in the ventricles. Under conditions of haemodynamic overload ventricular gene expression may become activated, but it is not clear if ventricular ANF can be released through a regulated or constitutive pathway. The purpose of this study was to determine whether basal and stimulated release of ANF are increased in perinephritic rabbits with mild hypertension. Six rabbits were rendered hypertensive by wrapping both kidneys in cellophane, and six sham-operated rabbits were used as controls. Eight weeks after renal wrapping, mean arterial pressure was approximately 20 mmHg higher in the experimental group. After anaesthesia, the renal-wrapped group had a higher vascular resistance. Right and left atrial wall stress was measured using sonomicrometry. Volume expansion by 30% of blood volume, using donor blood, caused a small increase in right and left atrial diastolic and systolic wall stress but did not significantly increase plasma ANF. Pacing the heart at 6 Hz caused increases in systolic but not diastolic wall stress and caused a significant increase in plasma ANF; the increase was larger after volume expansion. There were no significant differences between the responses of the experimental and control groups. It is concluded that mild hypertension, in the rabbit, does not lead to changes in atrial wall stress or either basal or stimulated release of ANF.  相似文献   

10.
K P Patel 《Life sciences》1991,48(3):261-267
The relationship between the renal nerves and vasopressin in terms of the natriuretic and diuretic responses to atrial natriuretic factor (ANF--0.25 microgram/kg/min for 15 min), was investigated in unilaterally denervated anesthetized rats before and after the administration of a vasopressin V2 specific antagonist (AVPX)--(40 micrograms/kg bolus followed by 0.4 microgram/kg/min infusion). Administration of the AVPX or ANF did not alter the arterial pressure. Acute renal denervation or AVPX administration independently produced significant increases in sodium and water excretion. ANF infusion by itself produced a greater increase in urine flow and sodium excretion from the denervated kidney compared to the intact kidney before the administration of AVPX. However, after the administration of AVPX renal responses to ANF from the intact kidneys were enhanced such that they were not significantly different from the denervated kidneys. These results suggest that the full physiological response to ANF may be masked by tonic renal nerve activity or antidiuretic actions of vasopressin. Furthermore, since combined renal denervation and AVPX administration does not produce any greater potentiation of the renal responses to ANF than either of these manipulations alone, it is suggested that they may act via a common mechanism, possibly altering activity in the renal nerves.  相似文献   

11.
The evidence supporting a role for direct neurogenic control of renal function was investigated in twenty anaesthetized dogs. Unilateral renal sympathectomy was induced by 0.5 mg/kg/min of lidocain infusion into the left renal artery and the kidney function changes were compared to those observed in the right non infused kidney. The renal parameters were similar in the kidneys during the control periods. 0.5 mg/kg/min of lidocain infusion into the left renal artery resulted in significant reductions of the RBF, GFR, urine and sodium excretion in the left kidney. The intrarenal lidocain infusion induced a small decrease of the arterial blood pressure but this can not explain the changes observed in the left kidney. The modifications of the right kidney function during lidocain infusion were significantly less than those observed in the left kidney. Comparing the measured RBF and the renal blood flow calculated by the CPAH in the left kidney during the lidocain infusion, we have found a marked difference, when the decrease of the calculated RBF was greater. We believe that effects of pharmacological denervation can be best explained by the intrarenal hemodinamically mediated changes. The sympathectomy produces a considerable vasoconstriction in the renal cortical vascular bed, subsequently it decreases the RBF, GFR renal sodium and water excretion. But the lidocain blocks the sympathetic nerves influencing the renal medullary vessels and the renal medullary blood flow increases. These observations are not consistent with the notion that renal nerves are at least partially responsible for the natriuresis accompanying salt loading.  相似文献   

12.
The effect of converting enzyme inhibitor (CEI) on the renal response to atrial natriuretic factor (ANF) was determined in the rat. In the absence of CEI, ANF produced rapid and significant increases in sodium, potassium, calcium, and urine excretions while blood pressure declined transiently. In the presence of CEI, ANF enhanced the excretion of sodium and potassium but not of calcium and urine. The activity of CEI was documented by observing that, in the presence of CEI, the elevation of blood pressure produced by angiotensin I was significantly attenuated. The potentiating effect of CEI on the natriuretic response to ANF supports the hypothesis that converting enzyme may be involved in the metabolism of ANF.  相似文献   

13.
Atrial natriuretic factor (ANF) antagonizes vasoconstriction induced by numerous smooth muscle agonists and also lowers blood pressure in intact animals. ANF has particularly marked relaxant effects on angiotensin II-contracted vessels in vitro. Sensitivity to the blood pressure-lowering effect of ANF in vivo appears to be enhanced in renin-dependent models of renovascular hypertension compared with other experimental hypertensive models. The depressor action of low, possibly physiological doses of ANF in two-kidney, one-clip Goldblatt rats is due to a decrease in total peripheral resistance. On the other hand, high doses of ANF can lower cardiac output, particularly in volume-expanded models such as deoxycorticosterone-salt hypertension. ANF markedly inhibits renin secretion in intact animals, probably via increased glomerular filtration rate and load of sodium chloride to the macula densa. This effect is masked when renal perfusion is impaired (e.g., via unilateral renal artery constriction), in which case ANF may stimulate renin secretion slightly. ANF also reduces plasma aldosterone in vivo and inhibits basal and agonist-induced aldosterone release from isolated adrenal cortical cells. This effect appears to be especially marked for angiotensin-induced aldosterone production in vivo and in vitro. These findings indicate that ANF has potentially important interactions with the renin-angiotensin-aldosterone system and suggest a role for ANF in the homeostatic control of blood pressure as well as of extracellular fluid volume.  相似文献   

14.
The atrial natriuretic factor (ANF) is comprised of a 126-amino-acid precursor (pro-ANF) and its biologically active fragments. Partially purified pro-ANF and its larger fragments (greater than 10,000 daltons) have been referred to as high-molecular-weight (Mr) ANF, the partially purified smaller fragments (less than 10,000 daltons) as low Mr ANF. In vitro, mild proteolysis of high Mr ANF yielded low Mr ANF and enhanced biological activity. In the rat, pro-ANF was the predominant atrial form; however, low Mr ANF was largely released from isolated perfused hearts, which suggests that conversion of pro-ANF to low Mr ANF occurred immediately before or during secretion. High Mr ANF was also found in the perfusate of isolated rat hearts and in the plasma of rats, which suggests that some pro-ANF was secreted with low Mr ANF. Evidence for extraatrial conversion and activation of pro-ANF comes from two studies. 1) Intra-renal-arterial injection of high Mr ANF had little renal vascular action, whereas its i.v. injection caused renal vascular dilation, which suggests that the renal vasodilatory action of high Mr ANF became activated during circulation. 2) When high Mr ANF was incubated with rat blood or rat platelets in vitro, its natriuretic activity was converted to low Mr ANF within minutes; the platelet-induced conversion was associated with enhanced activity in relaxing aortic smooth muscle.  相似文献   

15.
We studied the effects of synthetic atrial natriuretic factor (ANF, 28-amino acid peptide) on base-line perfusion pressures and pressor responses to hypoxia and angiotensin II (ANG II) in isolated rat lungs and on the following hemodynamic and renal parameters in awake, chronically instrumented rats: cardiac output (CO), systemic (Rsa) and pulmonary (Rpa) vascular resistances, ANG II- and hypoxia (10.5% O2)-induced changes in Rsa and Rpa, and urine output. Intra-arterial ANF injections lowered base-line perfusion pressures and blunted hypoxia- and ANG II-induced pressor responses in the isolated lungs. Bolus intravenous injection of ANF (10 micrograms/kg) into intact rats decreased CO and arterial blood pressures of both systemic and pulmonary circulations and increased Rsa. ANG II (0.4 micrograms/kg) increased both Rsa and Rpa, and hypoxia increased Rpa alone in the intact rats. ANF (10 micrograms/kg) inhibited both ANG II- and hypoxia-induced increases in Rpa but did not significantly affect the ANG II-induced increase in Rsa. The antagonistic effect of ANF on pulmonary vasoconstriction was reversible and dose-dependent. The threshold doses of ANF required to inhibit pulmonary vasoconstriction were in the same range as those required to elicit diuresis and natriuresis. The data demonstrate that ANF has a preferential relaxant effect on pulmonary vessels constricted by hypoxia or ANG II. Both the renal and the pulmonary vascular effects of ANF may represent fundamental physiological actions of ANF. These actions may serve as a negative feedback control system that protects the right ventricle from excessive mechanical loads.  相似文献   

16.
Our previous studies showed that stimulation of adenosine A(1) receptors located in the nucleus of the solitary tract (NTS) exerts counteracting effects on the iliac vascular bed: activation of the adrenal medulla and β-adrenergic vasodilation vs. sympathetic and vasopressinergic vasoconstriction. Because NTS A(1) adenosine receptors inhibit baroreflex transmission in the NTS and contribute to the pressor component of the HDR, we hypothesized that these receptors also contribute to the redistribution of blood from the visceral to the muscle vasculature via prevailing sympathetic and vasopressinergic vasoconstriction in the visceral (renal and mesenteric) vascular beds and prevailing β-adrenergic vasodilation in the somatic (iliac) vasculature. To test this hypothesis, we compared the A(1) adenosine-receptor-mediated effects of each vasoactive factor triggered by NTS A(1) adenosine receptor stimulation [N(6)-cyclopentyladenosine (CPA), 330 pmol in 50 nl] on the regional vascular responses in urethane/chloralose-anesthetized rats. The single-factor effects were separated using adrenalectomy, β-adrenergic blockade, V(1) vasopressin receptor blockade, and sinoaortic denervation. In intact animals, initial vasodilation was followed by large, sustained vasoconstriction with smaller responses observed in renal vs. mesenteric and iliac vascular beds. The initial β-adrenergic vasodilation prevailed in the iliac vs. mesenteric and renal vasculature. The large and sustained vasopressinergic vasoconstriction was similar in all vascular beds. Small sympathetic vasoconstriction was observed only in the iliac vasculature in this setting. We conclude that, although A(1) adenosine-receptor-mediated β-adrenergic vasodilation may contribute to the redistribution of blood from the visceral to the muscle vasculature, this effect is overridden by sympathetic and vasopressinergic vasoconstriction.  相似文献   

17.
Acute administration of tumor necrosis factor-α (TNF-α) resulted in decreases in renal blood flow (RBF) and glomerular filtration rate (GFR) but induced diuretic and natriuretic responses in mice. To define the receptor subtypes involved in these renal responses, experiments were conducted to assess the responses to human recombinant TNF-α (0.3 ng·min(-1)·g body wt(-1) iv infusion for 75 min) in gene knockout (KO) mice for TNF-α receptor type 1 (TNFαR1 KO, n = 5) or type 2 (TNFαR2 KO, n = 6), and the results were compared with those obtained in corresponding wild-type [WT (C57BL/6), n = 6] mice. Basal levels of RBF (PAH clearance) and GFR (inulin clearance) were similar in TNFαR1 KO, but were lower in TNFαR2 KO, than WT mice. TNF-α infusion in WT mice decreased RBF and GFR but caused a natriuretic response, as reported previously. In TNFαR1 KO mice, TNF-α infusion failed to cause such vasoconstrictor or natriuretic responses; rather, there was an increase in RBF and a decrease in renal vascular resistance. Similar responses were also observed with infusion of murine recombinant TNF-α in TNFαR1 KO mice (n = 5). However, TNF-α infusion in TNFαR2 KO mice caused changes in renal parameters qualitatively similar to those observed in WT mice. Immunohistochemical analysis in kidney slices from WT mice demonstrated that while both receptor types were generally located in the renal vascular and tubular cells, only TNFαR1 was located in vascular smooth muscle cells. There was an increase in TNFαR1 immunoreactivity in TNFαR2 KO mice, and vice versa, compared with WT mice. Collectively, these functional and immunohistological findings in the present study demonstrate that the activation of TNFαR1, not TNFαR2, is mainly involved in mediating the acute renal vasoconstrictor and natriuretic actions of TNF-α.  相似文献   

18.
Renal and systemic effects of synthetic atrial natriuretic factor   总被引:3,自引:0,他引:3  
A synthetic peptide corresponding to a sequence of 26 amino acids contained in endogenous rat atrial natriuretic factor (ANF), was infused into one renal artery of anesthetized dogs for a comprehensive in vivo evaluation of the renal and systemic effects of pure ANF. The results proved conclusively that ANF acted directly on the kidney since urine volume and fractional excretion of sodium, potassium, chloride and calcium were elevated in a dose-related manner in the ANF-treated kidney, but were not significantly affected in the contralateral saline-infused organ. The maximum effects achieved with the synthetic ANF were higher than any reported following intravenous administration of crude extracts of rat atria and were similar to those produced by thiazide diuretics. In four of the five dogs studied, renal vascular resistance fell progressively as doses of ANF were increased. Glomerular filtration rate was not significantly elevated during ANF infusion, but was correlated with sodium excretion rates. Even though mean arterial pressure was progressively reduced, there was no significant change in heart rate and no stimulation of renin secretion. Arterial cyclic GMP concentration was higher in the basal state and rose more rapidly than did renal venous levels, indicating that increases in circulating concentrations of arterial cyclic GMP originated from an extrarenal source. Dose-related elevations in urinary cyclic GMP excretion could be explained by increased cyclic GMP filtration, by enhanced production in tubular cells, or by renal tubular secretion. Especially in the saline-infused kidney, there was a clear dissociation between excretion of cyclic GMP and fractional sodium excretion. We conclude that the synthetic ANF increased electrolyte excretion via a direct renal action which was not solely dependent upon changes in renal vasculature, renin secretion or cyclic GMP levels.  相似文献   

19.
Anesthetized beagle dogs received increasing doses of continuous infusions of a 26-amino-acid synthetic atrial natriuretic factor (ANF). Urinary sodium excretion rose in a dose-dependent manner to a maximum level similar to that seen after hydrochlorothiazide administration. Mean arterial blood pressure decreased, but only modestly, and not in a dose-dependent fashion. Dogs chronically retaining NaCl secondary to constriction of the thoracic inferior vena cava showed only modestly enhanced natriuresis when infused with similar levels of ANF. When ANF was infused directly into the renal artery of anesthetized beagles, a dose-dependent natriuresis and calciuresis were observed with maximal fractional sodium excretion averaging approximately 8%. Although glomerular filtration tended to increase, the average dose-related changes were not significant. Cyclic GMP excretion was increased during intra-renal-arterial infusion of ANF. Excretion of cyclic GMP by both the infused and noninfused kidneys was equal, which suggests that urinary cyclic GMP was not nephrogenous but derived from the elevated circulating levels. These and other data from rats dissociate changes in urinary cyclic GMP excretion and sodium excretion.  相似文献   

20.
To determine the effects of atrial natriuretic factor (ANF) on renal dopamine (DA) metabolism, 3H-DA and 3H-L-DOPA uptake by renal tubular cells was measured in experiments carried out in vitro in Sprague-Dawley rats. The receptor type involved was also analyzed. The results indicate that ANF increased at 30 min, DA uptake in a concentration-response fashion having 10 pM ANF as the threshold concentration. Conversely, the uptake of the precursor L-DOPA was not modified by the peptide. ANF effects were observed in tissues from external and juxtamedullar cortex and inner medulla. On this basis, 100 nM ANF was used to continue the studies in external cortex tissues. DA uptake was characterized as extraneuronal uptake, since 100 microM hydrocortisone blocked ANF-induced increase of DA uptake. Renal DA uptake was decreased at 0 degrees C and in sodium-free medium. The effects of ANF in these conditions were not present, confirming that renal DA uptake is mediated by temperature- and sodium-dependent transporters and that the peptide requires the presence of the ion to exhibit its actions on DA uptake. The biological natriuretic peptide type A receptor (NPR-A) mediates ANF effects, since 100 nM anantin, a specific blocker, reversed ANF-dependent increase of DA uptake. The natriuretic peptide type C receptor (NPR-C) is not involved, since the specific analogous 100 nM 4-23 ANF amide has no effect on renal DA uptake and does not alter the effects of 100 nM ANF. In conclusion, ANF stimulates DA uptake by kidney tubular cells. ANF effects are mediated by NPR-A receptors coupled to guanylate cyclase and cGMP as second messenger. The process involved was characterized as a typical extraneuronal uptake, and characterized as temperature- and sodium-dependent. This mechanism could be related to DA effects on sodium reabsorption and linked to ANF enhanced natriuresis in the kidney. The increment of endogenous DA into tubular cells, as a consequence of increased DA uptake, would permit D1 receptor recruitment and Na+,K+-ATPase activity inhibition, which results in decreased sodium reabsorption and increased natriuresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号