首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dual increases in nitric oxide ((*)NO) and superoxide anion (O(2)(*-)) production are one of the hallmarks of endothelial cell proliferation. Increased expression of endothelial nitric oxide synthase (eNOS) has been shown to play an important role in maintaining high levels of (*)NO generation to offset the increase in O(2)(*-) that occurs during proliferation. Although recent reports indicate that heat shock protein 90 (hsp90) associates with eNOS to increase (*)NO generation, the role of hsp90 association with eNOS during endothelial cell proliferation remains unknown. In this report, we examine the effects of endothelial cell proliferation on eNOS expression, hsp90 association with eNOS, and the mechanisms governing eNOS generation of (*)NO and O(2)(*-). Western analysis revealed that endothelial cells not only increased eNOS expression during proliferation but also hsp90 interactions with the enzyme. Pretreatment of cultures with radicicol (RAD, 20 microM), a specific inhibitor that does not redox cycle, decreased A23187-stimulated (*)NO production and increased L(omega)-nitroargininemethylester (L-NAME)-inhibitable O(2)(*-) generation. In contrast, A23187 stimulation of controls in the presence of L-NAME increased O(2)(*-) generation, confirming that during proliferation eNOS generates (*)NO. Our findings demonstrate that hsp90 plays an important role in maintaining (*)NO generation during proliferation. Inhibition of hsp90 in vascular endothelium provides a convenient mechanism for uncoupling eNOS activity to inhibit (*)NO production. This study provides new understanding of the mechanisms by which ansamycin antibiotics inhibit endothelial cell proliferation. Such information may be useful in the development and design of new antineoplastic agents in the future.  相似文献   

2.
Previous reports suggest heat shock protein 90 (hsp90) associates with endothelial nitric-oxide synthase (eNOS) to increase nitric oxide (*NO) generation. Ansamycin inhibition of chaperone-dependent activity increases eNOS generation of superoxide anion (O(2)(*)) upon enzyme activation. In the present study we identify where hsp90 binds to eNOS using overlapping decoy peptides based on the amino acid (aa) sequence of eNOS (291-420). B1, B2, and B3 peptides inhibited hsp90 association with eNOS in cell lysates from proliferating bovine aortic endothelial cells. B2 (aa 301-320), common to both B1 and B3, decreased stimulated *NO production and hsp90 association in bovine aortic endothelial cells. The B2/B3 peptide was redesigned to TSB2 that includes a TAT protein transduction domain and shortened to 14 aa. TSB2 impaired vasodilation of isolated facialis arteries in vitro and in vivo and increased eNOS-dependent O(2)(*) generation in native endothelial cells on mouse aortas, whereas a control peptide, TSB(Ctr), which has the four glutamic acids in TSB2 substituted with alanine, showed no such effects. Site-directed mutagenesis of eNOS at 310, 314, 318, and 323 Glu to Ala yields an eNOS mutant that exhibited reduced hsp90 association and generated O(2)(*) rather than *NO upon activation. Together, these data demonstrate that hsp90 associates with eNOS at aa 310-323. Moreover, a decoy peptide based on this sequence is sufficient to displace hsp90 from eNOS and uncouple eNOS activity from *NO generation. Thus, Glu-310, Glu-314, Glu-318, and Glu-323 in eNOS, although each does not do much by itself, synergistically they increase "cooperativity" in the association step that is critical for maintaining hsp90-eNOS interactions and promoting coupled eNOS activity. Such chaperone-dependent signaling may play an important role in modulating the balance of *NO and O(2)(*) generation from eNOS and, therefore, vascular function.  相似文献   

3.
The balance of nitric oxide (.NO) and superoxide anion (O(2)) plays an important role in vascular biology. The association of heat shock protein 90 (Hsp90) with endothelial nitric-oxide synthase (eNOS) is a critical step in the mechanisms by which eNOS generates.NO. As eNOS is capable of generating both.NO and O(2), we hypothesized that Hsp90 might also mediate eNOS-dependent O(2) production. To test this hypothesis, bovine coronary endothelial cells (BCEC) were pretreated with geldanamycin (GA, 10 microg/ml; 17.8 microm) and then stimulated with the calcium ionophore, (5 microm). GA significantly decreased -stimulated eNOS-dependent nitrite production (p < 0.001, n = 4) and significantly increased -stimulated eNOS-dependent O(2) production (p < 0.001, n = 8). increased phospho-eNOS(Ser-1179) levels by >1.6-fold over vehicle (V)-treated levels. Pretreatment with GA by itself or with increased phospho-eNOS levels. In unstimulated V-treated BCEC cultures low amounts of Hsp90 were found to associate with eNOS. Pretreatment with GA and/or increased the association of Hsp90 with eNOS. These data show that Hsp90 is essential for eNOS-dependent.NO production and that inhibition of ATP-dependent conformational changes in Hsp90 uncouples eNOS activity and increases eNOS-dependent O(2) production.  相似文献   

4.
Tetrahydrobiopterin (BH4) and heat shock protein 90 (hsp90) have been anticipated to regulate endothelial nitric oxide synthase (eNOS)-dependent superoxide anion radical (O2*-) generation in endothelial cells. It is not known, however, whether hsp90 and BH4 increase O2*- in a synergistic manner, or whether this increase is a consequence of downstream changes in eNOS phosphorylation on serine 1179 (eNOS-S1179) and changes in dimer/monomer distribution. Here O2*- production from purified BH4 -free eNOS and eNOS:hsp90 complexes determined by spin-trapping methodology showed that hsp90 neither inhibits O2*- nor alters the requirement of BH4 to inhibit radical release from eNOS. In endothelial cells, O2*- detection with the novel high-performance liquid chromatography assay of 2-hydroxyethidium showed that inhibition of hsp90 did not increase O2*-, while a significant increase in O2*- was detected in BH4 -depleted cells. Radicicol, a hsp90 inhibitor, disrupted eNOS:hsp90 association, decreased eNOS-S1179, but increased biopterin production in a dose-dependent fashion. These changes were followed by an increase in eNOS activity, demonstrating that high biopterin levels offset inhibition of eNOS phosphorylation and diminished interaction with hsp90. In contrast, depletion of biopterin did not affect hsp90 levels or interaction with eNOS or eNOS dimer/monomer ratio in bovine aorta endothelial cells (BAECs). We conclude that low BH4 but not inhibition of hsp90 increases O2*- in BAECs by mechanism(s) that unlikely involve phosphorylation to eNOS-S1179 or eNOS monomerization.  相似文献   

5.
Low-density lipoprotein (LDL) and its oxidized derivatives are hypothesized to impair vascular function by increasing superoxide anion (O.). To investigate mechanisms in situ, isolated carotid arteries were incubated with native LDL (nLDL) or minimally oxidized LDL (mmLDL). With the use of en face fluorescent confocal microscopy and hydroethidine, an oxidant-sensitive fluorescent probe, we found that nLDL increased O. in vascular endothelium greater than fourfold by an N(omega)-nitro-L-arginine methyl ester (L-NAME)-inhibitable mechanism. In contrast, mmLDL increased O. in vascular endothelium greater than eightfold by mechanisms that were partially inhibited by L-NAME and allopurinol and essentially ablated by diphenyleneiodium. These data indicate that both nLDL and mmLDL uncouple endothelial nitric oxide synthase (eNOS) activity and that mmLDL also activates xanthine oxidase and NADPH oxidoreductase to induce greater increases in O. generation than nLDL. Western analysis revealed that both lipoproteins inhibited A-23187-stimulated association of heat shock protein 90 (HSP90) with eNOS without inhibiting phosphorylation of eNOS at serine-1179 (phospho-eNOS), an immunological index of electron flow through the enzyme. As HSP90 mediates the balance of.NO and O. generation by eNOS, these data provide new insight into the mechanisms by which oxidative stress, induced by nLDL and mmLDL, uncouple eNOS activity to increase endothelial O. generation.  相似文献   

6.
Cultured vascular endothelial cell (EC) exposure to steady laminar shear stress results in peroxynitrite (ONOO(-)) formation intramitochondrially and inactivation of the electron transport chain. We examined whether the "hyperoxic state" of 21% O(2), compared with more physiological O(2) tensions (Po(2)), increases the shear-induced nitric oxide (NO) synthesis and mitochondrial superoxide (O(2)(*-)) generation leading to ONOO(-) formation and suppression of respiration. Electron paramagnetic resonance oximetry was used to measure O(2) consumption rates of bovine aortic ECs sheared (10 dyn/cm(2), 30 min) at 5%, 10%, or 21% O(2) or left static at 5% or 21% O(2). Respiration was inhibited to a greater extent when ECs were sheared at 21% O(2) than at lower Po(2) or left static at different Po(2). Flow in the presence of an endothelial NO synthase (eNOS) inhibitor or a ONOO(-) scavenger abolished the inhibitory effect. EC transfection with an adenovirus that expresses manganese superoxide dismutase in mitochondria, and not a control virus, blocked the inhibitory effect. Intracellular and mitochondrial O(2)(*-) production was higher in ECs sheared at 21% than at 5% O(2), as determined by dihydroethidium and MitoSOX red fluorescence, respectively, and the latter was, at least in part, NO-dependent. Accumulation of NO metabolites in media of ECs sheared at 21% O(2) was modestly increased compared with ECs sheared at lower Po(2), suggesting that eNOS activity may be higher at 21% O(2). Hence, the hyperoxia of in vitro EC flow studies, via increased NO and mitochondrial O(2)(*-) production, leads to enhanced ONOO(-) formation intramitochondrially and suppression of respiration.  相似文献   

7.
The activity of endothelial nitric-oxide synthase (eNOS) is regulated by its subcellular localization, phosphorylation and through its interaction with different proteins. The association of eNOS with caveolin-1 (Cav) is believed to maintain eNOS in an inactive state; however, increased association of eNOS to heat shock protein 90 (hsp90) is observed following activation. In this study, we investigate the relationship between caveolin and hsp90 as opposing regulatory proteins on eNOS function. Immunoprecipitation of Cav-1 from bovine lung microvascular endothelial cells shows that eNOS and hsp90 are present in the Cav-1 complex. eNOS and hsp90 from the lysate also interact with exogenous glutathione S-transferase-linked caveolin-1 (GST-Cav), and the addition of calcium-activated calmodulin (CaM) to the GST-Cav complex partially inhibited the association of eNOS and hsp90. Purified eNOS associates with GST-Cav specifically through the caveolin-scaffolding domain (residues 82-101); however, the addition of CaM slightly, but nonstatistically, reduces eNOS binding to GST-Cav. When hsp90 is present in the binding reaction, the addition of increasing concentrations of CaM significantly displaces eNOS and hsp90 from GST-Cav. eNOS enzymatic activity is also less sensitive to inhibition by the caveolin scaffolding peptide (residues 82-101) when eNOS is prebound to hsp90. Collectively, our results show that the actions of CaM on eNOS dissociation from caveolin are facilitated in the presence of hsp90.  相似文献   

8.
Endothelial nitric oxide synthase (eNOS)-mediated NO production plays a critical role in the regulation of vascular function and pathophysiology. Caveolin-1 (Cav-1) binding to eNOS holds eNOS in an inactive conformation; however, the mechanism of Cav-1-mediated inhibition of activated eNOS is unclear. Here the role of Src-dependent Cav-1 phosphorylation in eNOS negative feedback regulation is investigated. Using fluorescence resonance energy transfer (FRET) and coimmunoprecipitation analyses, we observed increased interaction between eNOS and Cav-1 following stimulation of endothelial cells with thrombin, vascular endothelial growth factor, and Ca(2+) ionophore A23187, which is corroborated in isolated perfused mouse lung. The eNOS/Cav-1 interaction is blocked by eNOS inhibitor L-N(G)-nitroarginine methyl ester (hydrochloride) and Src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3, 4-d] pyrimidine. We also observe increased binding of phosphomimicking Y14D-Cav-1 mutant transduced in human embryonic kidney cells overexpressing eNOS and reduced Ca(2+)-induced NO production compared to cells expressing the phosphodefective Y14F-Cav-1 mutant. Finally, Src FRET biosensor, eNOS small interfering RNA, and NO donor studies demonstrate NO-induced Src activation and Cav-1 phosphorylation at Tyr-14, resulting in increased eNOS/Cav-1 interaction and inhibition of eNOS activity. Taken together, these data suggest that activation of eNOS promotes Src-dependent Cav-1-Tyr-14 phosphorylation and eNOS/Cav-1 binding, that is, eNOS feedback inhibition.  相似文献   

9.
10.
Heat shock protein 90 (Hsp90) binding to endothelial nitric oxide synthase (eNOS) is an important step in eNOS activation. The conformational state of bound Hsp90 determines whether eNOS produces nitric oxide (NO) or superoxide (O(2)(*-)). We determined the effects of the Hsp90 antagonists geldanamycin (GA) and radicicol (RA) on basal and ACh-stimulated changes in vessel diameter, cGMP production, and Hsp90:eNOS coimmunoprecipitation in piglet resistance level pulmonary arteries (PRA). In perfused piglet lungs, we evaluated the effects of GA and RA on ACh-stimulated changes in pulmonary arterial pressure (Ppa) and perfusate accumulation of stable NO metabolites (NOx(-)). The effects of GA and RA on ACh-stimulated O(2)(*-) generation was investigated in cultured pulmonary microvascular endothelial cells (PMVEC) by dihydroethidine (DHE) oxidation and confocal microscopy. Hsp90 inhibition with GA or RA reduced ACh-mediated dilation, abolished the ACh-stimulated increase in cGMP, and reduced eNOS:Hsp90 coprecipitation. GA and RA also inhibited the ACh-mediated changes in Ppa and NOx(-) accumulation rates in perfused lungs. ACh increased the rate of DHE oxidation in PMVEC pretreated with GA and RA but not in untreated cells. The cell-permeable superoxide dismutase mimetic M40401 reversed GA-mediated inhibition of ACh-induced dilation in PRA. We conclude that Hsp90 is a modulator of eNOS activity and vascular reactivity in the newborn piglet pulmonary circulation. Uncoupling of eNOS with GA or RA inhibits ACh-mediated dilation by a mechanism that involves O(2)(*-) generation.  相似文献   

11.
There is growing evidence that endothelial dysfunction, which is often defined as the decreased endothelial-derived nitric oxide (NO) bioavailability, is a crucial factor leading to vascular disease states such as hypertension, diabetes, atherosclerosis, heart failure and cigarette smoking. This is due to the fact that the lack of NO in endothelium-dependent vascular disorders contributes to impaired vascular relaxation, platelet aggregation, increased vascular smooth muscle proliferation, and enhanced leukocyte adhesion to the endothelium. During the last several years, it has become clear that reduction of NO bioavailability in the endothelium-impaired function disorders is associated with an increase in endothelial production of superoxide (O(2)(*-)). Because O(2)(*-) rapidly scavenges NO within the endothelium, a reduction of bioactive NO might occur despite an increased NO generation. Among many enzymatic systems that are capable of producing O(2)(*-), NAD(P)H oxidase and uncoupled endothelial NO synthase (eNOS) apparently are the main sources of O(2)(*-) in the endothelial cells. It seems that O(2)(*-) generated by NAD(P)H oxidase may trigger eNOS uncoupling and contribute to the endothelial balance between NO and O(2)(*-). That is maintained at diverse levels.  相似文献   

12.
Early determinants of H2O2-induced endothelial dysfunction   总被引:4,自引:0,他引:4  
Reactive oxygen species (ROS) can stimulate nitric oxide (NO(*)) production from the endothelium by transient activation of endothelial nitric oxide synthase (eNOS). With continued or repeated exposure, NO(*) production is reduced, however. We investigated the early determinants of this decrease in NO(*) production. Following an initial H(2)O(2) exposure, endothelial cells responded by increasing NO(*) production measured electrochemically. NO(*) concentrations peaked by 10 min with a slow reduction over 30 min. The decrease in NO(*) at 30 min was associated with a 2.7-fold increase in O(2)(*-) production (p < 0.05) and a 14-fold reduction of the eNOS cofactor, tetrahydrobiopterin (BH(4), p < 0.05). Used as a probe for endothelial dysfunction, the integrated NO(*) production over 30 min upon repeated H(2)O(2) exposure was attenuated by 2.1-fold (p = 0.03). Endothelial dysfunction could be prevented by BH(4) cofactor supplementation, by scavenging O(2)(*-) or peroxynitrite (ONOO(-)), or by inhibiting the NADPH oxidase. Hydroxyl radical (()OH) scavenging did not have an effect. In summary, early H(2)O(2)-induced endothelial dysfunction was associated with a decreased BH(4) level and increased O(2)(*-) production. Dysfunction required O(2)(*-), ONOO(-), or a functional NADPH oxidase. Repeated activation of the NADPH oxidase by ROS may act as a feed forward system to promote endothelial dysfunction.  相似文献   

13.
14.
Persistent pulmonary hypertension of newborn (PPHN) is associated with decreased NO release and impaired pulmonary vasodilation. We investigated the hypothesis that increased superoxide (O(2)(*-)) release by an uncoupled endothelial nitric oxide synthase (eNOS) contributes to impaired pulmonary vasodilation in PPHN. We investigated the response of isolated pulmonary arteries to the NOS agonist ATP and the NO donor S-nitroso-N-acetylpenicillamine (SNAP) in fetal lambs with PPHN induced by prenatal ligation of ductus arteriosus and in sham-ligated controls in the presence or absence of the NOS antagonist nitro-L-arginine methyl ester (L-NAME) or the O(2)(*-) scavenger 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron). ATP caused dose-dependent relaxation of pulmonary artery rings in control lambs but induced constriction of the rings in PPHN lambs. L-NAME, the NO precursor L-arginine, and Tiron restored the relaxation response of pulmonary artery rings to ATP in PPHN. Relaxation to NO was attenuated in arteries from PPHN lambs, and the response was improved by L-NAME and by Tiron. We also investigated the alteration in heat shock protein (HSP)90-eNOS interactions and release of NO and O(2)(*-) in response to ATP in the pulmonary artery endothelial cells (PAEC) from these lambs. Cultured PAEC and endothelium of freshly isolated pulmonary arteries from PPHN lambs released O(2)(*-) in response to ATP, and this was attenuated by the NOS antagonist L-NAME and superoxide dismutase (SOD). ATP stimulated HSP90-eNOS interactions in PAEC from control but not PPHN lambs. HSP90 immunoprecipitated from PPHN pulmonary arteries had increased nitrotyrosine signal. Oxidant stress from uncoupled eNOS contributes to impaired pulmonary vasodilation in PPHN induced by ductal ligation in fetal lambs.  相似文献   

15.
Song Y  Cardounel AJ  Zweier JL  Xia Y 《Biochemistry》2002,41(34):10616-10622
Besides NO, neuronal NO synthase (nNOS) also produces superoxide (O(2)(-.) at low levels of L-arginine. Recently, heat shock protein 90 (hsp90) was shown to facilitate NO synthesis from eNOS and nNOS. However, the effect of hsp90 on the O(2)(-.) generation from NOS has not been determined yet. The interrelationship between its effects on O(2)(-.) and NO generation from NOS is also unclear. Therefore, we performed electron paramagnetic resonance measurements of O(2)(-.) generation from nNOS to study the effect of hsp90. Purified rat nNOS generated strong O(2)(-.) signals in the absence of L-arginine. In contrast to its effect on NO synthesis, hsp90 dose-dependently inhibited O(2)(-.) generation from nNOS with an IC(50) of 658 nM. This inhibition was not due to O(2)(-.) scavenging because hsp90 did not affect the O(2)(-.) generated by xanthine oxidase. At lower levels of L-arginine where marked O(2)(-.) generation occurred, hsp90 caused a more dramatic enhancement of NO synthesis from nNOS as compared to that under normal L-arginine. Significant O(2)(-.) production was detected from nNOS even at intracellular levels of L-arginine. Adding hsp90 prevented this O(2)(-.) production, leading to enhanced nNOS activity. Thus, these results demonstrated that hsp90 directly inhibited O(2)(-.) generation from nNOS. Inhibition of O(2)(-.) generation may be an important mechanism by which hsp90 enhances NO synthesis from NOS.  相似文献   

16.
A decrease in the bioavailability of endothelium-derived nitric oxide (NO) is linked to hypercholesterolemia. However, the mechanism by which low density lipoprotein (LDL) mediates endothelial NO synthase (eNOS) dysfunction remains controversial. We investigate the effect of LDL on eNOS regulation in human endothelial cells (ECs). In cultured ECs, a high level of LDL increased the abundance of eNOS and caveolin-1 (Cav-1) in the membrane caveolae and the association of eNOS with Cav-1. Furthermore, it decreased the basal level of NO and blocked NO production stimulated by the calcium ionophore A23187. LDL exposure also increased the formation of stress fibers and the membrane translocation of eNOS. These effects can be blocked by cytochalasin D, an actin cytoskeleton disruptor. In revealing the mechanism underlying the translocation of eNOS, we found that a high level of LDL increased the level of membrane-associated and GTP-formed RhoA and activated the RhoA downstream kinase ROCK-1 activity. Y-27632, a specific inhibitor of ROCK-1, blocked LDL-induced stress fiber formation, eNOS translocation and NO production. In conclusion, a high level of LDL increases the movement of eNOS to membrane caveolae via the increased stress fibers. The RhoA-mediated pathway may play a crucial role in this process in vascular ECs.  相似文献   

17.
An increase in the association of heat shock protein 90 (HSP90) with endothelial nitric oxide (NO) synthase (eNOS) is well recognized for increasing NO (NO*) production. Despite the progress in this field, the mechanisms by which HSP90 modulates eNOS remain unclear due, in part, to the fact that geldanamycin (GA) redox cycles to generate superoxide anion (O(2)(-*) and the fact that inhibiting HSP90 with GA or radicicol (RAD) destabilizes tyrosine kinases that rely on the chaperone for maturation. In this report, we determine the extent to which these side effects alter vascular and endothelial cell function in physiologically relevant systems and in cultured endothelial cells. Vascular endothelial growth factor (VEGF)-stimulated vascular permeability, as measured by Evans blue leakage in the ears of male Swiss mice in vivo, and acetylcholine-induced vasodilation of isolated, pressurized mandibular arterioles from male C57BL6 mice ex vivo were attenuated by N(omega)-nitro-L-arginine methyl ester (L-NAME), GA, and RAD. Z-1[N-(2-aminoethyl)-N-(2-ammonoethyl)amino]diazen-1-ium-1,2-dioate (DETA-NONOate), a slow releasing NO. donor, increased vasodilation of arterioles pretreated with GA, RAD, and L-NAME equally well except at 10(-5) M, the highest concentration used, where vasodilation was greater in pressurized arterioles treated with L-NAME than in arterioles pretreated with GA or RAD alone. Both GA and RAD reduced NO* release from stimulated endothelial cell cultures and increased O(2)(-*) production in the endothelium of isolated aortas by an L-NAME-inhibitable mechanism. Pretreatment with RAD increased stimulated O(2)(-*) production from eNOS, whereas pretreatment with genistein (GE), a broad-spectrum tyrosine kinase inhibitor, did not; however, pretreatment with GE + RAD resulted in a super-induced state of uncoupled eNOS activity upon stimulation. These data suggest that the tyrosine kinases, either directly or indirectly, and HSP90-dependent signaling pathways act in concert to suppress uncoupled eNOS activity.  相似文献   

18.
Vaso-occlusive events are the major source of morbidity and mortality in sickle cell disease (SCD); however, the pathogenic mechanisms driving these events remain unclear. Using hypoxia to induce pulmonary injury, we investigated mechanisms by which sickle hemoglobin increases susceptibility to lung injury in a murine model of SCD, where mice either exclusively express the human alpha/sickle beta-globin (halphabetaS) transgene (SCD mice) or are heterozygous for the normal murine beta-globin gene and express the halphabetaS transgene (mbeta+/-, halphabetaS+/-; heterozygote SCD mice). Under normoxia, lungs from the SCD mice contained higher levels of xanthine oxidase (XO), nitrotyrosine, and cGMP than controls (C57BL/6 mice). Hypoxia increased XO and nitrotyrosine and decreased cGMP content in the lungs of all mice. After hypoxia, vascular congestion was increased in lungs with a greater content of XO and nitrotyrosine. Under normoxia, the association of heat shock protein 90 (HSP90) with endothelial nitric oxide synthase (eNOS) in lungs of SCD and heterozygote SCD mice was decreased compared with the levels of association in lungs of controls. Hypoxia further decreased association of HSP90 with eNOS in lungs of SCD and heterozygote SCD mice, but not in the control lungs. Pretreatment of rat pulmonary microvascular endothelial cells in vitro with xanthine/XO decreased A-23187-stimulated nitrite + nitrate production and HSP90 interactions with eNOS. These data support the hypotheses that hypoxia increases XO release from ischemic tissues and that the local increase in XO-induced oxidative stress can then inhibit HSP90 interactions with eNOS, decreasing *NO generation and predisposing the lung to vaso-occlusion.  相似文献   

19.
Caveolin-1 (Cav-1) gene inactivation interferes with caveolae formation and causes a range of cardiovascular and pulmonary complications in vivo. Recent evidence suggests that blunted Cav-1/endothelial nitric-oxide synthase (eNOS) interaction, which occurs specifically in vascular endothelial cells, is responsible for the multiple phenotypes observed in Cav-1-null animals. Under basal conditions, Cav-1 binds eNOS and inhibits nitric oxide (NO) production via the Cav-1 scaffolding domain (CAV; amino acids 82–101). Although we have recently shown that CAV residue Phe-92 is responsible for eNOS inhibition, the “inactive” F92A Cav-1 mutant unexpectedly retains its eNOS binding ability and can increase NO release, indicating the presence of a distinct eNOS binding domain within CAV. Herein, we identified and characterized a small 10-amino acid CAV subsequence (90–99) that accounted for the majority of eNOS association with Cav-1 (Kd = 49 nm), and computer modeling of CAV(90–99) docking to eNOS provides a rationale for the mechanism of eNOS inhibition by Phe-92. Finally, using gene silencing and reconstituted cell systems, we show that intracellular delivery of a F92A CAV(90–99) peptide can promote NO bioavailability in eNOS- and Cav-1-dependent fashions. To our knowledge, these data provide the first detailed analysis of Cav-1 binding to one of its most significant client proteins, eNOS.  相似文献   

20.
Hyperleptinemia accompanying obesity affects endothelial nitric oxide (NO) and is a serious factor for vascular disorders. NO, superoxide (O(2)(-)), and peroxynitrite (ONOO(-)) nanosensors were placed near the surface (5+/-2 microm) of a single human umbilical vein endothelial cell (HUVEC) exposed to leptin or aortic endothelium of obese C57BL/6J mice, and concentrations of calcium ionophore (CaI)-stimulated NO, O(2)(-), ONOO(-) were recorded. Endothelial NO synthase (eNOS) expression and L-arginine concentrations in HUVEC and aortic endothelium were measured. Leptin did not directly stimulate NO, O(2)(-), or ONOO(-) release from HUVEC. However, a 12-h exposure of HUVEC to leptin increased eNOS expression and CaI-stimulated NO (625+/-30 vs. 500+/-24 nmol/l control) and dramatically increased cytotoxic O(2)(-) and ONOO(-) levels. The [NO]-to-[ONOO(-)] ratio ([NO]/[ONOO(-)]) decreased from 2.0+/-0.1 in normal to 1.30+/-0.1 in leptin-induced dysfunctional endothelium. In obese mice, a 2.5-fold increase in leptin concentration coincided with 100% increase in eNOS and about 30% decrease in intracellular L-arginine. The increased eNOS expression and a reduced l-arginine content led to eNOS uncoupling, a reduction in bioavailable NO (250+/-10 vs. 420+/-12 nmol/l control), and an elevated concentration of O(2)(-) (240%) and ONOO(-) (70%). L-Arginine and sepiapterin supplementation reversed eNOS uncoupling and partially restored [NO]/[ONOO(-)] balance in obese mice. In obesity, leptin increases eNOS expression and decreases intracellular l-arginine, resulting in eNOS an uncoupling and depletion of endothelial NO and an increase of cytotoxic ONOO(-). Hyperleptinemia triggers an endothelial NO/ONOO(-) imbalance characteristic of dysfunctional endothelium observed in other vascular disorders, i.e., atherosclerosis and diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号