首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on the successful Agrobacterium-mediated transformation of oat, and on some factors influencing this process. In the first step of the experiments, three cultivars, two types of explant, and three combinations of strain/vectors, which were successfully used for transformation of other cereals were tested. Transgenic plants were obtained from the immature embryos of cvs. Bajka, Slawko and Akt and from leaf base explants of cv. Bajka after transformation with A. thumefaciens strain LBA4404(pTOK233). The highest transformation rate (12.3%) was obtained for immature embryos of cv. Bajka. About 79% of the selected plants proved to be transgenic; however, only 14.3% of the T0 plants and 27.5% of the T1 showed GUS expression. Cell competence of both types of explant differed in terms of their transformation ability and transgene expression. The next step of the study was to test the suitability for oat transformation of the pGreen binary vector combined with different selection cassettes: nptII or bar under the nos or 35S promoter. Transgenic plants were selected in combinations transformed with nos::nptII, 35S::nptII and nos::bar. The highest transformation efficiency (5.3%) was obtained for cv. Akt transformed with nos::nptII. A detailed analysis of the T0 plants selected from a given callus line and their progeny revealed that they were the mixture of transgenic, chimeric-transgenic and non-transgenic individuals. Southern blot analysis of T0 and T1 showed simple integration pattern with the low copy number of the introduced transgenes.  相似文献   

2.
Cotton (Gossypium hirsutum L., var. Coker 312) hypocotyl explants were transformed with three strains of Agrobacterium tumefaciens, LBA4404, EHA101 and C58, each harboring the recombinant binary vector pBI121 containing the chi gene insert and neomycin phosphotransferase (nptII) gene, as selectable marker. Inoculated tissue sections were placed onto cotton co-cultivation medium. Transformed calli were selected on MS medium containing 50 mg l−1 kanamycin and 200 mg l−1 cepotaxime. Putative calli were subsequently regenerated into cotton plantlets expressing both the kanamycin resistance gene and βglucuronidase (gus) as a reporter gene. Polymerase chain reaction was used to confirm the integration of chi and nptII transgenes in the T1 plants genome. Integration of chi gene into the genome of putative transgenic was further confirmed by Southern blot analysis. ‘Western’ immunoblot analysis of leaves isolated from T0 transformants and progeny plants (T1) revealed the presence of an immunoreactive band with MW of approximately 31 kDa in transgenic cotton lines using anti-chitinase-I polyclonal anti-serum. Untransformed control and one transgenic line did not show such an immunoreactive band. Chitinase specific activity in leaf tissues of transgenic lines was several folds greater than that of untransformed cotton. Crude leaf extracts from transgenic lines showed in vitro inhibitory activity against Verticillium dahliae.Transgenic plants currently growing in a greenhouse and will be bioassayed for improved resistance against V. dahlia the causal against of verticilliosis in cotton.  相似文献   

3.
A new plant expression vector (pBSbtCry1Ac-GNA) containing two insect resistant genes, a synthetic chimeric gene SbtCry1Ac encoding the insecticidal protein CrylAc and a gene GNA encoding snowdrop lectin (Galanthus nivalis agglutinin) was constructed. Transgenic tobacco plants containing these two genes were obtained through Agrobacterium-mediated transformation of tobacco leaf discs. Results from PCR detection and genomic DNA Southern blot analysis indicated that both SbtCrylAc gene and GNA gene were integrated into the genome of these plants. Results of Western blot analysis indicated that these two proteins were expressed in the analyzed plants. Bioassays of Myzus persicae and Helicoverpa assulta on detached leaves of transformed tobacco plants were carried out. The average aphid inhibition rate of these plants tested at 12 d post-infestation was 71.9 %. The average H. assulta mortality of these plants tested at 6 d post-infestation was up to 89.8 %. The kanamycin resistance of the T1 progeny of these transgenic plants was analyzed and a typical 3:1 segregation was observed.  相似文献   

4.
Agrobacterium tumefaciens-mediated transformation system for perilla (Perilla frutescens Britt) was developed. Agrobacterium strain EHA105 harboring binary vector pBK I containing bar and γ-tmt cassettes or pIG121Hm containing nptII, hpt, and gusA cassettes were used for transformation. Three different types of explant, hypocotyl, cotyledon and leaf, were evaluated for transformation and hypocotyl explants resulted in the highest transformation efficiency with an average of 3.1 and 2.2%, with pBK I and pIG121Hm, respectively. The Perilla spp. displayed genotype-response for transformation. The effective concentrations of selective agents were 2 mg l−1 phosphinothricin (PPT) and 150 mg l−1 kanamycin, respectively, for shoot induction and 1 mg l−1 PPT and 125 mg l−1 kanamycin, respectively, for shoot elongation. The transformation events were confirmed by herbicide Basta spray or histochemical GUS staining of T0 and T1 plants. The T-DNA integration and transgene inheritance were confirmed by PCR and Southern blot analysis of random samples of T0 and T1 transgenic plants.  相似文献   

5.
As a major contributor to the flower market, Gypsophila paniculata is an important target for the breeding of new varieties. However, gypsophila breeding is strongly hampered by the sterility of this species’ genotypes and the lack of a genetic-transformation procedure for this genus. Here we describe the establishment of a transformation procedure for gypsophila (Gypsophila paniculata L.) based on Agrobacterium inoculation of highly regenerative stem segments. The transformation procedure employs stem explants derived from GA3-pretreated mother plants and a two-step selection scheme. The GA3 treatment was crucial for obtaining high gene-transfer frequencies (75–90% GUS-expressing explants out of total inoculated explants), as shown using three different gypsophila varieties. An overall transformation efficiency of five GUS-expressing shoots per 100 stem explants was demonstrated for cv. Arbel. The applicability of the transformation system to gypsophila was further reinforced by the generation of transgenic plants expressing Agrobacterium rhizogenes rolC driven by a CaMV 35S promoter. Transgenic gypsophila plantlets exhibited extensive rooting and branching, traits that could be beneficial to the ornamental industry.  相似文献   

6.
To enhance bacterial wilt resistance in tomato plants and simplify the protocol of Agrobacterium tumefaciens mediated gene transfer, parameters affecting transformation efficiency in tomato have been optimized. A. tumefaciens strain EHA101, harboring a recombinant binary expression vector pTCL5 containing the Xa21 gene under the control of the CaMV 35S promoter was used for transformation. Five cultivars of tomato (Rio Grande, Roma, Pusa Ruby Pant Bahr and Avinash) were tested for transformation. Transformation efficiency was highly dependent on preculture of the explants with acetosyringone, acetosyringone in co-cultivation media, shoot regeneration medium and pre-selection after co-cultivation without selective agent. One week of pre-selection following selection along with 400 μM acetosyringone resulted in 92.3% transient GUS expression efficiency in Rio Grande followed by 90.3% in Avinash. The presence and integration of the Xa21 gene in putative transgenic plants was confirmed by polymerase chain reaction (PCR) and Southern blot analyses with 4.5–42.12% PCR-positive shoots were obtained for Xa21 and hygromycin genes, respectively. Transgenic plants of the all lines showed resistance to bacterial wilt. T1 plants (resulting from self-pollination of transgenic plants) tested against Pseudomonas solanacearum inoculation in glasshouse, showed Mendelian segregation.  相似文献   

7.
Plant diseases and insect pests are serious threat to the growth and yield of oilseed rape. In this study, a binary vector carrying sporamin and chitinase PjChi-1 genes in tandem was introduced into Brassica napus cv. ZS 758 via Agrobacterium tumefaciens for dual resistance against disease and insect attack. Thirty-two regenerated plantlets exhibiting hygromycin resistance were selected following Agrobacterium-mediated transformation of 600 leaf petiole explants. Of these, 27 transformants were confirmed to carry the two transgenes as detected by polymerase chain reaction (PCR) with 4.5% transformation efficiency. Eight plantlets were randomly selected for further confirmation by Southern and northern blot hybridization analyses. Four plants carried single copy of the transgenes, while the remaining four plants carried either two or three copies of the transgenes. Moreover, expression of the sporamin transgene was detected by northern blot hybridization in transgenic lines, but not in wild-type plants. These eight T0 plants were grown in vitro, and inoculated with the Lepidoptera larvae of Plutella xylostella and with spores of the fungal pathogen of Sclerotinia sclerotiorum. Transgenic plants exhibited high levels of resistance to P. xylostella and S. sclerotiorum when compared to untransformed wild-type plants. Genetic analysis of T1 progeny confirmed Mendelian segregation of the introduced genes. Therefore, these transgenic lines demonstrate a promising potential for variety development of oilseed rape lines with enhanced resistance against both P. xylostella and S. sclerotiorum.  相似文献   

8.
Glycine betaine has been reported as an osmoprotectant compound conferring tolerance to salinity and osmotic stresses in plants. We previously found that the expression of betaine aldehyde dehydrogenase 1 gene (OsBADH1), encoding a key enzyme for glycine betaine biosynthesis pathway, showed close correlation with salt tolerance of rice. In this study, the expression of the OsBADH1 gene in transgenic tobacco was investigated in response to salt stress using a transgenic approach. Transgenic tobacco plants expressing the OsBADH1 gene were generated under the control of a promoter from the maize ubiquitin gene. Three homozygous lines of T2 progenies with single transgene insert were chosen for gene expression analysis. RT-PCR and western blot analysis results indicated that the OsBADH1 gene was effectively expressed in transgenic tobacco leading to the accumulation of glycine betaine. Transgenic lines demonstrated normal seed germination and morphology, and normal growth rates of seedlings under salt stress conditions. These results suggest that the OsBADH1 gene could be an excellent candidate for producing plants with osmotic stress tolerance.  相似文献   

9.
Cotton transgenics for resistance against cotton leaf curl disease using antisense movement protein gene (AV2) were developed in an Indian variety (F846) via Agrobacterium-mediated transformation using the protocol developed previously. A binary vector pPZP carrying the antisense AV2 (350 bp) gene along with the nptII gene was used. Transgenic nature of the putative transgenics was confirmed by molecular analysis. Shoots were induced on selection medium and subcultured on rooting medium containing IBA and 75 mg l–1 kanamycin. Transgenic plants were recovered in 12–16 weeks from the time of gene transfer to establishment in pots. Preliminary analysis of the field-established plantlets was conducted by PCR. T1 plants were obtained from T0 seeds, the presence of the AV2 and nptIIgenes in the transgenic plants was verified by PCR and integration of T-DNA with AV2 into the plant genome of putative transgenics was further confirmed by Southern blot analysis. Several T1 lines were maintained in the greenhouse. Progeny analysis of these plants by PCR analysis showed a classical Mendelian pattern of inheritance.  相似文献   

10.
Genetic transformation of creeping bentgrass mediated by Agrobacterium tumefaciens has been achieved. Embryogenic callus initiated from seeds (cv. Penn-A-4) was infected with an A. tumefaciens strain (LBA4404) harboring a super-binary vector that contained an herbicide-resistant bar gene driven either by the CaMV 35S promoter or a rice ubiquitin promoter. Plants were regenerated from 219 independent transformation events. The overall stable transformation efficiency ranged from 18% to 45%. Southern blot and genetic analysis confirmed transgene integration in the creeping bentgrass genome and normal transmission and stable expression of the transgene in the T1 generation. All independent transformation events carried one to three copies of the transgene, and a majority (60–65%) contained only a single copy of the foreign gene with no apparent rearrangements. We report here the successful use of Agrobacterium for the large-scale production of transgenic creeping bentgrass plants with a high frequency of a single-copy transgene insertion that exhibit stable inheritance patterns.Abbreviations 2,4-D: 2,4-Dichlorophenoxyacetic acid - bar: Bialaphos resistance gene - GUS: -Glucuronidase - PPT: Phosphinothricin - ubi: Ubiquitin Communicated by J.M. Widholm  相似文献   

11.
Six pea (Pisum sativum L.) cultivars (Adept, Komet, Lantra, Olivin, Oskar, Tyrkys) were transformed via Agrobacterium tumefaciens strain EHA105 with pBIN19 plasmid carrying reporter uidA (β-glucuronidase, GUS, containing potato ST-LS1 intron) gene under the CaMV 35S promoter, and selectable marker gene nptII (neomycin phosphotransferase II) under the nos promoter. Two regeneration systems were used: continual shoot proliferation from axillary buds of cotyledonary node in vitro, and in vivo plant regeneration from imbibed germinating seed with removed testa and one cotyledon. The penetration of Agrobacterium into explants during co-cultivation was supported by sonication or vacuum infiltration treatment. The selection of putative transformants in both regeneration systems carried out on media with 100 mg dm−3 kanamycin. The presence of introduced genes was verified histochemically (GUS assay) and by means of PCR and Southern blot analysis in T0 putative transformants and their seed progenies (T1 to T3 generations). Both methods, but largely in vivo approach showed to be genotype independent, resulting in efficient and reliable transformation system for pea. The in vivo approach has in addition also benefit of time and money saving, since transgenic plants are obtained in much shorter time. All tested T0 – T3 plants were morphologically normal and fertile.This research was supported by the National Agency for Agricultural Research (grants No. QE 0046 and QF 3072) and Ministry of Education of the Czech Republic (grant No. ME 433).  相似文献   

12.
Various chitinases have been shown to inhibit the growth of fungal pathogens in in vitro as well as in planta conditions. chi194, a wheat chitinases gene encoding a 33-kDa chitinase protein, was overexpressed in tomato plants (cv. Pusa Ruby) under the control of maize ubiquitin 1 promoter. The integration of transgene in tomato plants was confirmed with polymerase chain reaction (PCR) and Southern blot analysis. The inheritance of the transgene in T1 and T2 generations were shown by molecular analysis and the hygromycin sensitivity test. The broad range of chitinase activity was observed among the transgenic lines in T0 and a similar range was retained in the T1 and T2 generations. Most importantly, the transgenic tomato lines with high chitinase activity were found to be highly resistant to the fungal pathogen Fusarium oxysporum f. sp. lycopersici. Thus, the results demonstrated that the expression of the wheat endochitinase chi194 in tomato plants confers resistance against Fusarium wilt disease caused by the fungal pathogen Fusarium oxysporum f. sp. lycopersici.  相似文献   

13.
Six plasmids carrying a snowdrop lectin (Galanthus nivalis agglutinin, GNA) and one of three selection markers were successfully transferred into two sugarcane cultivars (FN81–745 and Badila) via Agrobacterium-mediated transformation. Agrobacterium strains LBA4404, EHA105 and A281 that harboured a super-binary vector were used for sugarcane transformation. The use of the hygromycin (Hyg) resistance gene (hpt II), phosphinothrincin (PPT) resistance gene (bar) or G418 resistance gene (npt II) as a screenable marker facilitated the initial selection of GNA transgenic sugarcane callus with different efficiencies and helped the rapid segregation of individual transformation events. All the three selective marker genes were controlled by CaMV 35S promoter, while GNA gene was controlled by promoter of RSs-1 (rice sucrose synthase-1) or Ubi (maize ubiquitin). Factors important to successful transformation mediated by Agrobacterium tumefaciens were optimized, which included concentration of A. tumefaciens, medium composition, co-cultivated methods with plant tissue, strain virulence and different selective marker genes. An efficient protocol for sugarcane transformation mediated by A. tumefaciens was established. The GNA gene has been integrated into sugarcane genome as demonstrated by PCR and Southern dot blotting detections. The preliminary results from bioassay demonstrated a significant resistance of the transgenic sugarcane plants to woolly aphid (Ceratovacuna lanigera Zehnther) indicating thus the possibility for obtaining a transgenic sugarcane cultivar with resistance to woolly aphid.  相似文献   

14.
15.
Rice yield is severely affected by high-salt concentration in the vicinity of the plant. In an effort to engineer rice for improved salt tolerance Agrobacterium-mediated transformation of rice cv. Binnatoa was accomplished with the Pennisetum glaucum vacuolar Na+/H+ antiporter gene (PgNHX1) under the constitutive CaMV35S promoter. For the molecular analysis of putative transgenic plants, PCR and RT-PCR were performed. Transgenic rice plants expressing PgNHX1 showed better physiological status and completed their life cycle by setting flowers and seeds in salt stress, while wild-type plants exhibited rapid chlorosis and growth inhibition. Moreover, transgenic rice plants produced higher grain yields than wild-type plants under salt stress. Assessment of the salinity tolerance of the transgenic plants at seedling and reproductive stages demonstrated the potential of PgNHX1 for imparting enhanced salt tolerance capabilities and improved yield.  相似文献   

16.
Transgenic chilli pepper (Capsicum annuum L.) plants tolerant to salinity stress were produced by introducing the wheat Na+/H+ antiporter gene (TaNHX2) via Agrobacterium-mediated transformation. Cotyledonary explants were infected with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pBin438 that contains a wheat antiporter (TaNHX2) gene driven by the double CaMV 35S promoter and NPT II gene as a selectable marker. PCR and semiquantitative RT-PCR analysis confirmed that the TaNHX2 gene had been integrated and expressed in the T1 generation of transgenic pepper plants as compared to the non-transformed plants. Southern blot analysis further verified the integration and presence of TaNHX2 gene in the genome of chilli pepper plants. Biochemical assays of these transgenic plants revealed enhanced levels of proline, chlorophyll, superoxide dismutase, ascorbate peroxidase, relative water content, and reduced levels of hydrogen peroxide (H2O2), malondialdehyde compared to wild-type plants under salt stress conditions. The present investigation clearly showed that overexpression of the TaNHX2 gene enhanced salt stress tolerance in transgenic chilli pepper plants.  相似文献   

17.
The insecticidal cry genes of Bacillus thuringiensis (Bt) have been successfully used for development of insect resistant transgenic rice plants. In this study, a novel cry2AX1 gene consisting a sequence of cry2Aa and cry2Ac gene driven by rice rbcS promoter was introduced into a rice cultivar, ASD16. Among 27 putative rice transformants, 20 plants were found to be positive for cry2AX1 gene. The expression of Cry2AX1 protein in transgenic rice plants ranged from 5.95 to 122.40 ng/g of fresh leaf tissue. Stable integration of the transgene was confirmed in putative transformants of rice by Southern blot hybridization analysis. Insect bioassay on T0 transgenic rice plants against rice leaffolder (Cnaphalocrosis medinalis) recorded larval mortality up to 83.33 %. Stable inheritance and expression of cry2AX1 gene in T1 progenies was demonstrated using Southern and ELISA. The detached leaf bit bioassay with selected T1 plants showed 83.33–90.00 % mortality against C. medinalis. The whole plant bioassay for T1 plants with rice leaffolder showed significant level of resistance even at a lower level of Cry2AX1 expression varying from 131 to 158 ng/g fresh leaf tissue during tillering stage.  相似文献   

18.
Agroinfiltration was used to express transiently cre recombinase from bacteriophage P1 in planta. Activation of gfp expression after cre-mediated excision of a bar intervening sequence served as a marker to monitor site-specific recombination events in lox-target N. benthamiana plants. Gfp expressing regenerants from A. tumefaciens infiltrated leaves were obtained with an efficiency of about 34%. In 20% of the regenerants bar gene excision was due to the expression of stably integrated cre gene, whereas in 14% of plants site-specific recombination was a consequence of transient cre expression. Phenotypic and molecular data indicated that the recombined state has been transferred to the T1 generation. These results demonstrate the suitability of agroinfiltration for the expression of cre recombinase in vivo.  相似文献   

19.
Salinity and drought are main threat to agriculture productivity, to avoid further losses it is necessary to improve the genetic material of crops against these stresses In this present study, AtNHX1, a vacuolar type Na+/H+ antiporter gene driven by 35S promoter was introduced into groundnut using Agrobacterium tumefaciens transformation system. The stable integration of the AtNHX1 gene was confirmed by polymerase chain reaction (PCR) and southern blot analysis. It was found that transgenic plants having AtNHX1 gene are more resistant to high concentration of salt and water deprivation than the wild type plants. Salt and proline level in the leaves of the transgenic plants were also much higher than that of wild type plants. The results showed that overexpression of AtNHX1 gene not only improved salt tolerance but also drought tolerance in transgenic groundnut. Our results suggest that these plants could be cultivated in salt and drought-affected soils.  相似文献   

20.
Studies were carried out to determine if susceptibility of the cereal aphid Metopolophium dirhodum to the fungus Pandora neoaphidis was affected by wheat expressing snowdrop lectin (GNA). Aphid infection did not differ significantly between the transgenic GNA and non-transformed lines (91 and 82%, respectively). Fecundity also did not differ between aphids on the two lines, and was ca. 18 nymphs adult−1. Time to infection was ca. 5 days for M. dirhodum on both lines in two of three assays. Our results indicate that wheat expressing GNA would not compromise the efficacy of P. neoaphidis as a biocontrol agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号