首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H-2 heterozygous marrow stem cells, lymphoid progenitor cells, and leukemia/lymphoma cells do not express hemopoietic or hybrid histocompatibility (Hh) antigens, which are important transplantation antigens recognized during the rejection of normal or neoplastic hemopoietic cells. The Hh-1b determinant of the H-2b haplotype maps to the D region of H-2. We have tested the hypothesis that gene(s) at or near H-2D of the H-2d haplotype down-regulate the expression of Hh-1b in the trans configuration. We used Abelson leukemia virus-transformed pre-B lymphoma cells (ACCb) of BALB/c X BALB.B (H-2d X H-2b) origin, as well as variant lines of ACCb, which were selected for resistance to monoclonal anti-H-2 antibodies plus complement. B6D2F1 (H-2b X H-2d), C3B6F1 (H-2k X H-2b), or B6 (H-2b) mice were infused with inocula of 5 X 10(6) B6 bone marrow cells (BMC). Proliferation of donor-derived marrow cells was judged in terms of DNA synthesis by measuring the splenic incorporation of 5-iodo(125I)-2'-deoxyuridine (IUdR) 5 days after cell transfer. B6 BMC grew much better in B6 than in F1 hybrid host mice, an expression of "hybrid resistance". As observed previously, the injection of EL-4 (H-2b, Hh-1b) tumor cells prior to infusion of B6 (H-2b, Hh-1b) BMC enhanced the growth of B6 BMC in F1 hybrid mice. Therefore, this in vivo "cold target cell competition" type of assay can be used to detect the expression of Hh-1b antigens. Unlike EL-4 (H-2b) cells, hybrid resistance was not affected by prior infusion of (H-2b X H-2d) heterozygous ACCb cells. In contrast, three ACCb variant cell lines, H-2d-, Ld-Dd-, and Dd-, enhanced the growth of B6 BMC in F1 hosts. The ACCb H-2b- cell line did not affect hybrid resistance to B6 BMC. The loss of gene expression on the H-2d chromosome at or very near the H-2Dd locus is correlated with the appearance Hh-1b, as determined by the in vivo cold target competition assay. These results support the hypothesis that heterozygous cells possess trans-acting, dominant, down-regulatory genes mapping near H-2D that control the Hh-1 phenotype of lymphoid tumor cells.  相似文献   

2.
Hybrid resistance, which is observed in certain strain combinations when parent-strain bone marrow cells are grafted into lethally irradiated F1 hybrids, can be specifically overcome by the i.v. injection, 1 wk before the graft, of spleen cells syngeneic with the bone marrow graft. This phenomenon is due to a suppressor mechanism, induced in the spleen of the F1 hybrid by the injection of parent-strain spleen cells and mediated by a nylon-adherent Thy-1+Lyt-1+2- cell population of hybrid origin, because hybrid resistance can be inhibited by the transfer into a normal B6D2F1 of nylon-adherent Thy-1+Lyt-1+2- spleen cells from B6D2F1 mice pretreated with B6 spleen cells 1 wk earlier (B6-pretreated B6D2F1); spleen cells from B6-pretreated B6D2F1 mice not depleted of their nylon-adherent subpopulation cannot restore hybrid resistance when they are injected into a B6D2F1 rendered nonresistant by split-dose irradiation; and spleen cells from normal B6D2F1 mice cannot restore hybrid resistance when they are injected into B6-pretreated B6D2F1 hybrids. The suppressor cells specifically inhibit resistance against bone marrow cells syngeneic with the spleen cells used for pretreatment, because transfer of nylon-adherent B6-pretreated B6D2F1 spleen cells into a normal B6D2F1 does not enhance syngeneic B6D2F1 or parent-strain D2 bone marrow growth, and when injected into normal B6D2F1 hybrids, nylon-adherent spleen cells from B6D2F1 mice pretreated with D2 spleen cells 1 wk earlier (D2-pretreated B6D2F1) are not able to transfer the inhibition of hybrid resistance against B6 bone marrow cells. Moreover, the activity of the suppressor cells depends on the genetic environment of the hybrid host mice, because nylon-adherent B6-pretreated B6D2F1 spleen cells injected into normal B6C3F1 hybrids do not transfer an inhibition of hybrid resistance, and when injected into B6C3F1 hosts previously rendered nonresistant by split-dose irradiation, spleen cells from B6-pretreated B6D2F1 mice can, in contrast, transfer hybrid resistance.  相似文献   

3.
Studies were undertaken to assess the effect of murine cytomegalovirus (MCMV) in two different models involving injection of parental cells into F1 hosts. In both of these systems, MCMV-induced enhancement of hybrid resistance was found. In the first model, parent-into-F1 graft-vs-host reaction, MCMV infection of (C57BL/6 x C3H)F1 (B6C3F1) hosts was found to prevent the GVHR normally induced by injection of B6 parental splenocytes into the F1 hosts. The second model involved injection of parental bone marrow into lethally irradiated B6C3F1 and (C57BL/6 x DBA/2)F1 (B6D2F1) hosts. These irradiated hosts are known to exhibit resistance to engraftment by parental C57BL/6 (B6) bone marrow. This resistance was found to be markedly enhanced by injection of the hosts with MCMV 3 days before irradiation and bone marrow injection. In contrast, engraftment into B6C3F1 hosts of syngeneic marrow, or bone marrow from the C3H parent, was not affected by MCMV infection. Engraftment of DBA/2 marrow into B6D2F1 hosts was reduced at lower doses of injected marrow, suggesting enhanced resistance against the minor Hh Ag Hh-DBA. To test whether the MCMV-induced enhancement of resistance was mediated by NK cells, splenic NK activity (YAC-1 killing) and frequency (NK1.1 staining) were assessed. Both parameters were found to be elevated at 3 days after MCMV infection but to return to normal levels by 9 days. B6 bone marrow engraftment was in fact found to be normal when the marrow was administered to F1 mice 9 days after MCMV infection. Furthermore, anti-asialoGM1 administration prevented MCMV-induced enhancement of resistance to marrow engraftment. Thus, the NK enhancement resulting from MCMV infection appears to play a major role in the enhanced HR observed in the marrow engraftment model. This effect may be of importance in clinical bone marrow transplantation, a situation in which patients are susceptible to viral infection.  相似文献   

4.
This report presents the results of an investigation of changes in the number of erythroid and granulocyte-macrophage colony-forming cells (GM-CFC) that had occurred in tissues of normal B6D2F1 mice 20 h after administration of a radioprotective dose (150 ng) of human recombinant interleukin-1 (rIL-1). Neutrophilia in the peripheral blood and changes in the tissue distribution of GM-CFC demonstrated that cells were mobilized from the bone marrow in response to rIL-1 injection. For example, 20 h after rIL-1 injection marrow GM-CFC numbers were 80% of the numbers in bone marrow from saline-injected mice. Associated with this decrease there was a twofold increase in the number of peripheral blood and splenic GM-CFC. Also, as determined by hydroxyurea injection, there was an increase in the number of GM-CFC in S phase of the cell cycle in the spleen, but not in the bone marrow. Data in this report suggest that when compared to the spleen, stimulation of granulopoiesis after rIL-1 injection is delayed in the bone marrow. Also, the earlier recovery of GM-CFC in the bone marrow of irradiated mice is not dependent upon an increase in the number of GM-CFC at the time of irradiation.  相似文献   

5.
Lethally irradiated F1 mice, heterozygous at the hematopoietic histocompatibility locus Hh-1, which is linked with H-2Db, reject bone marrow grafts from H-2b parents. This hybrid resistance (HR) is reduced by prior injection of H-2b parental spleen cells. Because injection of parental spleen cells produces a profound suppression of F1 immune functions, we investigated whether parental-induced abrogation of HR was due to graft-vs-host-induced immune deficiency (GVHID). HR was assessed by quantifying engraftment of H-2b bone marrow in F1 mice with the use of splenic [125I]IUdR uptake; GVHID, by the ability of F1 spleen cells to generate cytotoxic T lymphocytes (CTL) in vitro. We observed a correlation in the time course and spleen cell dose dependence between loss of HR and GVHID. Both GVHID and loss of HR were dependent on injection of parental T cells; nude or T-depleted spleen cells were ineffective. The injection of B10 recombinant congenic spleens into (B10 X B10.A)F1 mice, before grafting with B10 marrow, demonstrated that only those disparities in major histocompatibility antigens that generated GVH would result in loss of HR. Thus, spleens from (B10 X B10.A(2R]F1 mice (Class I disparity only) did not induce GVHID or affect HR, whereas (B10 X B10.A(5R))F1 spleens (Class I and II disparity) abrogated CTL generation and HR completely. GVHID produced by a class II only disparity, as in (B10 X B10.A(5R))F1 spleens injected into (B6bm12 X B10.A(5R))F1 mice, was also sufficient to markedly reduce HR to B10 bone marrow. This evidence that GVHID can modulate hematopoietic graft rejection may be relevant to the mechanisms of natural resistance to marrow grafts in man.  相似文献   

6.
Treatment of murine lymphocytes with L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) selectively removes natural killer cells, cytotoxic T lymphocyte precursors, and the capacity to cause lethal graft-vs-host disease, whereas bone marrow stem cell function and alloantigen-induced L3T4+ T helper function remains intact. The present studies assess the immunocompetence of allogeneic bone marrow chimeras established by reconstituting irradiated (C57BL/6 X DBA/2)F1 (B6D2F1) mice with Leu-Leu-OMe-treated C57BL/6 (B6) bone marrow and spleen cells. Spleen cells from such chimeras were found to have normal B and T cell mitogenic responses. Furthermore, levels of natural-killer cell function were comparable to those observed in B6----B6 syngeneic radiation chimeras established without Leu-Leu-OMe treatment of donor cells. Spleen cells from B6----B6D2F1 mice were identical with B6----B6 or B6 mice in allostimulatory capacity and thus contained no discernible cells of non-H-2b phenotype. Whereas B6----B6D2F1 spleen cells demonstrated alloproliferative and allocytotoxic responses toward H-2k bearing spleen cells, no H-2d specific proliferative or cytotoxic responses could be elicited. B6----B6D2F1 spleen cells did not suppress the generation of anti-H-2d or anti-H-2k proliferative or cytotoxic responses from control B6 spleen cells. Furthermore, addition of rat concanavalin A supernatants did not reconstitute anti-H-2d responses of B6----B6D2F1 chimeric spleen cells. Thus, Leu-Leu-OMe treatment of B6 donor cells not only prevents lethal graft-vs-host disease, but also permits establishment of long-lived parent----F1 chimeras that are selectively tolerant of host H-2 disparate alloantigens, but fully immunocompetent with respect to natural killer cell function, B and T cell mitogenesis, and anti-third party alloresponsiveness.  相似文献   

7.
Lethally irradiated mice were infused with syngeneic, H-2 allogeneic, parental strain, or H-2 heterozygous bone marrow cells. They were injected daily with rabbit anti-mouse interferons (IFN)-alpha/beta or gamma or with IFN-alpha/beta. The growth of donor-derived cells was judged 5 days later by measuring splenic incorporation of 5-iodo-2'-deoxyuridine-125I into DNA. Antibodies to IFN-alpha/beta, but not to IFN-gamma, weakened genetic (both hybrid and allogeneic) resistance to marrow cell grafts. IFN-alpha/beta stimulated hybrid and allogeneic resistance, the latter even in genetically "poor responder" mice. Mice pretreated with silica, which weakens genetic resistance, were stimulated by IFN-alpha/beta to resist incompatible marrow cell grafts; however, IFN-alpha/beta failed to reverse the effects of antiasialo GM1 serum on marrow graft rejection. IFN-alpha/beta did not inhibit the growth of syngeneic marrow cells and did not stimulate resistance to H-2 heterozygous bone marrow cells. We propose that genetic resistance occurs in two discrete steps. In the first step, hemopoietic histocompatibility (Hh) antigens are recognized by one host cell type, and this recognition leads to IFN-alpha/beta secretion by a silica-sensitive cell. In the second step, asialo GM1-positive natural killer cells stimulated by IFN-alpha/beta recognize Hh antigens on marrow stem cells and cause rejection. The defects in resistance observed in genetically poor responder mice and in mice treated with silica appear to involve the first step in recognition. The lack of rejection of H-2 heterozygous (Hh-) marrow cells by parental strain mice injected with IFN-alpha/beta indicated that specific Hh recognition is critical in the second step of genetic resistance.  相似文献   

8.
When bone marrow cells of (WB X C57BL/6)F1-+/+ (WBB6F1-+/+) and WB-+/+ (WB) mice were directly injected into the skin of genetically mast cell-deficient WBB6F1-W/Wv mice, mast cell clusters appeared at the injection sites. However, the number of WB bone marrow cells necessary for appearance of mast cell clusters was significantly larger than when bone marrow cells of WBB6F1-+/+ mice were used. When WB bone marrow cells were mixed either with WB thymus cells or with silica particles, the proportion of injection sites at which mast cell clusters appeared increased to the level that was observed after the injection of the same number of WBB6F1-+/+ bone marrow cells. When suckling WBB6F1-W/Wv mice of less than or equal to 18 days of age were used as recipients, bone marrow cells of WBB6F1-+/+ and WB mice produced mast cell clusters with a comparable efficiency. Both syngeneic thymus cells and silica particles are known to abrogate the hybrid resistance that is observed in the spleen against parental hematopoietic stem cells. The hybrid resistance in the spleen is not detectable in suckling mice, either. Thus, the poor growth of mast cell precursors in the skin and the poor growth of hematopoietic stem cells in the spleen seem to be regulated by the same mechanism.  相似文献   

9.
The Ly49 family of genes encode NK cell receptors that bind class I MHC Ags and transmit negative signals if the cytoplasmic domains have immunoregulatory tyrosine-based inhibitory motifs (ITIMs). 5E6 mAbs recognize Ly49C and Ly49I receptors and depletion of 5E6+ NK cells prevents rejection of allogeneic or parental-strain H2d bone marrow cell (BMC) grafts. To determine the function of the Ly49I gene in the rejection of BMC grafts, we transfected fertilized eggs of FVB mice with a vector containing DNA for B6 strain Ly49I (Ly49IB6). Ly49IB6 is ITIM+ and is recognized by 5E6 as well as Ly49I-specific 8H7 mAbs. Normal FVB H2q mice reject H2b but not H2d BMC allografts, and the rejection of H2b BMC was inhibited partially by anti-NK1.1 and completely by anti-asialo GM1, but not by anti-CD8, Abs. In FVB mice, NK1.1 is expressed on only 60% NK cells. FVB. Ly49IB6 hosts failed to reject H2d or H2b BMC, but did reject class I-deficient TAP-1-/- BMC, indicating that NK cells were functional. Nondepleting doses of anti-Ly49I Abs reversed the acceptance of H2b BMC by FVB.Ly49IB6 mice. FVB.Ly49IB6+/- mice were crossed and back-crossed with 129 mice-H2b, 5E6-, poor responders to H2d BMC grafts. While transgene-negative H2b/q F1 or first-generation back-crossed mice rejected H2b marrow grafts (hybrid resistance), transgene-positive mice did not. Thus B6 strain Ly49I receptors transmit inhibitory signals from H2b MHC class I molecules. Moreover, Ly49IB6 has no positive influence on the rejection of H2d allografts.  相似文献   

10.
We previously demonstrated that treatment of (C57BL/6 X A)F1 (F1) recipient mice with polyinosinic:polycytidylic acid (pI:C) before injection with 30 X 10(6) C57BL/6 (B6) lymphocytes prevents both the immunosuppression and pathologic lesions typical of graft-vs-host (GVH) reactions. We now report the further characterization of this phenomenon. Donor spleen and lymph node cells were labeled with fluorescein in vitro and injected into pI:C-treated or untreated mice. Two days later, recipient splenocytes were analyzed for the presence of fluorescein-labeled donor cells by flow microfluorometry. Treatment of F1 mice with pI:C resulted in a sharp reduction in the recovery of labeled B6 but not A strain parental cells. Treatment with pI:C had no effect when syngeneic recipients were used, or when F1 cells were injected into A, B6, or F1 recipients. These results suggest that pI:C treatment induces rejection of B6 but not A or F1 lymphocytes by F1 hybrid mice at least as early as 2 days after donor cell transfer. As F1 cells are not rejected by either parent, rejection does not seem to be directed against classical alloantigens. These observations are compatible with the previously described model of hybrid resistance (HR) against bone marrow grafts. The rapidity of rejection strongly suggested that natural cytotoxic mechanisms were involved, thus, natural killer (NK) cell and macrophage (M phi) cytotoxic activities were tested throughout the time when the parental cell graft was being rejected. Over this period, pI:C treatment increased cytotoxic activity against the NK-sensitive target cell line YAC-1 but had no effect on spontaneous M phi tumoricidal activity against the L5178Y and MDAY-D2 cell lines. The results suggest that NK cells, but not M phi, may be involved in the elimination of B6 parental cells by the pI:C-treated F1 mice. NK cells have been demonstrated to be radioresistant; thus, as a test of our hypothesis, we examined the effects of irradiation on the capacity of pI:C treated F1 mice to reject B6 lymphocytes. The results show that this capacity was not blocked by 750 cGy, a dose of radiation that abrogates most T and B cell functions. Furthermore, rejection of parental cells could be prevented by treatment of recipient F1 mice with antibodies to asialo GM1, a treatment that suppresses NK activity. These data demonstrate that pI:C-mediated protection from GVH-induced changes is due to increased rejection of grafted B6 parental cells by F1 NK cells, a phenomenon very similar, if not identical, to HR to bone marrow grafts.  相似文献   

11.
Tolerance and alloreactivity of the Ly49D subset of murine NK cells.   总被引:7,自引:0,他引:7  
Class I-specific stimulatory and inhibitory receptors expressed by NK cell subsets contribute to the alloreactive potential of the self-tolerant murine NK cell repertoire. In this report, we have studied potential mechanisms of tolerance to the function of the positive signaling Ly49D receptor in mice that express one of its ligands, H2-Dd. Our results demonstrate that H2-Dd-expressing mice possess a large Ly49D+ subset of NK cells that is functionally capable of rejecting bone marrow cell (BMC) allografts in vivo and lysing allogeneic Con A lymphoblasts in vitro. Also, we show that the Ly49D receptor is responsible for the ability of H2b/d F1 hybrid mice to reject H2d/d parental BMC (hybrid resistance). Thus, deletion or anergy of Ly49D+ cells in H2-Dd+ hosts cannot explain self tolerance. Our functional studies revealed that coexpression of the Dd-specific Ly49A or Ly49G2 inhibitory receptors by Ly49D+ cells resulted in tolerance to Dd+ targets, while coexpression of Kb-specific inhibitory receptors Ly49C/I resulted in tolerance to Kb+ targets. Only in H2d/d cells did Ly49C/I dominantly inhibit Ly49D-Dd stimulation. This correlated with an increased mean fluorescence intensity of Ly49C expression, as well as an increased percentage of Ly49C+ cells in the Ly49D+A/G2- compartment. Therefore, we conclude that self tolerance of the Ly49D subset can be achieved through coexpression of a sufficient level of self-specific inhibitory receptors.  相似文献   

12.
Host NK cells can reject MHC-incompatible (allogeneic) bone marrow cells (BMCs), suggesting their effective role for graft-vs leukemia effects in the clinical setting of bone marrow transplantation. NK cell-mediated rejection of allogeneic BMCs is dependent on donor and recipient MHC alleles and other factors that are not yet fully characterized. Whereas the molecular mechanisms of allogeneic MHC recognition by NK receptors have been well studied in vitro, guidelines to understand NK cell allogeneic reactivity under the control of multiple genetic components in vivo remain less well understood. In this study, we use congenic mice to show that BMC rejection is regulated by haplotypes of the NK gene complex (NKC) that encodes multiple NK cell receptors. Most importantly, host MHC differences modulated the NKC effect. Moreover, the NKC allelic differences also affected the outcome of hybrid resistance whereby F1 hybrid mice reject parental BMCs. Therefore, these data indicate that NK cell alloreactivity in vivo is dependent on the combination of the host NKC and MHC haplotypes. These data suggest that the NK cell self-tolerance process dynamically modulates the NK cell alloreactivity in vivo.  相似文献   

13.
Bone marrow cells (0,5-10(6)) of female mice of CBA or C57BL strains were injected intravenously to lethally irradiated CBA, C57BL/6, (femaleCBA X maleC57BL/6)F1 and (femaleC57BL/6 X maleCBA)F1 mice. Spleen of recipients as assayed for colony count on the 9th day after bone marrow transplantation by the method of Till and McCullouch. Stem cells of CBA mice demonstrated failure of allogenic inhibition in (CBA X C57BL/6)F1 hybrid mice and formed the same number of colonies as in the spleen of syngenic recipients. The level of allogenic inhibition of CBA stem cells transplanted to (C57BL/6 X X CBA)F1 hybrid mice was 50%. Bone marrow cells of C57BL/6 mice formed colonies in spleen of (CBA X C57BL/6)F1 mice at least in 20 times less than in syngenic combination. In the transplantation of bone marrow from C57BL/6 mice to (C57BL/6 X CBA)F1 hybrid mice the allogenic inhibition was less pronounced (77-85%) as compared with the transfer of cells to (CBA X C57BL/6)F1 hybrid mice (95%). The sex of a recipient did not influence the number of formed colonies. The different level of allogenic inhibition of parental stem cells can not be explained by the effect of linkage with sex as the female of reciprocal hybrid mice have identical structure of sex chromosomes (X(CBA)XC57BL/6). The data obtained indicate that the maternal effect affects allogenic inhibition of stem cells in parent--F1 system. It is possible that the maternal influence may be determined by cytoplasmic factors of inheritance which affect the expressivity of recessive genes Hh, controlling the inheritance of specific haematopoietic cell antigens.  相似文献   

14.
Hybrid cell lines were established from fusions between lipopolysaccharide- (LPS) stimulated C57BL/6J spleen cells and MPC-11 tumor cells (45.6TG1.7, abbreviated M45), and were tested for their ability to immunize semiallogeneic mice against a parental tumor challenge. These hybrids were tumorigenic in syngeneic (BALB/c X C57BL/6J) F1 (CB6F1) mice but did not grow in semiallogeneic (BALB/c X A/J) F1 (CAF1) mice. All hybrids express both parental major histocompatibility antigens (H-2b and H-2d) as detected by indirect immunofluorescence and by their ability to function as either stimulators or targets for allogeneic cytotoxic lymphocytes (CTL). M45 tumor-associated antigens (TAA) were expressed on the hybrid surface as shown by their ability to act as either stimulators or targets for syngeneic CTL specific for M45 TAA. Immunization of semiallogeneic CAF1 mice with the hybrids i.p. followed by a challenge with M45 tumor cells resulted in extended survival when compared to untreated mice or animals immunized i.p. with M45 tumor cells. This immunity was specific and was not due to an allogeneic effect; immunization with an unrelated H-2bd tumor, 70Z/3, or H-2bd B6D2F1 spleen cells or with semiallogeneic spleen cells plus M45 did not protect mice from M45 challenge. Interestingly, prophylactic priming with semiallogeneic hybrid tumor cells or parental myeloma cells led to M45-specific CTL and "help" for an in vitro CTL response; however, the degree of CTL priming by hybrid tumors was not augmented when compared to the level of CTL achieved with parental tumor alone. Hence, stimulation of CTL activity per se by hybrid tumor cells cannot explain the protective effect of hybrid tumor immunization. These studies nevertheless confirm that semiallogeneic hybrids, which we show express TAA and alloantigens, can be used to immunize mice against a lethal syngeneic myeloma tumor challenge.  相似文献   

15.
The roles of helper and suppressor T cells in the development and expression of antibody responses to GAT were studied in (responder X responder)F1 mice immunized with parental GAT-M phi. Spleen cells from (B10 X B10.D2)F1 mice primed in vivo with B10 or B10.D2 GAT-M phi developed secondary in vitro plaque-forming cell (PFC) responses only when stimulated by GAT-M phi syngeneic with the GAT-M phi used for in vivo priming. By contrast, virgin F1 spleen cells developed comparable primary PFC responses to both parental GAT-M phi Co-culture of T cells from (B10 X B10.D2)F1 mice primed in vivo by B10 GAT-M phi with virgin (B10 X B10.D2)F1 spleen cells demonstrated the presence of suppressor cells that inhibited the primary response of virgin spleen cells stimulated by B10.D2 GAT-M phi. Spleen cells from (B10 X B10.D2)F1 mice primed in vivo with B10.D2 GAT-M phi had suppressor T cells that suppressed primary responses stimulated by B10 GAT-M phi. The suppressor T cell mechanism was composed of at least two regulatory T cell subsets. Suppressor-inducer T cells were Lyt-2-, I-J+ and must be derived from immune spleen cells. Suppressor-effector T cells can be derived from virgin or immune spleens and were Lyt-2+ cells. When the suppressor mechanism was disabled by treatment with 1000 rad gamma irradiation or removal of Lyt-2+ cells, Lyt-2-helper T cells from (B10 X B10.D2)F1 mice primed with B10 GAT-M phi provided radioresistant help to virgin F1 B cells stimulated by B10 but not B10.D2 GAT-M phi. Suppressor inducer Lyt-2-,I-J+ cells from B10 GAT-M phi-primed (B10 X B10.D2)F1 mice were separated from the primed Lyt-2-,I-J-helper T cells. In the presence of Lyt-2+ suppressor effector cells, the Lyt-2-,I-J+ suppressor-inducer suppressed the primary response of virgin spleen or virgin T plus B cells stimulated by both B10 and B10.D2 GAT-M phi. Therefore, suppressor T cells were able to suppress primary but not secondary GAT-specific PFC responses stimulated by either parental GAT-M phi. These results showed that immunization of (responder X responder)F1 mice with parental GAT-M phi results in the development of antigen-specific helper and suppressor T cells. The primed helper T cells were radioresistant and were genetically restricted to interact with GAT in association with the major histocompatibility complex antigens of the M phi used for in vivo priming.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The autoimmune hemolytic anemia of NZB mice is pathogenetically mediated by a genetically prescribed anti-erythrocyte autoantibody response directed to the X erythrocyte autoantigen. The cellular locus of the immunoregulatory defect underlying the anti-X response was explored by adoptively transferring bone marrow cells (BMC) from NZB mice to lethally irradiated histocompatible recipients. Before adoptive transfer, BMC from donor mice were assayed for antigen-binding lymphocytes with receptors for the X autoantigen (X-ABL) by immunocytoadherence assays and for anti-X autoantibody-secreting cells (X-PFC) by plaque-forming cell assays. Twelve weeks after adoptive transfer, splenic lymphocytes from recipient mice were assayed for X-PFC and humoral anti-X autoantibody by Coombs' tests. Transfer of 15 to 30 x 10(6) BMC containing 6 to 12 x 10(3) X-ABL but no X-PFC from 6- to 8-week-old NZB mice to lethally irradiated BALB/c, B10.D2, C57BL/Ks, and DBA/2 mice produced X-PFC in 70% of the recipients. Development of X-PFC was not simply dependent upon available X-ABL since transfer of 15-30 x 10(6) BMC, containing comparable numbers of X-ABL, from BALB/c, B10.D2, C57BL/Ks, or DBA/2 mice to NZB or syngeneic recipients did not produce X-PFC. Transfer of BMC from NZB mice to BALB/c, B10.D2, and DBA/2 mice with weekly administrations of AKR anti-theta antiserum had no effect on the development of X-PFC; Tlymphocyte ablation was evidenced by the absence of theta+ spleen cells. These results suggest that the pathogenetic anti-X response is not genetically prescribed at the level of macrophages, humoral factors, or T cells, but rather appears to be a phenotypic expression of a primary B lymphocyte defect permitting or promoting differentiation of NZB X-ABL.  相似文献   

17.
A striking difference in radiosensitivity was noted between C3H/He (H-2k) and C57BL/6J (H-2b) strain mice when assessed by primary anti-SRBC PFC response of intact animals and primary cell-mediated lympholysis (CML) response of spleen cells to allogeneic cells in vitro, the C3H strain being more radioresistant. On the other hand, when C3H and B6 mice were exposed to 6.62 to 10.40 grays (Gy) of x-rays and then were transplanted with 2 X 10(6) bone marrow cells from B6C3F1 (H-2b/k) donor mice within 3 hr or at 24 hr after radiation exposure, the early mortality caused by residual host-vs-graft (HVG) reaction was much higher when C3H mice were used as recipients. Furthermore, the proportion of surviving animals manifesting host-type lymphohemopoiesis, i.e., host-type revertants, was much higher in B6C3F1 to C3H than in B6C3F1 to B6 combination. Spleen cells from such host-type revertants manifested strong anti-donor reactivity when assessed by mixed lymphocyte reaction (MLR) and/or CML in vitro. Increase of radiation doses to the recipients to 10.40 Gy resulted in 100% survival and 100% donor-type lymphohemopoiesis in both groups of chimeras. These results indicate strongly that a genetic difference in radiosensitivity of immune system of the recipients can greatly influence the magnitude of residual HVG reactions observed in hybrid to parental strain bone marrow transplantation in mice.  相似文献   

18.
Abstract. In a micro long-term bone marrow culture (LTBMC) system the effects of irradiation on confluent stromal cell layers were studied. In order to individually analyse the number of granulocyte-macrophage colony-forming cells (GM-CFC) per LTBMC a miniaturized human GM-CFC assay was established. the normalized GM-CFC numbers in the micro-assay compared well with data by the conventional GM-CFC assay. Pre-formed stromal cell layers were irradiated with doses up to 20 Gy and subsequently recharged with allogeneic bone marrow cells (BMC). Immediately before recharge the BMC were stromal cell-depleted by nylon wool filtration. When stromal cell-depleted BMC were inoculated on empty culture dishes, in vitro haemopoiesis rapidly declined. Sustained GM-CFC production, however, was seen when these cells were used as a second inoculum. It is concluded that irradiation doses of up to 20 Gy do not cause alteration of the haemopoietic inductive capacity of confluent stromal cell layers.  相似文献   

19.
The rejection of H-2b parental bone marrow graft by lethally irradiated F1 recipients, that is known as hybrid resistance (HR), is a multistep process. In a first step a 5-fluorouracil (5-FU)-sensitive T cell recognizes the parental bone marrow cells and stimulates a macrophage-like cell to secrete IFN-alpha/beta (recognition phase). IFN-alpha/beta in turn activates a cyclophosphamide-sensitive NK-like cell that is the effector cell for HR (effector phase). In a previous paper we described that HR is specifically abrogated by the pretreatment of the F1 recipient with H-2b parental spleen cells. This abrogation is due to a Thy-1+CD5+CD4+CD8- nylon adherent suppressor cell of F1 origin. The aim of the present work was to study during which of the different phases of HR the activity of the suppressor cell is exerted. Our results showed that abrogation of HR in (C57BL/6 x C3H)F1 (B6C3F1) hybrids pretreated with B6 spleen cells results from: 1) the suppression of the 5-FU-sensitive T cell; 2) the suppression of the cyclophosphamide-sensitive NK-like cell; and 3) the disappearance of a humoral factor that is present in the serum of normal B6C3F1 hybrids and which seems to be involved in the effector phase of HR. The 5-FU-sensitive T cell is the only target of Thy-1+CD5+CD4+CD8- suppressor cell. The mechanisms responsible for the suppression of the NK-like effector cell and the disappearance of the humoral factor are discussed.  相似文献   

20.
Lethally irradiated F1 mice reject bone marrow graft from H-2b parents. In a previous paper we showed that pretreatment of F1 hybrid with H-2b parental spleen cells abrogates this hybrid resistance (HR) to parental bone marrow growth by inducing a Thy-1+Lyt-1+2- nylon-adherent suppressor cell. We studied the mechanism of induction of this suppressor cell. Two hypotheses were tested; both were based on the observation that parental spleen cells when injected into a F1 hybrid, recognize the alloantigens of the opposite parent and proliferate; the proliferation of these Hh-1+ cells may result in an overload of the pretreated F1 hybrids with Hh-1 Ag, and in the development of a graft-vs-host reaction that is followed by a non-specific immunodeficiency (GVHID). Thus abrogation of HR could be due to either a tolerization with high doses of Hh-1 Ag or the GVHID. Our results show that abrogation of HR does not correlate with the GVHID because 1) it is induced after pre-treatment with H-2b parental cells only, whereas GVHID is observed after injection with cells from either of the two parents; and 2) it is induced in several conditions where GVHID does not occur; after pre-treatment with 1000-rad-irradiated or T-cell depleted or only class I incompatible spleen cells or with spleen cells from nude parents as well as after pre-treatment with H-2b bone marrow cells. HR is overcome by the injection of H-2Db homozygous or of cross-reactive H-2Ds homozygous cells only. However, although pretreatment with H-2Db homozygous spleen cells is necessary, it is not sufficient for an efficient overcoming of HR. Indeed enhancement of H-2b bone marrow growth after pre-treatment with 1000-rad-irradiated, T-cell depleted or nude parent spleen cells is very short-lasting and never reaches the level observed after pre-treatment with normal spleen cells. We conclude that inhibition of HR in F1 hybrids pretreated with parental spleen cells is not a consequence of a GVHID but of a specific tolerization with Hh-1 Ag; however, the HR is inhibited more consistently when inoculum used for the pretreatment contains fully immunocompetent T cells. The role of the immunocompetent parental T cells in abrogation of HR is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号