首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Niisato N  Nishio K  Marunaka Y 《Life sciences》2002,71(10):1199-1207
We studied effects of tyrphostin A23 (an inhibitor of protein tyrosine kinase; PTK) and tyrphostin A63 (an inactive analog of tyrphostin A23) on forskolin-activated cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and Cl(-) secretion in renal epithelial A6 cells. Tyrphostin A23 and A63 had no effects on the basal CFTR Cl(-) channel and Cl(-) secretion. However, under the forskolin-stimulated condition, tyrphostin A23 and A63 stimulated Cl(-) secretion by activating CFTR Cl(-) channels. These observations suggest that: 1) tyrphostin A23 and A63 stimulate the cAMP-activated CFTR Cl(-) channel via a PTK-independent, structure-dependent mechanism, and 2) tyrphostin A23 and A63 do not stimulate the basal CFTR Cl(-) channel. These lead us to an idea that: 1) cAMP might cause a conformational change of CFTR Cl(-) channel which is accessible by tyrphostins, and 2) tyrphostins would stimulate translocation of the cAMP-modified channel to the apical membrane by binding to the channel.  相似文献   

2.
PKA holoenzyme is functionally coupled to CFTR by AKAPs   总被引:4,自引:0,他引:4  
Cystic fibrosis transmembrane regulator (CFTR) isreported to be preferentially regulated by membrane-bound proteinkinase A (PKAII). We tested for close physical and functionalassociation of PKA with CFTR in inside-out membrane patches excisedfrom Calu-3 cells. In the presence of MgATP,8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate(CPT-cAMP) increased the product of CFTR channel number and openprobability (from 0.36 ± 0.12 to 1.23 ± 0.57, n = 20, P < 0.0025), and this stimulation was abolished by PKI. ThusCalu-3 membrane isolated from cells retains PKA holoenzyme that isfunctionally coupled to CFTR. PKAII is anchored at specific subcellularsites by A kinase anchoring proteins (AKAPs). Exposure of excisedpatches to HT-31, a peptide that disrupts the association of PKAII andAKAPs, prevented CPT-cAMP stimulation of CFTR. Therefore, PKAholoenzyme in isolated membrane patches is bound to AKAPs. In wholecell voltage-clamp studies, intracellular dialysis of Calu-3 cells withHT-31 blocked the activation of CFTR by extracellular adenosine. Theseresults suggest that AKAPs mediate PKA compartmentalization with CFTRand are required for activation of CFTR by physiological regulators.

  相似文献   

3.
4.
Although theskeletal muscle sodium channel is a good substrate for cAMP-dependentprotein kinase (PKA), no functional consequence was observed for thischannel expressed in heterologous systems. Therefore, we investigatedthe effect of 8-(4-chlorophenylthio)adenosine 3',5'-cyclicmonophosphate (CPT-cAMP), a membrane-permeable cAMP analog, on thenative sodium channels of freshly dissociated rat skeletal musclefibers by means of the cell-attached patch-clamp technique. Externallyapplied CPT-cAMP (0.5 mM) reduced peak ensemble average currents by~75% with no change in kinetics. Single-channel conductance andnormalized activation curves were unchanged by CPT-cAMP. In contrast,steady-state inactivation curves showed a reduction of the maximalavailable current and a negative shift of the half-inactivationpotential. Similar effects were observed with dibutyryl adenosine3',5'-cyclic monophosphate but not with cAMP, which doesnot easily permeate the cell membrane. Incubation of fibers for 1 hwith 10 µM H-89, a PKA inhibitor, did not prevent the effect ofCPT-cAMP. Finally, the -adrenoreceptor agonist isoproterenolmimicked CPT-cAMP when applied at 0.5 mM but had no effect at 0.1 mM.These results indicate that cAMP inhibits native skeletal muscle sodiumchannels by acting within the fiber, independently of PKA activation.

  相似文献   

5.
We have shown that cystic fibrosis transmembrane conductance regulator (CFTR) is involved in ATP release from skeletal muscle at low pH. These experiments investigate the signal transduction mechanism linking pH depression to CFTR activation and ATP release, and evaluate whether CFTR is involved in ATP release from contracting muscle. Lactic acid treatment elevated interstitial ATP of buffer-perfused muscle and extracellular ATP of L6 myocytes: this ATP release was abolished by the non-specific CFTR inhibitor, glibenclamide, or the specific CFTR inhibitor, CFTRinh-172, suggesting that CFTR was involved, and by inhibition of lactic acid entry to cells, indicating that intracellular pH depression was required. Muscle contractions significantly elevated interstitial ATP, but CFTRinh-172 abolished the increase. The cAMP/PKA pathway was involved in the signal transduction pathway for CFTR-regulated ATP release from muscle: forskolin increased CFTR phosphorylation and stimulated ATP release from muscle or myocytes; lactic acid increased intracellular cAMP, pCREB and PKA activity, whereas IBMX enhanced ATP release from myocytes. Inhibition of PKA with KT5720 abolished lactic-acid- or contraction-induced ATP release from muscle. Inhibition of either the Na+/H+-exchanger (NHE) with amiloride or the Na+/Ca2+-exchanger (NCX) with SN6 or KB-R7943 abolished lactic-acid- or contraction-induced release of ATP from muscle, suggesting that these exchange proteins may be involved in the activation of CFTR. Our data suggest that CFTR-regulated release contributes to ATP release from contracting muscle in vivo, and that cAMP and PKA are involved in the activation of CFTR during muscle contractions or acidosis; NHE and NCX may be involved in the signal transduction pathway.  相似文献   

6.
The chemical solvent tetrahydrofuran (THF) increases short-circuit current (I(sc)) in renal epithelia endogenously expressing the cystic fibrosis transmembrane conductance regulator (CFTR). To understand how THF increases I(sc), we employed the Ussing chamber and patch-clamp techniques to study cells expressing recombinant human CFTR. THF increased I(sc) in Fischer rat thyroid (FRT) epithelia expressing wild-type CFTR with half-maximal effective concentration (K(D)) of 134 mM. This THF-induced increase in I(sc) was enhanced by forskolin (10 microM), inhibited by the PKA inhibitor H-89 (10 microM) and the thiazolidinone CFTR(inh)-172 (10 microM) and attenuated greatly in FRT epithelia expressing the cystic fibrosis mutants F508del- and G551D-CFTR. By contrast, THF (100 mM) was without effect on untransfected FRT epithelia, while other solvents failed to increase I(sc) in FRT epithelia expressing wild-type CFTR. In excised inside-out membrane patches, THF (100 mM) potentiated CFTR Cl(-) channels open in the presence of ATP (1 mM) alone by increasing the frequency of channel openings without altering their duration. However, following the phosphorylation of CFTR by PKA (75 nM), THF (100 mM) did not potentiate channel activity. Similar results were obtained with the triangle upR-S660A-CFTR Cl(-) channel that is not regulated by PKA-dependent phosphorylation and using 2'deoxy-ATP, which gates wild-type CFTR more effectively than ATP. Our data suggest that THF acts directly on CFTR to potentiate channel gating, but that its efficacy is weak and dependent on the phosphorylation status of CFTR.  相似文献   

7.
Cystic fibrosis (CF) is characterised by impaired epithelial ion transport and is caused by mutations in the cystic fibrosis conductance regulator protein (CFTR), a cAMP/PKA and ATP-regulated chloride channel. We recently demonstrated a cAMP/PKA/calcineurin (CnA)-driven association between annexin 2 (anx 2), its cognate partner –S100A10 and cell surface CFTR. The complex is required for CFTR and outwardly rectifying chloride channel function in epithelia. Since the cAMP/PKA-induced Cl current is absent in CF epithelia, we hypothesized that the anx 2–S100A10/CFTR complex may be defective in CFBE41o cells expressing the commonest F508del-CFTR (ΔF-CFTR) mutation. Here, we demonstrate that, despite the presence of cell surface ΔF-CFTR, cAMP/PKA fails to induce anx 2–S100A10/CFTR complex formation in CFBE41o− cells homozygous for F508del-CFTR. Mechanistically, PKA-dependent serine phosphorylation of CnA, CnA–anx 2 complex formation and CnA-dependent dephosphorylation of anx 2 are all defective in CFBE41o− cells. Immunohistochemical analysis confirms an abnormal cellular distribution of anx 2 in human and CF mouse epithelia.

Thus, we demonstrate that cAMP/PKA/CnA signaling pathway is defective in CF cells and suggest that loss of anx 2–S100A10/CFTR complex formation may contribute to defective cAMP/PKA-dependent CFTR channel function.  相似文献   


8.
We previously showed that activation of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl conductance (gCFTR) supports parallel activation of amiloride-sensitive epithelial Na+ channel (ENaC) in the native human sweat duct. However, it is not clear whether phosphorylated CFTR, phosphorylated ENaC, or only Cl -channel function is required for activation. We used basilaterally α-toxin-permeabilized human sweat ducts to test the hypothesis that ENaC activation depends only on Cl -channel function and not on phosphorylation of either CFTR or ENaC. CFTR is classically activated by PKA plus millimolar ATP, but cytosolic glutamate activation of gCFTR is independent of ATP and phosphorylation. We show here that both phosphorylation-dependent (PKA) and phosphorylation-independent (glutamate) activation of CFTR Cl channel function support gENaC activation. We tested whether cytosolic application of 5 mM ATP alone, phosphorylation by cAMP, cGMP, G-protein dependent kinases (all in the presence of 100 μM ATP), or glutamate could support ENaC activation in the absence of gCFTR. We found that none of these agonists activated gENaC by themselves when Cl current ( ) through CFTR was blocked by: 1) Cl removal, 2) DIDS inhibition, 3) lowering the ATP concentration to 100 μM (instead of 5 mM required to support CFTR channel function), or 4) mutant CFTR (homozygous ΔF508 CF ducts). However, Cl gradients in the direction of absorption supported, while Cl gradients in the direction of secretion prevented ENaC activation. We conclude that the interaction between CFTR and ENaC is dependent on activated through CFTR in the direction of absorption (Cl gradient from lumen to cell). But such activation of ENaC is independent of phosphorylation and ATP. However, reversing through CFTR in the direction of secretion (Cl gradient from cell to lumen) prevents ENaC activation even in the presence of through CFTR. An erratum to this article is available at .  相似文献   

9.
10.
We investigated the regulation of cardiac cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels by protein kinase C (PKC) in Xenopus oocytes injected with cRNA encoding the cardiac (exon 5-) CFTR Cl- channel isoform. Membrane currents were recorded using a two-electrode voltage clamp technique. Activators of PKC or a cAMP cocktail elicited robust time-independent Cl- currents in cardiac CFTR-injected oocytes, but not in control water-injected oocytes. The effects of costimulation of both pathways were additive; however, maximum protein kinase A (PKA) activation occluded further activation by PKC. In oocytes expressing either the cardiac (exon 5-) or epithelial (exon 5+) CFTR isoform, Cl- currents activated by PKA were sustained, whereas PKC-activated currents were transient, with initial activation followed by slow current decay in the continued presence of phorbol esters, the latter effect likely due to down-regulation of endogenous PKC activity. The specific PKA inhibitor, adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS), and various protein phosphatase inhibitors were used to determine whether the stimulatory effects of PKC are dependent upon the PKA phosphorylation state of cardiac CFTR channels. Intraoocyte injection of 1,2-bis(2-aminophenoxy)ethane-N,N, N,N-tetraacetic acid (BAPTA) or pretreatment of oocytes with BAPTA-acetoxymethyl-ester (BAPTA-AM) nearly completely prevented dephosphorylation of CFTR currents activated by cAMP, an effect consistent with inhibition of protein phosphatase 2C (PP2C) by chelation of intracellular Mg2+. PKC-induced stimulation of CFTR channels was prevented by inhibition of basal endogenous PKA activity, and phorbol esters failed to stimulate CFTR channels trapped into either the partially PKA phosphorylated (P1) or the fully PKA phosphorylated (P1P2) channel states. Site-directed mutagenesis of serines (S686 and S790) within two consensus PKC phosphorylation sites on the cardiac CFTR regulatory domain attentuated, but did not eliminate, the stimulatory effects of phorbol esters on mutant CFTR channels. The effects of PKC on cardiac CFTR Cl- channels are consistent with a simple model in which PKC phosphorylation of the R domain facilitates PKA-induced transitions from dephosphorylated (D) to partially (P1) phosphorylated and fully (P1P2) phosphorylated channel states.  相似文献   

11.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP/protein kinase A (PKA)-regulated chloride channel whose phosphorylation controls anion secretion across epithelial cell apical membranes. We examined the hypothesis that cAMP/PKA stimulation regulates CFTR biogenesis posttranslationally, based on predicted 14-3-3 binding motifs within CFTR and forskolin-induced CFTR expression. The 14-3-3β, γ, and ε isoforms were expressed in airway cells and interacted with CFTR in coimmunoprecipitation assays. Forskolin stimulation (15 min) increased 14-3-3β and ε binding to immature and mature CFTR (bands B and C), and 14-3-3 overexpression increased CFTR bands B and C and cell surface band C. In pulse-chase experiments, 14-3-3β increased the synthesis of immature CFTR, reduced its degradation rate, and increased conversion of immature to mature CFTR. Conversely, 14-3-3β knockdown decreased CFTR B and C bands (70 and 55%) and elicited parallel reductions in cell surface CFTR and forskolin-stimulated anion efflux. In vitro, 14-3-3β interacted with the CFTR regulatory region, and by nuclear magnetic resonance analysis, this interaction occurred at known PKA phosphorylated sites. In coimmunoprecipitation assays, forskolin stimulated the CFTR/14-3-3β interaction while reducing CFTR's interaction with coat protein complex 1 (COP1). Thus 14-3-3 binding to phosphorylated CFTR augments its biogenesis by reducing retrograde retrieval of CFTR to the endoplasmic reticulum. This mechanism permits cAMP/PKA stimulation to make more CFTR available for anion secretion.  相似文献   

12.
13.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is defective in cystic fibrosis, and has also been closely associated with ATP permeability in cells. Using a Xenopus oocyte cRNA expression system, we have evaluated the molecular mechanisms that control CFTR-modulated ATP release. CFTR-modulated ATP release was dependent on both cAMP activation and a gradient change in the extracellular chloride concentration. Activation of ATP release occurred within a narrow concentration range of external Cl that was similar to that reported in airway surface fluid. Mutagenesis of CFTR demonstrated that Cl conductance and ATP release regulatory properties could be dissociated to different regions of the CFTR protein. Despite the lack of a need for Cl conductance through CFTR to modulate ATP release, alterations in channel pore residues R347 and R334 caused changes in the relative ability of different halides to activate ATP efflux (wtCFTR, Cl >> Br; R347P, Cl >> Br; R347E, Br >> Cl; R334W, Cl = Br). We hypothesize that residues R347 and R334 may contribute a Cl binding site within the CFTR channel pore that is necessary for activation of ATP efflux in response to increases of extracellular Cl. In summary, these findings suggest a novel chloride sensor mechanism by which CFTR is capable of responding to changes in the extracellular chloride concentration by modulating the activity of an unidentified ATP efflux pathway. This pathway may play an important role in maintaining fluid and electrolyte balance in the airway through purinergic regulation of epithelial cells. Insight into these molecular mechanisms enhances our understanding of pathogenesis in the cystic fibrosis lung.  相似文献   

14.
Cytoplasmic Ca2+ is a master regulator of airway physiology; it controls fluid, mucus, and antimicrobial peptide secretion, ciliary beating, and smooth muscle contraction. The focus of this review is on the role of cytoplasmic Ca2+ in fluid secretion by airway exocrine secretory cells. Airway submucosal gland serous acinar cells are the primary fluid secreting cell type of the cartilaginous conducting airways, and this review summarizes the current state of knowledge of the molecular mechanisms of serous cell ion transport, with an emphasis on their regulation by intracellular Ca2+. Many neurotransmitters that regulate secretion from serous acinar cells utilize Ca2+ as a second messenger. Changes in intracellular Ca2+ concentration regulate the activities of ion transporters and channels involved in transepithelial ion transport and fluid secretion, including Ca2+-activated K+ channels and Cl channels. We also review evidence of interactions of Ca2+ signaling with other signaling pathways (cAMP, NO) that impinge upon different ion transport pathways, including the cAMP/PKA-activated cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel. A better understanding of Ca2+ signaling and its targets in airway fluid secretion may identify novel strategies to intervene in airway diseases, for example to enhance fluid secretion in CF airways.  相似文献   

15.
Phosphorylation of the R domain is required for cystic fibrosis transmembrane conductance regulator (CFTR) channel gating, and cAMP/protein kinase A (PKA) simulation can also elicit insertion of CFTR into the plasma membrane from intracellular compartments (Bertrand, C. A., and Frizzell, R. A. (2003) Am. J. Physiol. 285, C1-C18). We evaluated the structural basis of regulated CFTR trafficking by determining agonist-evoked increases in plasma membrane capacitance (Cm) of Xenopus oocytes expressing CFTR deletion mutants. Expression of CFTR as a split construct that omitted the R domain (Deltaamino acids 635-834) produced a channel with elevated basal current (Im) and no DeltaIm or trafficking response (DeltaCm) upon cAMP/PKA stimulation, indicating that the structure(s) required for regulated CFTR trafficking are contained within the R domain. Additional deletions showed that removal of amino acids 817-838, a 22-amino acid conserved helical region having a net charge of -9, termed NEG2 (Xie, J., Adams, L. M., Zhao, J., Gerken, T. A., Davis, P. B., and Ma, J. (2002) J. Biol. Chem. 277, 23019-23027), produced a channel with regulated gating that lacked the agonist-induced increase in CFTR trafficking. Injection of NEG2 peptides into oocytes expressing split DeltaNEG2 CFTR prior to stimulation restored the agonist-evoked DeltaCm, consistent with the concept that this sequence mediates the regulated trafficking event. In support of this idea, DeltaNEG2 CFTR escaped from the inhibition of wild type CFTR trafficking produced by overexpression of syntaxin 1A. These observations suggest that the NEG2 region at the C terminus of the R domain allows stabilization of CFTR in a regulated intracellular compartment from which it traffics to the plasma membrane in response to cAMP/PKA stimulation.  相似文献   

16.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial Cl(-) channel whose activity is controlled by cAMP-dependent protein kinase (PKA)-mediated phosphorylation. We found that CFTR immunoprecipitates from Calu-3 airway cells contain endogenous PKA, which is capable of phosphorylating CFTR. This phosphorylation is stimulated by cAMP and inhibited by the PKA inhibitory peptide. The endogenous PKA that co-precipitates with CFTR could also phosphorylate the PKA substrate peptide, Leu-Arg-Arg-Ala-Ser-Leu-Gly (kemptide). Both the catalytic and type II regulatory subunits of PKA are identified by immunoblotting CFTR immunoprecipitates, demonstrating that the endogenous kinase associated with CFTR is PKA, type II (PKA II). Phosphorylation reactions mediated by CFTR-associated PKA II are inhibited by Ht31 peptide but not by the control peptide Ht31P, indicating that a protein kinase A anchoring protein (AKAP) is responsible for the association between PKA and CFTR. Ezrin may function as this AKAP, since it is expressed in Calu-3 and T84 epithelia, ezrin binds RII in overlay assays, and RII is immunoprecipitated with ezrin from Calu-3 cells. Whole-cell patch clamp of Calu-3 cells shows that Ht31 peptide reduces cAMP-stimulated CFTR Cl(-) current, but Ht31P does not. Taken together, these data demonstrate that PKA II is linked physically and functionally to CFTR by an AKAP interaction, and they suggest that ezrin serves as an AKAP for PKA-mediated phosphorylation of CFTR.  相似文献   

17.
The chemical solvent tetrahydrofuran (THF) increases short-circuit current (Isc) in renal epithelia endogenously expressing the cystic fibrosis transmembrane conductance regulator (CFTR). To understand how THF increases Isc, we employed the Ussing chamber and patch-clamp techniques to study cells expressing recombinant human CFTR. THF increased Isc in Fischer rat thyroid (FRT) epithelia expressing wild-type CFTR with half-maximal effective concentration (KD) of 134?mM. This THF-induced increase in Isc was enhanced by forskolin (10 µM), inhibited by the PKA inhibitor H-89 (10 µM) and the thiazolidinone CFTRinh-172 (10 µM) and attenuated greatly in FRT epithelia expressing the cystic fibrosis mutants F508del- and G551D-CFTR. By contrast, THF (100?mM) was without effect on untransfected FRT epithelia, while other solvents failed to increase Isc in FRT epithelia expressing wild-type CFTR. In excised inside-out membrane patches, THF (100?mM) potentiated CFTR Cl? channels open in the presence of ATP (1?mM) alone by increasing the frequency of channel openings without altering their duration. However, following the phosphorylation of CFTR by PKA (75?nM), THF (100?mM) did not potentiate channel activity. Similar results were obtained with the ?R-S660A-CFTR Cl? channel that is not regulated by PKA-dependent phosphorylation and using 2′deoxy-ATP, which gates wild-type CFTR more effectively than ATP. Our data suggest that THF acts directly on CFTR to potentiate channel gating, but that its efficacy is weak and dependent on the phosphorylation status of CFTR.  相似文献   

18.
Cystic fibrosis results from mutations in the cystic fibrosis conductance regulator protein (CFTR), a cAMP/protein kinase A (PKA) and ATP-regulated Cl(-) channel. CFTR is increasingly recognized as a component of multiprotein complexes and although several inhibitory proteins to CFTR have been identified, protein complexes that stimulate CFTR function remain less well characterized. We report that annexin 2 (anx 2)-S100A10 forms a functional cAMP/PKA/calcineurin (CaN)-dependent complex with CFTR. Cell stimulation with forskolin/3-isobutyl-1-methylxanthine significantly increases the amount of anx 2-S100A10 that reciprocally coimmunoprecipitates with cell surface CFTR and calyculin A. Preinhibition with PKA or CaN inhibitors attenuates the interaction. Furthermore, we find that the acetylated peptide (STVHEILCKLSLEG, Ac1-14), but not the nonacetylated equivalent N1-14, corresponding to the S100A10 binding site on anx 2, disrupts the anx 2-S100A10/CFTR complex. Analysis of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and CFTR(inh172)-sensitive currents, taken as indication of the outwardly rectifying Cl(-) channels (ORCC) and CFTR-mediated currents, respectively, showed that Ac1-14, but not N1-14, inhibits both the cAMP/PKA-dependent ORCC and CFTR activities. CaN inhibitors (cypermethrin, cyclosporin A) discriminated between ORCC/CFTR by inhibiting the CFTR(inh172)-, but not the DIDS-sensitive currents, by >70%. Furthermore, peptide Ac1-14 inhibited acetylcholine-induced short-circuit current measured across a sheet of intact intestinal biopsy. Our data suggests that the anx 2-S100A10/CFTR complex is important for CFTR function across epithelia.  相似文献   

19.
Extracellular nucleotides exert autocrine/paracrine effects on ion transport by activating P2 receptors. We studied the effects of extracellular ATP and UTP on the cystic fibrosis transmembrane conductance regulator (CFTR) channel stably expressed in Chinese Hamster Ovary cells (CHO-BQ1 cells). CFTR activity was measured using the (125I) iodide efflux technique and whole-cell patch-clamp recording in response to either forskolin or xanthine derivatives. Using RT-PCR and intracellular calcium concentration ([Ca2+]i) measurement, we showed that CHO-BQ1 cells express P2Y2 but not P2Y4 receptors. While ATP and UTP induced similar increases in [Ca2+]i, pre-addition by one of these two agonists desensitized the response for the other, suggesting that ATP- and UTP-induced [Ca2+]i increases were mediated by a common receptor, which was identified as the P2Y2 subtype. CFTR activity was reduced by ATP and UTP but not by ADP or adenosine applications. This inhibitory effect of ATP on CFTR activity was not due to a change in cAMP level. Furthermore, CFTR activation by forskolin or IBMX failed to promote [Ca2+]i increase, suggesting that CFTR activation did not generate an ATP release large enough to stimulate P2Y2 receptors. Taken together, our results show that endogenous P2Y2 receptor activation downregulates CFTR activity in a cAMP-independent manner in CHO cells. B. Marcet and V. Chappe contributed equally to this work.  相似文献   

20.
Adenylate cyclase-activating polypeptide 1 (ADCYAP1) binds both Gs- and Gq-coupled receptors and stimulates adenylate cyclase/cAMP and protein kinase C/mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathways in pituitary gonadotrophs. In this study, we investigated the cAMP and MAPK3/1 signaling pathways induced by ADCYAP1 stimulation and examined the effects of ADCYAP1 on the expression of gonadotropin subunit genes using a clonal gonadotroph cell line, LbetaT2. ADCYAP1 increased intracellular cAMP accumulation up to 19-fold in LbetaT2 cells. Common alpha-glycoprotein subunit gene (Cga) promoter activity was strongly activated by both ADCYAP1 and the cyclic-AMP analog, 8-(4-chlorophenylthio) adenosine 3',5'-cyclic monophosphate (CPT-cAMP). Both had little effect on luteinizing hormone beta (Lhb) and follicle-stimulating hormone beta (Fshb) promoter activities. Cga promoter activity was significantly increased by transfection with constitutively active cAMP-dependent protein kinase (PKA). Activities of the Lhb and Fshb promoters were only modestly increased. Both ADCYAP1 and CPT-cAMP induced MAPK3/1 activation in LbetaT2 cells. The MEK inhibitor, U0126, and the PKA inhibitors, H89 and cAMP-dependent protein kinase peptide inhibitor (PKI), completely inhibited MAPK3/1 activation by either ADCYAP1 or CPT-cAMP. Using luciferase reporter constructs containing cis-elements, the cAMP response element (Cre) promoter was stimulated about 4-fold by ADCYAP1. ADCYAP1-induced Cre promoter activity was completely inhibited by H89, but not by U0126. ADCYAP1 also increased the activity of the serum response element (Sre) promoter, a target for MAPK3/1, and treatment of the cells with U0126 completely inhibited ADCYAP1-induced Sre promoter activity. ADCYAP1-increased Cga promoter activity was inhibited partially by both H89 and U0126. Although combining the inhibitors showed an additive inhibition effect, it did not result in complete inhibition. These results suggest that in LbetaT2 cells, ADCYAP1 mainly increases Cga through activation of PKA and MAPK3/1, as well as through an additional unknown pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号