共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular characterization of the genes encoding the tungsten-containing aldehyde ferredoxin oxidoreductase from Pyrococcus furiosus and formaldehyde ferredoxin oxidoreductase from Thermococcus litoralis. 下载免费PDF全文
A Kletzin S Mukund T L Kelley-Crouse M K Chan D C Rees M W Adams 《Journal of bacteriology》1995,177(16):4817-4819
The hyperthermophilic archaea Pyrococcus furiosus and Thermococcus litoralis contain the tungstoenzymes aldehyde ferredoxin oxidoreductase, a homodimer, and formaldehyde ferredoxin oxidoreductase, a homotetramer. herein we report the cloning and sequencing of the P. furiosus gene aor (605 residues; M(r), 66,630) and the T. litoralis gene for (621 residues; M(r), 68,941). 相似文献
2.
Characterization of a fourth tungsten-containing enzyme from the hyperthermophilic archaeon Pyrococcus furiosus 下载免费PDF全文
Pyrococcus furiosus grows optimally near 100 degrees C using peptides and carbohydrates as carbon sources, and it reduces elemental sulfur (S(0)), if present, to H(2)S. Tungsten (W), an element rarely used in biology, is required for optimal growth, and three different tungsten-containing enzymes have been previously purified from this organism. They all oxidize aldehydes of various types and are thought to play primary roles in the catabolism of sugars or amino acids. Here, the purification of a fourth tungsten-containing enzyme, termed WOR 4, from cell extracts of P. furiosus grown with S(0) is described. This was achieved by monitoring through multiple chromatography steps the W that is not associated with the three characterized tungstoenzymes. The N-terminal sequence of WOR 4 and the approximate molecular weight of its subunit determined electrophoretically (69,000) correspond to the product of an ORF (PF1961, wor4) present in the complete genome sequence of P. furiosus. WOR 4 is a homodimer and contains approximately one W, three Fe, three or four acid-labile sulfide, and one Ca atom per subunit. The visible and electron paramagnetic resonance spectra of the oxidized and reduced enzyme indicate the presence of an unusual iron-sulfur chromophore. WOR 4 does not oxidize aliphatic or aromatic aldehydes or hydroxy acids, nor does it reduce keto acids. Consistent with prior microarray data, the protein could not be purified from P. furiosus cells grown in the absence of S(0), suggesting that it may have a role in S(0) metabolism. 相似文献
3.
Alexander F. Arendsen Marcel de Vocht Yvonne B. M. Bulsink W. R. Hagen 《Journal of biological inorganic chemistry》1996,1(4):292-296
Aldehyde:ferredoxin oxidoreductase (AOR) from the hyperthermophilic archaeon Pyrococcus furiosus is a homodimeric protein. Each subunit carries one [4Fe-4S] cubane and a novel tungsten cofactor containing two pterins.
A single iron atom bridges between the subunits. AOR has previously been studied with EPR spectroscopy in an inactive form
known as the red tungsten protein (RTP): reduced RTP exhibits complex EPR interaction signals. We have now investigated the
active enzyme AOR with EPR, and we have found an S = 1/2 plus S = 3/2 spin mixture from a non-interacting [4Fe-4S]1+ cluster in the reduced enzyme. Oxidized AOR affords EPR signals typical for W(V) with g–values of 1.982, 1.953, and 1.885. The W(V) signals disappear at a reduction potential E
m,7.5 of +180 mV. This unexpectedly high value indicates that the active-site redox chemistry is based on the pterin part of the
cofactor.
Received: 18 December 1995 / Accepted: 26 March 1996 相似文献
4.
G Strobl R Feicht H White F Lottspeich H Simon 《Biological chemistry Hoppe-Seyler》1992,373(3):123-132
Purification of aldehyde oxidoreductase from C. thermoaceticum, the first detected enzyme able to reduce reversibly non-activated carboxylic acids to the corresponding aldehydes (White, H., Strobl, G., Feicht, R. & Simon, H. (1989) Eur. J. Biochem. 184, 89-96), results in the generation of multiple forms of the enzyme. The specific activities for the viologen-mediated dehydrogenation of butyraldehyde for the two main forms of the purification procedure are 530 and 450 U/mg. Two forms of the enzyme composed of alpha,beta- and alpha,beta,gamma-subunits, can be differentiated. The latter binds to red-Sepharose and can be eluted very specifically with NADPH. In contrast to the alpha,beta-types the trimeric forms also catalyse the reversible reduction of oxidised viologen with NADPH (VAPOR activity). The dimer alpha,beta can oligomerize and the alpha,beta,gamma-trimer can easily form various oligomers or split off the gamma-subunit. The apparent molecular masses of the subunits alpha,beta and gamma are 64, 14 and 43 kDa. The alpha,beta-form reveals an apparent molecular mass of 86 kDa containing about 29 iron, 25 acid-labile sulphur, 0.8 tungsten and forms about 1 mol pterine-6-carboxylic acid by permanganate oxidation. The corresponding values of the trimer showing a mass of 300 kDa, are about 82 Fe, 54 S, 3.4 W and 2.5 pterine-6-carboxylic acid. In addition, 1.7 mol of FAD could be found which seems to be a component of the gamma-subunit. The aldehyde oxidoreductase from C. thermoaceticum and that from C. formicoaceticum (White, H., Feicht, R., Huber, C., Lottspeich, F. & Simon, H. (1991) Biol. Chem. Hoppe-Seyler 372, 999-1005) show qualitative similarities as far as the Fe, S, W and pterin content and the broad substrate specificity are concerned. However, there are also surprisingly marked differences with respect to composition and amino-acid sequence. 相似文献
5.
Purification and characterization of a benzylviologen-linked, tungsten-containing aldehyde oxidoreductase from Desulfovibrio gigas. 总被引:1,自引:0,他引:1 下载免费PDF全文
Desulfovibrio gigas NCIMB 9332 cells grown in ethanol-containing medium with 0.1 microM tungstate contained a benzylviologen-linked aldehyde oxidoreductase. The enzyme was purified to electrophoretic homogeneity and found to be a homodimer with a subunit M(r) of 62,000. It contained 0.68 +/- 0.08 W, 4.8 Fe, and 3.2 +/- 0.2 labile S per subunit. After acid iodine oxidation of the purified enzyme, a fluorescence spectrum typical for form A of molybdopterin was obtained. Acetaldehyde, propionaldehyde, and benzaldehyde were excellent substrates, with apparent Km values of 12.5, 10.8, and 20 microM, respectively. The natural electron acceptor is not yet known; benzylviologen was used as an artificial electron acceptor (apparent Km, 0.55 mM). The enzyme was activated by potassium ions and strongly inhibited by cyanide, arsenite, and iodoacetate. In the as-isolated enzyme, electron paramagnetic resonance studies readily detected W(V) as a complex signal with g values in the range of 1.84 to 1.97. The dithionite-reduced enzyme exhibited a broad signal at low temperature with g = 2.04 and 1.92; this is indicative of a [4Fe-4S]1+ cluster interacting with a second paramagnet, possibly the S = 1 system of W(IV). Until now W-containing aldehyde oxidoreductases had only been found in two Clostridium strains and two hyperthermophilic archaea. The D. gigas enzyme is the first example of such an enzyme in a gram-negative bacterium. 相似文献
6.
The anaerobic archaebacterium, Pyrococcus furiosus, grows optimally at 100 degrees C by a fermentative-type metabolism in which H2, CO2, and organic acids are end products. The growth of this organism is stimulated by tungsten, and, from it, a novel, red-colored, tungsten-iron-sulfur protein, abbreviated RTP, has been purified (Mukund, S., and Adams, M. W. W. (1990) J. Biol. Chem. 265, 11508-11516). RTP (Mr approximately 85,000) contained approximately 1W, 7Fe, and 5 acid-labile sulfide atoms/molecule and exhibited unique EPR properties. The physiological function of the protein, however, was unknown. We show here that RTP is an inactive form of an aldehyde ferredoxin oxidoreductase (AOR). The active enzyme was obtained by rapid purification under anaerobic conditions using buffers containing dithiothreitol and glycerol. AOR catalyzed the oxidation of a range of aliphatic aldehydes with an optimum temperature for activity above 90 degrees C, but it did not oxidize glucose or glyceraldehyde 3-phosphate, nor reduce NAD(P), and its activity was independent of CoA. The active (AOR) and inactive (RTP) forms of the enzyme were indistinguishable in their contents of metals and acid-labile sulfide and in their EPR properties. The latter are though to originate from two nonidentical and spin-coupled iron-sulfur clusters, whereas the tungsten in this enzyme, which was not detectable by EPR, appears to be present as a novel pterin cofactor. Inhibition and activation studies indicated that AOR contains a catalytically essential W-SH group that is not present in RTP, the inactive form. AOR is a new type of aldehyde-oxidizing enzyme and is the first aldehyde oxidoreductase to be purified from an archaebacterium or a nonactogenic anaerobic bacterium. Its physiological role in P. furiosus is proposed as the oxidation of glyceraldehyde to glycerate in a unique, partially nonphosphorylated, glycolytic pathway that generates acetyl-CoA from glucose without the participation of nicotinamide nucleotides. 相似文献
7.
Claudia Huber Haike Skopan Richard Feicht Hiltrud White Hilmut Simon 《Archives of microbiology》1995,164(2):110-118
The αβ subunits of the tungsten-containing reversible aldehyde oxidoreductase of Clostridium thermoaceticum were shown to contain a pterin cofactor in the form of a mononucleotide. The substrate specificity of the enzyme for aliphatic
and aromatic aldehydes and for carboxylates was broad. The K
m
values for ethanal, propanal and butanal were 0.010–0.006 mM, but the value for methanal was 1.6 mM. Benzaldehyde derivatives
with a hydroxy group in the 4-position showed millimolar K
m
values that were 2–3 orders of magnitude higher than those of other aromatic and aliphatic aldehydes. The ratio of k
cat
/K
m
for aldehydes and the corresponding acids is 104–105. For carboxylate reduction, 4-hydroxy benzoate again showed the highest K
m
value of all substrates tested. When the 4-hydroxy groups of the aldehyde and the acid were methylated, the K
m
values were decreased drastically. From the temperature dependence of carboxylate reduction at the expense of viologens,
activation energies that depended on the substrate and on the applied viologen were calculated. The pH optima of the carboxylate
reductions depended on the pK values of the acids and shifted to lower pH values with lower pK values of the acids. The ternary
complex α3β3γ of the aldehyde oxidoreductase was able to dehydrogenate aldehydes to acylates with NADP+. Surprisingly the reverse reaction was observed too, although at very low rates. When exposed to air, the aldehyde oxidoreductase
showed markedly enhanced lability in its reduced state compared to its oxidized state. With resting cells of C. thermoaceticum, many carboxylates were reduced at the expense of carbon monoxide to the corresponding alcohols.
Received: 18 January 1995 / Accepted: 5 April 1995 相似文献
8.
9.
Characterization of a novel zinc-containing, lysine-specific aminopeptidase from the hyperthermophilic archaeon Pyrococcus furiosus 下载免费PDF全文
Cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus contain high specific activity (11 U/mg) of lysine aminopeptidase (KAP), as measured by the hydrolysis of L-lysyl-p-nitroanilide (Lys-pNA). The enzyme was purified by multistep chromatography. KAP is a homotetramer (38.2 kDa per subunit) and, as purified, contains 2.0 +/- 0.48 zinc atoms per subunit. Surprisingly, its activity was stimulated fourfold by the addition of Co2+ ions (0.2 mM). Optimal KAP activity with Lys-pNA as the substrate occurred at pH 8.0 and a temperature of 100 degrees C. The enzyme had a narrow substrate specificity with di-, tri-, and tetrapeptides, and it hydrolyzed only basic N-terminal residues at high rates. Mass spectroscopy analysis of the purified enzyme was used to identify, in the P. furiosus genome database, a gene (PF1861) that encodes a product corresponding to 346 amino acids. The recombinant protein containing a polyhistidine tag at the N terminus was produced in Escherichia coli and purified using affinity chromatography. Its properties, including molecular mass, metal ion dependence, and pH and temperature optima for catalysis, were indistinguishable from those of the native form, although the thermostability of the recombinant form was dramatically lower than that of the native enzyme (half-life of approximately 6 h at 100 degrees C). Based on its amino acid sequence, KAP is part of the M18 family of peptidases and represents the first prokaryotic member of this family. KAP is also the first lysine-specific aminopeptidase to be purified from an archaeon. 相似文献
10.
Hydrogen gas is an attractive alternative fuel as it is carbon neutral and has higher energy content per unit mass than fossil fuels. The biological enzyme responsible for utilizing molecular hydrogen is hydrogenase, a heteromeric metalloenzyme requiring a complex maturation process to assemble its O(2)-sensitive dinuclear-catalytic site containing nickel and iron atoms. To facilitate their utility in applied processes, it is essential that tools are available to engineer hydrogenases to tailor catalytic activity and electron carrier specificity, and decrease oxygen sensitivity using standard molecular biology techniques. As a model system we are using hydrogen-producing Pyrococcus furiosus, which grows optimally at 100°C. We have taken advantage of a recently developed genetic system that allows markerless chromosomal integrations via homologous recombination. We have combined a new gene marker system with a highly-expressed constitutive promoter to enable high-level homologous expression of an engineered form of the cytoplasmic NADP-dependent hydrogenase (SHI) of P. furiosus. In a step towards obtaining 'minimal' hydrogenases, we have successfully produced the heterodimeric form of SHI that contains only two of the four subunits found in the native heterotetrameric enzyme. The heterodimeric form is highly active (150 units mg(-1) in H(2) production using the artificial electron donor methyl viologen) and thermostable (t(1/2) ~0.5 hour at 90°C). Moreover, the heterodimer does not use NADPH and instead can directly utilize reductant supplied by pyruvate ferredoxin oxidoreductase from P. furiosus. The SHI heterodimer and POR therefore represent a two-enzyme system that oxidizes pyruvate and produces H(2) in vitro without the need for an intermediate electron carrier. 相似文献
11.
Arndt JW Hao B Ramakrishnan V Cheng T Chan SI Chan MK 《Structure (London, England : 1993)》2002,10(2):215-224
The structure of Pyrococcus furiosus carboxypeptidase (PfuCP) has been determined to 2.2 A resolution using multiwavelength anomalous diffraction (MAD) methods. PfuCP represents the first structure of the new M32 family of carboxypeptidases. The overall structure is comprised of a homodimer. Each subunit is mostly helical with its most pronounced feature being a deep substrate binding groove. The active site lies at the bottom of this groove and contains an HEXXH motif that coordinates the metal ion required for catalysis. Surprisingly, the structure is similar to the recently reported rat neurolysin. Comparison of these structures as well as sequence analyses with other homologous proteins reveal several conserved residues. The roles for these conserved residues in the catalytic mechanism are inferred based on modeling and their location. 相似文献
12.
S C Griffith M R Sawaya D R Boutz N Thapar J E Katz S Clarke T O Yeates 《Journal of molecular biology》2001,313(5):1103-1116
Protein L-isoaspartyl (D-aspartyl) methyltransferases (EC 2.1.1.77) are found in almost all organisms. These enzymes catalyze the S-adenosylmethionine (AdoMet)-dependent methylation of isomerized and racemized aspartyl residues in age-damaged proteins as part of an essential protein repair process. Here, we report crystal structures of the repair methyltransferase at resolutions up to 1.2 A from the hyperthermophilic archaeon Pyrococcus furiosus. Refined structures include binary complexes with the active cofactor AdoMet, its reaction product S-adenosylhomocysteine (AdoHcy), and adenosine. The enzyme places the methyl-donating cofactor in a deep, electrostatically negative pocket that is shielded from solvent. Across the multiple crystal structures visualized, the presence or absence of the methyl group on the cofactor correlates with a significant conformational change in the enzyme in a loop bordering the active site, suggesting a role for motion in catalysis or cofactor exchange. We also report the structure of a ternary complex of the enzyme with adenosine and the methyl-accepting polypeptide substrate VYP(L-isoAsp)HA at 2.1 A. The substrate binds in a narrow active site cleft with three of its residues in an extended conformation, suggesting that damaged proteins may be locally denatured during the repair process in cells. Manual and computer-based docking studies on different isomers help explain how the enzyme uses steric effects to make the critical distinction between normal L-aspartyl and age-damaged L-isoaspartyl and D-aspartyl residues. 相似文献
13.
A determination was made of the nucleotide sequence of the 2719 bp region of a ribosomal protein gene cluster (PfeL32-PfeL19-PfL18-PfS5-PfL30) containing a 5S rRNA binding protein L18 homolog of hyperthermophilic archaea Pyrococcus furiosus. The organization of the archaeal ribosomal protein gene cluster is similar to that in the spc-operon of Escherichia coli (L6-L18-S5-L30-L15) but has two additional genes, namely those encoding PfeL32 and PfeL19, which were identified as extra proteins that are apparently not present in bacterial E. coli. Using an inducible expression system, P. furiosus mature PfL18 protein and a mutant PfL18 with the basic N-terminal amino acid region deleted were produced in large amounts in E. coli and Northwestern analysis showed the N-terminal region of PfL18, including the conserved arginine-rich region, to have a significant role in 5S rRNA-PfL18 interaction. 相似文献
14.
Fujikane R Komori K Shinagawa H Ishino Y 《The Journal of biological chemistry》2005,280(13):12351-12358
To identify the branch migration activity in archaea, we fractionated Pyrococcus furiosus cell extracts by several chromatography and assayed for ATP-dependent resolution of synthetic Holliday junctions. The target activity was identified in the column fractions, and the optimal reaction conditions for the branch migration activity were determined using the partially purified fraction. We successfully cloned the corresponding gene by screening a heat-stable protein library made by P. furiosus genomic DNA. The gene, hjm (Holliday junction migration), encodes a protein composed of 720 amino acids. The Hjm protein is conserved in Archaea and belongs to the helicase superfamily 2. A homology search revealed that Hjm shares sequence similarity with the human PolTheta, HEL308, and Drosophila Mus308 proteins, which are involved in a DNA repair, whereas no similar sequences were found in bacteria and yeast. The Hjm helicase may play a central role in the repair systems of organisms living in extreme environments. 相似文献
15.
Emilia Pedone Bin Ren Rudolf Ladenstein Mosè Rossi Simonetta Bartolucci 《European journal of biochemistry》2004,271(16):3437-3448
Protein disulfide oxidoreductases are ubiquitous redox enzymes that catalyse dithiol-disulfide exchange reactions with a CXXC sequence motif at their active site. A disulfide oxidoreductase, a highly thermostable protein, was isolated from Pyrococcus furiosus (PfPDO), which is characterized by two redox sites (CXXC) and an unusual molecular mass. Its 3D structure at high resolution suggests that it may be related to the multidomain protein disulfide-isomerase (PDI), which is currently known only in eukaryotes. This work focuses on the functional characterization of PfPDO as well as its relation to the eukaryotic PDIs. Assays of oxidative, reductive, and isomerase activities of PfPDO were performed, which revealed that the archaeal protein not only has oxidative and reductive activity, but also isomerase activity. On the basis of structural data, two single mutants (C35S and C146S) and a double mutant (C35S/C146S) of PfPDO were constructed and analyzed to elucidate the specific roles of the two redox sites. The results indicate that the CPYC site in the C-terminal half of the protein is fundamental to reductive/oxidative activity, whereas isomerase activity requires both active sites. In comparison with PDI, the ATPase activity was tested for PfPDO, which was found to be cation-dependent with a basic pH optimum and an optimum temperature of 90 degrees C. These results and an investigation on genomic sequence databases indicate that PfPDO may be an ancestor of the eukaryotic PDI and belongs to a novel protein disulfide oxidoreductase family. 相似文献
16.
Crystal structures of formaldehyde ferredoxin oxidoreductase (FOR), a tungstopterin-containing protein from the hyperthermophilic archaeon Pyrococcus furiosus, have been determined in the native state and as a complex with the inhibitor glutarate at 1.85 A and 2. 4 A resolution, respectively. The native structure was solved by molecular replacement using the structure of the homologous P. furiosus aldehyde ferredoxin oxidoreductase (AOR) as the initial model. Residues are identified in FOR that may be involved in either the catalytic mechanism or in determining substrate specificity. The binding site on FOR for the physiological electron acceptor, P. furiosus ferredoxin (Fd), has been established from an FOR-Fd cocrystal structure. Based on the arrangement of redox centers in this structure, an electron transfer pathway is proposed that begins at the tungsten center, leads to the (4Fe:4S) cluster of FOR via one of the two pterins that coordinate the tungsten, and ends at the (4Fe:4S) cluster of ferredoxin. This pathway includes two residues that coordinate the (4Fe:4S) clusters, Cys287 of FOR and Asp14 of ferredoxin. Similarities in the active site structures between FOR and the unrelated molybdoenzyme aldehyde oxidoreductase from Desulfovibrio gigas suggest that both enzymes utilize a common mechanism for aldehyde oxidation. 相似文献
17.
A novel and remarkably thermostable ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus. 总被引:7,自引:10,他引:7 下载免费PDF全文
The archaebacterium Pyrococcus furiosus is a strict anaerobe that grows optimally at 100 degrees C by a fermentative-type metabolism in which H2 and CO2 are the only detectable products. A ferredoxin, which functions as the electron donor to the hydrogenase of this organism was purified under anaerobic reducing conditions. It had a molecular weight of approximately 12,000 and contained 8 iron atoms and 8 cysteine residues/mol but lacked histidine or arginine residues. Reduction and oxidation of the ferredoxin each required 2 electrons/mol, which is consistent with the presence of two [4Fe-4S] clusters. The reduced protein gave rise to a broad rhombic electronic paramagnetic resonance spectrum, with gz = 2.10, gy = 1.86, gx = 1.80, and a midpoint potential of -345 mV (at pH 8). However, this spectrum represented a minor species, since it quantitated to only approximately 0.3 spins/mol. P. furiosus ferredoxin is therefore distinct from other ferredoxins in that the bulk of its iron is not present as iron-sulfur clusters with an S = 1/2 ground state. The apoferredoxin was reconstituted with iron and sulfide to give a protein that was indistinguishable from the native ferredoxin by its iron content and electron paramagnetic resonance properties, which showed that the novel iron-sulfur clusters were not artifacts of purification. The reduced ferredoxin also functioned as an electron donor for H2 evolution catalyzed by the hydrogenase of the mesophilic eubacterium Clostridium pasteurianum. P. furiosus ferredoxin was resistant to denaturation by sodium dodecyl sulfate (20%, wt/vol) and was remarkably thermostable. Its UV-visible absorption spectrum and electron carrier activity to P. furiosus hydrogenase were unaffected by a 12-h incubation of 95 degrees C. 相似文献
18.
The stabilized carbonium ion salt, tropylium tetrafluoroborate, was oxidized to tropone (cycloheptatrienone) by rabbit liver aldehyde oxidase but not by the closely related molybdenum hydroxylase, xanthine oxidase. The tropylium cation is an aromatic hydrocarbon which lacks the aldehyde, imine, or iminium functional groups present in other substrates of aldehyde oxidase. The unique structural features of the tropylium ion should make it a useful tool for mechanistic studies of aldehyde oxidase. 相似文献
19.
Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus 总被引:29,自引:0,他引:29
The archaebacterium, Pyrococcus furiosus, grows optimally at 100 degrees C by a fermentative type metabolism in which H2 and CO2 are the only detectable products. The organism also reduces elemental sulfur (S0) to H2S. Cells grown in the absence of S0 contain a single hydrogenase, located in the cytoplasm, which has been purified 350-fold to apparent homogeneity. The yield of H2 evolution activity from reduced methyl viologen at 80 degrees C was 40%. The hydrogenase has a Mr value of 185,000 +/- 15,000 and is composed of three subunits of Mr 46,000 (alpha), 27,000 (beta), and 24,000 (gamma). The enzyme contains 31 +/- 3 g atoms of iron, 24 +/- 4 g atoms of acid-labile sulfide, and 0.98 +/- 0.05 g atoms of nickel/185,000 g of protein. The H2-reduced hydrogenase exhibits an electron paramagnetic resonance (EPR) signal at 70 K typical of a single [2Fe-2S] cluster, while below 15 K, EPR absorption is observed from extremely fast relaxing iron-sulfur clusters. The oxidized enzyme is EPR silent. The hydrogenase is reversibly inhibited by O2 and is remarkably thermostable. Most of its H2 evolution activity is retained after a 1-h incubation at 100 degrees C. Reduced ferredoxin from P. furiosus also acts as an electron donor to the enzyme, and a 350-fold increase in the rate of H2 evolution is observed between 45 and 90 degrees C. The hydrogenase also catalyzes H2 oxidation with methyl viologen or methylene blue as the electron acceptor. The temperature optimum for both H2 oxidation and H2 evolution is greater than 95 degrees C. Arrhenius plots show two transition points at approximately 60 and approximately 80 degrees C independent of the mode of assay. That occurring at 80 degrees C is associated with a dramatic increase in H2 production activity. The enzyme preferentially catalyzes H2 production at all temperatures examined and appears to represent a new type of "evolution" hydrogenase. 相似文献
20.
Kaper T Lebbink JH Pouwels J Kopp J Schulz GE van der Oost J de Vos WM 《Biochemistry》2000,39(17):4963-4970
The substrate specificity of the beta-glucosidase (CelB) from the hyperthermophilic archaeon Pyrococcus furiosus, a family 1 glycosyl hydrolase, has been studied at a molecular level. Following crystallization and X-ray diffraction of this enzyme, a 3.3 A resolution structural model has been obtained by molecular replacement. CelB shows a homo-tetramer configuration, with subunits having a typical (betaalpha)(8)-barrel fold. Its active site has been compared to the one of the previously determined 6-phospho-beta-glycosidase (LacG) from the mesophilic bacterium Lactococcus lactis. The overall design of the substrate binding pocket is very well conserved, with the exception of three residues that have been identified as a phosphate binding site in LacG. To verify the structural model and alter its substrate specificity, these three residues have been introduced at the corresponding positions in CelB (E417S, M424K, F426Y) in different combinations: single, double, and triple mutants. Characterization of the purified mutant CelB enzyme revealed that F426Y resulted in an increased affinity for galactosides, whereas M424K gave rise to a shifted pH optimum (from 5.0 to 6.0). Analysis of E417S revealed a 5-fold and a 3-fold increase of the efficiency of hydrolyzing o-nitrophenol-beta-D-galactopyranoside-6-phosphate, in the single and triple mutants, respectively. In contrast, their activity on nonphosphorylated sugars was largely reduced (30-300-fold). The residue at position E417 in CelB seems to be the determining factor for the difference in substrate specificity between the two types of family 1 glycosidases. 相似文献