首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbamoyl phosphate synthetase I (CPSI) deficiency, a recessively inherited error of the urea cycle, causes life-threatening hyperammonaemia. CPSI is a multidomain 1500-residue liver mitochondrial matrix protein that is allosterically activated by N-acetyl-l-glutamate, and which synthesises carbamoyl phosphate (CP) in three steps: bicarbonate phosphorylation by ATP, carbamate synthesis from carboxyphosphate and ammonia, and carbamate phosphorylation by ATP. Several missense mutations of CPSI have been reported in patients with CPSI deficiency, but the actual pathogenic potential and effects on the enzyme of these mutations remain non-characterised. Since the structure of Escherichia coli CPS is known and systems for its overexpression and purification are available, we have constructed and purified eight site-directed mutants of E.coli CPS affecting the enzyme large subunit (A126M, R169H, Q262P, N301K, P360L, V640R, R675L, S789P) that are homologous to corresponding missense mutations found in patients with CPSI deficiency, studying their stability and their ability to catalyse the CPS reaction as well as the partial reactions that reflect the different reactional steps, and analysing the substrate kinetics for the overall and partial reactions. The results show that all the mutations significantly decrease CP synthesis without completely inactivating the enzyme (as reflected in the catalysis of at least one partial reaction), that one of these mutations (Q262P) causes marked enzyme instability, and validate the use of E.coli CPS as a pathogenicity testing model for CPSI deficiency. The causality of the reported clinical mutations is supported and the derangements caused by the mutations are identified, revealing the specific roles of the residues that are mutated. In particular, the findings highlight the importance for carbamate phosphorylation and for allosteric activation of a loop that coordinates K(+), stress the key role of intersubunit interactions for CPS stability, and suggest that lid opening at both phosphorylation sites is concerted.  相似文献   

2.
Human collagen X contains a highly conserved 161-amino acid C-terminal non-triple helical domain that is homologous to the C-terminal domain of collagen VIII and to the C1q module of the human C1 enzyme. We have expressed this domain (residues 545-680) in Escherichia coli as a glutathione S-transferase fusion protein. The purified fusion protein trimerizes spontaneously in vitro, and after thrombin cleavage, the purified C-terminal domain trimer (46.2 kDa) is extremely stable and trypsin-resistant. Mutations within the C-terminal domain have been observed in patients with Schmid's metaphyseal chondrodysplasia (SMCD). Some of these mutations (Y598D, G618V, W651X, or H669X; X is the stop codon) were constructed by site-directed mutagenesis. Each mutation had identical consequences regarding the fusion protein: 1) absence of trimeric formation, 2) copurification of the approximately 60-kDa GroEL chaperone protein, and 3) sensitivity of the monomeric fusion protein to trypsin digestion. These results show that the C-terminal domain of collagen X is sufficient to produce a very stable and compact trimer in the absence of collagen Gly-X-Y repeats. Moreover, mutations causing SMCD interfere in this system with the correct folding of the C-terminal domain. The existence of a similar mechanism in chondrocytes might explain the relative homogeneity of phenotypes in SMCD despite the diversity of mutations.  相似文献   

3.
N-acetylglutamate synthase (NAGS) catalyzes the conversion of AcCoA and L-glutamate to CoA and N-acetyl-L-glutamate (NAG), an obligate cofactor for carbamyl phosphate synthetase I (CPSI) in the urea cycle. NAGS deficiency results in elevated levels of plasma ammonia which is neurotoxic. We report herein the first crystal structure of human NAGS, that of the catalytic N-acetyltransferase (hNAT) domain with N-acetyl-L-glutamate bound at 2.1 Å resolution. Functional studies indicate that the hNAT domain retains catalytic activity in the absence of the amino acid kinase (AAK) domain. Instead, the major functions of the AAK domain appear to be providing a binding site for the allosteric activator, L-arginine, and an N-terminal proline-rich motif that is likely to function in signal transduction to CPS1. Crystalline hNAT forms a dimer similar to the NAT-NAT dimers that form in crystals of bifunctional N-acetylglutamate synthase/kinase (NAGS/K) from Maricaulis maris and also exists as a dimer in solution. The structure of the NAG binding site, in combination with mutagenesis studies, provide insights into the catalytic mechanism. We also show that native NAGS from human and mouse exists in tetrameric form, similar to those of bifunctional NAGS/K.  相似文献   

4.
Protein Ser/Thr phosphatase 5 is a 58-kDa protein containing a catalytic domain structurally related to the catalytic subunits of protein phosphatases 1, 2A, and 2B and an extended N-terminal domain with three tetratricopeptide repeats. The activity of this enzyme is stimulated 4-14-fold in vitro by polyunsaturated fatty acids and anionic phospholipids. The structural basis for lipid activation of protein phosphatase 5 was examined by limited proteolysis and site-directed mutagenesis. Trypsinolysis removed the tetratricopeptide repeat domain and increased activity to approximately half that of lipid-stimulated, full-length enzyme. Subtilisin removed the tetratricopeptide repeat domain and 10 residues from the C terminus, creating a catalytic fragment with activity that was equal to or greater than that of lipid-stimulated, full-length enzyme. Catalytic fragments generated by proteolysis were no longer stimulated by lipid, and degradation of the tetratricopeptide repeat domain was decreased by association with lipid. A truncated mutant missing 13 C-terminal residues was also insensitive to lipid and was as active as full-length, lipid-stimulated enzyme. These results suggest that the C-terminal and N-terminal domain act in a coordinated manner to suppress the activity of protein phosphatase 5 and mediate its activation by lipid. These regions may be targets for the regulation of protein phosphatase 5 activity in vivo.  相似文献   

5.
We use site-directed mutagenesis to clarify the role of effector-mediated oligomerization changes on the modulation of the activity of Escherichia coli carbamoyl phosphate synthetase (CPS) by its allosteric activator ornithine and its inhibitor UMP. The regulatory domain mutations H975L, L990A and N992A abolished, and N987V decreased CPS oligomerization. The oligomerization domain mutation L421E prevented tetramer but not dimer formation. None of the mutations had drastic effects on enzyme activity or changed the sensitivity or apparent affinity of CPS for ornithine and UMP. Our findings exclude the involvement of oligomerization changes in the control of CPS activity, and show that CPS dimers are formed by the interactions across regulatory domains, and tetramers by the interactions of two dimers across the oligomerization domains. A mechanism for effector-mediated changes of the oligomerization state is proposed.  相似文献   

6.
Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of ATP. The enzyme consists of a large synthetase subunit and a small amidotransferase subunit. The small subunit is structurally bilobal. The N-terminal domain is unique compared to the sequences of other known proteins. The C-terminal domain, which contains the direct catalytic residues for the amidotransferase activity of CPS, is homologous to other members of the Triad glutamine amidotransferases. The two domains are linked by a hinge-like loop, which contains a type II beta turn. The role of this loop in the hydrolysis of glutamine and the formation of carbamoyl phosphate was probed by site-directed mutagenesis. Based upon the observed kinetic properties of the mutants, the modifications to the small subunit can be separated into two groups. The first group consists of G152I, G155I, and Delta155. Attempts to disrupt the turn conformation were made by the deletion of Gly-155 or substitution of the two glycine residues with isoleucine. However, these mutations only have minor effects on the kinetic properties of the enzyme. The second group includes L153W, L153G/N154G, and a ternary complex consisting of the intact large subunit plus the separate N- and C-terminal domains of the small subunit. Although the ability to synthesize carbamoyl phosphate is retained in these enzymes, the hydrolysis of glutamine is partially uncoupled from the synthetase reaction. It is concluded that the hinge loop, but not the type-II turn structure of the loop per se, is important for maintaining the proper interface interactions between the two subunits and the catalytic coupling of the partial reactions occurring within the separate subunits of CPS.  相似文献   

7.
N-acetyl-l-glutamate synthase (NAGS), the first enzyme of bacterial/plant arginine biosynthesis and an essential activator of the urea cycle in animals, is, respectively, arginine-inhibited and activated. Site-directed mutagenesis of recombinant Pseudomonas aeruginosa NAGS (PaNAGS) delineates the arginine site in the PaNAGS acetylglutamate kinase-like domain, and, by extension, in human NAGS. Key residues for glutamate binding are identified in the acetyltransferase domain. However, the acetylglutamate kinase-like domain may modulate glutamate binding, since one mutation affecting this domain increases the Km for glutamate. The effects on PaNAGS of two mutations found in human NAGS deficiency support the similarity of bacterial and human NAGSs despite their low sequence identity.  相似文献   

8.
Kim J  Howell S  Huang X  Raushel FM 《Biochemistry》2002,41(42):12575-12581
The X-ray crystal structure of carbamoyl phosphate synthetase (CPS) from Escherichia coli has unveiled the existence of two molecular tunnels within the heterodimeric enzyme. These two interdomain tunnels connect the three distinct active sites within this remarkably complex protein and apparently function as conduits for the transport of unstable reaction intermediates between successive active sites. The operational significance of the ammonia tunnel for the migration of NH3 is supported experimentally by isotope competition and protein modification. The passage of carbamate through the carbamate tunnel has now been assessed by the insertion of site-directed structural blockages within this tunnel. Gln-22, Ala-23, and Gly-575 from the large subunit of CPS were substituted by mutagenesis with bulkier amino acids in an attempt to obstruct and/or hinder the passage of the unstable intermediate through the carbamate tunnel. The structurally modified proteins G575L, A23L/G575S, and A23L/G575L exhibited a substantially reduced rate of carbamoyl phosphate synthesis, but the rate of ATP turnover and glutamine hydrolysis was not significantly altered. These data are consistent with a model for the catalytic mechanism of CPS that requires the diffusion of carbamate through the interior of the enzyme from the site of synthesis within the N-terminal domain of the large subunit to the site of phosphorylation within the C-terminal domain. The partial reactions of CPS have not been significantly impaired by these mutations, and thus, the catalytic machinery at the individual active sites has not been functionally perturbed.  相似文献   

9.
Carbamoyl Phosphate Synthetase 1 deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder, potentially leading to lethal hyperammonemia. Based on the age of onset, there are two distinct phenotypes: neonatal and late form. The CPS1 enzyme, located in the mitochondrial matrix of hepatocytes and epithelial cells of intestinal mucosa, is encoded by the CPS1 gene. At present more than 220 clear-cut genetic lesions leading to CPS1D have been reported. As most of them are private mutations diagnosis is complicated.Here we report an overview of the main clinical findings and biochemical and molecular data of 13 CPS1D Italian patients. In two of them, one with the neonatal form and one with the late form, cadaveric auxiliary liver transplant was performed. Mutation analysis in these patients identified 17 genetic lesions, 9 of which were new confirming their “private” nature. Seven of the newly identified mutations were missense/nonsense changes. In order to study their protein level effects, we performed an in silico analysis whose results indicate that the amino acid substitutions occur at evolutionary conserved positions and affect residues necessary for enzyme stability or function.  相似文献   

10.
11.
The roles of three residues (betaHis91, betaAsp213, and betaAsn222) implicated in energy transduction in the membrane-spanning domain II of the proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli have been examined using site-directed mutagenesis. All mutations affected transhydrogenation and proton pumping activities, although to various extents. Replacing betaHis91 or betaAsn222 of domain II by the basic residues lysine or arginine resulted in occlusion of NADP(H) at the NADP(H)-binding site of domain III. This was not seen with betaD213K or betaD213R mutants. It is suggested that betaHis91 and betaAsn222 interact with betaAsp392, a residue probably involved in initiating conformational changes at the NADP(H)-binding site in the normal catalytic cycle of the enzyme (M. Jeeves et al. (2000) Biochim. Biophys. Acta 1459, 248-257). The introduced positive charges in the betaHis91 and betaAsn222 mutants might stabilize the carboxyl group of betaAsp392 in its anionic form, thus locking the NADP(H)-binding site in the occluded conformation. In comparison with the nonmutant enzyme, and those of mutants of betaAsp213, most mutant enzymes at betaHis91 and betaAsn222 bound NADP(H) more slowly at the NADP(H)-binding site. This is consistent with the effect of these two residues on the binding site. We could not demonstrate by mutation or crosslinking or through the formation of eximers with pyrene maleimide that betaHis91 and betaAsn222 were in proximity in domain II.  相似文献   

12.
Mitochondria are the primary locus for the generation of reactive nitrogen species including peroxynitrite and subsequent protein tyrosine nitration. Protein tyrosine nitration may have important functional and biological consequences such as alteration of enzyme catalytic activity. In the present study, mouse liver mitochondria were incubated with peroxynitrite, and the mitochondrial proteins were separated by 1D and 2D gel electrophoresis. Nitrotyrosinylated proteins were detected with an anti-nitrotyrosine antibody. One of the major proteins nitrated by peroxynitrite was carbamoyl phosphate synthetase 1 (CPS1) as identified by LC-MS protein analysis and Western blotting. The band intensity of nitration normalized to CPS1 was increased in a peroxynitrite concentration-dependent manner. In addition, CPS1 activity was decreased by treatment with peroxynitrite in a peroxynitrite concentration- and time-dependent manner. The decreased CPS1 activity was not recovered by treatment with reduced glutathione, suggesting that the decrease of the CPS1 activity is due to tyrosine nitration rather than cysteine oxidation. LC-MS analysis of in-gel digested samples, and a Popitam-based modification search located 5 out of 36 tyrosine residues in CPS1 that were nitrated. Taken together with previous findings regarding CPS1 structure and function, homology modeling of mouse CPS1 suggested that nitration at Y1450 in an α-helix of allosteric domain prevents activation of CPS1 by its activator, N-acetyl-l-glutamate. In conclusion, this study demonstrated the tyrosine nitration of CPS1 by peroxynitrite and its functional consequence. Since CPS1 is responsible for ammonia removal in the urea cycle, nitration of CPS1 with attenuated function might be involved in some diseases and drug-induced toxicities associated with mitochondrial dysfunction.  相似文献   

13.
14.
为了建立聚乙二醇 (PEG) 巯基定点修饰溶葡球菌酶的方法,并检验假定连接区的突变与修饰对酶活的影响,对溶葡球菌酶的假定连接区进行了巯基聚乙二醇定点修饰研究。通过分析溶葡球菌酶的结构特征,选择两个结构域之间的氨基酸 (133-154aa) 进行定点突变引入半胱氨酸残基。使用单甲氧基聚乙二醇马来酰亚胺 (mPEG-MAL) 进行定点修饰,对修饰后的酶进行纯化并测定酶活性。结果表明定点突变的半胱氨酸残基PEG修饰效率高、产物单一,运用简便的Ni2+-NTA柱亲和层析法实现了一步分离,获得了高纯度的目标蛋白,但在连接区进行定点突变及PEG定点修饰后的酶活有不同程度的降低,表明假定连接区部分位点的PEG修饰会对溶葡球菌酶的催化活性产生一定影响。  相似文献   

15.
After the urea cycle was proposed, considerable efforts were put forth to identify critical intermediates. This was then followed by studies of dietary and nutritional control of urea cycle enzyme activity and allosteric effectors of urea cycle enzymes. Correlation of urea cycle enzyme activity with isolated cell experiments indicated conditions where enzyme activity would be rate limiting. At physiological levels of ammonia the activation of carbamoyl-phosphate synthetase (EC 6.3.4.16) by N-acetylglutamate (NAG) is important. Various levels of NAG corresponded well with changes in the rate of citrulline and urea synthesis. Arginine was found to be an allosteric activator of N-acetylglutamate synthetase (EC 2.3.1.1). Therefore, it was possible that the rate of carbamoyl phosphate synthesis was dependent on the level of urea cycle intermediates, particularly arginine. Evidence for arginine in the regulation of NAG synthesis is not as clear as for NAG on carbamoyl phosphate synthetase I. The concentration of hepatic arginine is not necessarily an indication of the mitochondrial concentration. Only mitochondrial arginine stimulates the N-acetylglutamate synthetase. Recent studies indicate that the mitochondrial concentration of arginine is higher than the cytosolic concentration and is well above the Ka for N-acetylglutamate synthetase. Therefore, it appears that changes in arginine concentration are not physiologically important in regulating levels of NAG. However, it is possible that responses to the effector may vary with time after eating, and it may be this responsiveness that controls the level of NAG and thereby urea synthesis.  相似文献   

16.
Escherichia coli signal peptidase I (SPase I) is a membrane-bound serine endopeptidase that catalyses the cleavage of signal peptides from the pre-forms of membrane or secretory proteins. Our previous studies using chemical modification and site-directed mutagenesis suggested that Trp(300) and Arg(77), Arg(222), Arg(315) and Arg(318) are important for the proper and stable conformation of the active site of SPase I. Interestingly, many of these residues reside in the C-terminal region of the enzyme. As a continuation of these studies, we investigated in the present study the effects of mutations in the C-terminal region including amino acid residues at positions from 319 to 323 by deletions and site-directed mutagenesis. As a result, the deletion of the C-terminal His(323) was shown to scarcely affect the enzyme activity of SPase I, whereas the deletion of Gly(321)-His(323) or Ile(319)-His(323) as well as the point mutation of Ile(322) to alanine was shown to decrease significantly both the activity in vitro and in vivo without a big gross conformational change in the enzyme. These results suggest a significant contribution of Ile(322) to the construction and maintenance of the proper and critical local conformation backing up the active site of SPase I.  相似文献   

17.
The influence of the N-terminal residues 203-214 and the linker domain on motions in the human topoisomerase I-DNA complex has been investigated by comparing the molecular dynamics simulations of the system with (topo70) or without (topo58/6.3) these regions. Topo58/6.3 is found to fluctuate more than topo70, indicating that the presence of the N-terminal residues and the linker domain dampen the core and C-terminal fluctuations. The simulations also show that residues 203-207 and the linker domain participate in a network of correlated movements with key regions of the enzyme, involved in the human topoisomerase I catalytic cycle, providing a structural-dynamical explanation for the better DNA relaxation activity of topo70 when compared to topo58/6.3. The data have been examined in relation to a wealth of biochemical, site-directed mutagenesis and crystallographic data on human topoisomerase I. The simulations finally show the occurrence of a network of direct and water mediated hydrogen bonds in the proximity of the active site, and the presence of a water molecule in the appropriate position to accept a proton from the catalytic Tyr-723 residue, suggesting that water molecules have an important role in the stabilization and function of this enzyme.  相似文献   

18.
Regulation of Rubisco activase and its interaction with Rubisco   总被引:2,自引:0,他引:2  
The large, alpha-isoform of Rubisco activase confers redox regulation of the ATP/ADP response of the ATP hydrolysis and Rubisco activation activities of the multimeric activase holoenzyme complex. The alpha-isoform has a C-terminal extension that contains the redox-sensitive cysteine residues and is characterized by a high content of acidic residues. Cross-linking and site-directed mutagenesis studies of the C-terminal extension that have provided new insights into the mechanism of redox regulation are reviewed. Also reviewed are new details about the interaction between activase and Rubisco and the likely mechanism of 'activation' that resulted from mutagenesis in a 'Sensor 2' domain of activase that AAA(+) proteins often use for substrate recognition. Two activase residues in this domain were identified that are involved in Rubisco recognition. The results directly complement earlier studies that identified critical residues for activase recognition in the large subunit of Rubisco.  相似文献   

19.
In photosynthetic organisms, thioredoxin-dependent redox regulation is a well established mechanism involved in the control of a large number of cellular processes, including the Calvin-Benson cycle. Indeed, 4 of 11 enzymes of this cycle are activated in the light through dithiol/disulfide interchanges controlled by chloroplastic thioredoxin. Recently, several proteomics-based approaches suggested that not only four but all enzymes of the Calvin-Benson cycle may withstand redox regulation. Here, we characterized the redox features of the Calvin-Benson enzyme phosphoglycerate kinase (PGK1) from the eukaryotic green alga Chlamydomonas reinhardtii, and we show that C. reinhardtii PGK1 (CrPGK1) activity is inhibited by the formation of a single regulatory disulfide bond with a low midpoint redox potential (−335 mV at pH 7.9). CrPGK1 oxidation was found to affect the turnover number without altering the affinity for substrates, whereas the enzyme activation appeared to be specifically controlled by f-type thioredoxin. Using a combination of site-directed mutagenesis, thiol titration, mass spectrometry analyses, and three-dimensional modeling, the regulatory disulfide bond was shown to involve the not strictly conserved Cys227 and Cys361. Based on molecular mechanics calculation, the formation of the disulfide is proposed to impose structural constraints in the C-terminal domain of the enzyme that may lower its catalytic efficiency. It is therefore concluded that CrPGK1 might constitute an additional light-modulated Calvin-Benson cycle enzyme with a low activity in the dark and a TRX-dependent activation in the light. These results are also discussed from an evolutionary point of view.  相似文献   

20.
The C-terminal domain of Bacillus sp. strain TS-23 -amylase (BLA) has been known to be involved in the raw starch-binding activity of the enzyme. Sequence comparison revealed that Thr-527, Trp-545, Trp-561, Lys-576, and Trp-588 in this domain are highly conserved in the aligned enzymes. To understand structure-function relationships in the starch-binding domain of BLA, site-directed mutagenesis was conducted to replace these residues with leucine or isoleucine. The overexpressed enzymes have been purified by nickel-chelate chromatography, and the molecular mass of the purified proteins was approximately 64.5 kDa. Starch-binding assay showed that the binding activities of the single-mutated enzymes were significantly reduced, while the combinational mutations did not lead to a complete loss of the activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号