首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
For cells to adhere, migrate and proliferate, remodeling of the actin cytoskeleton is required. This process consumes a large amount of ATP while having an intimate connection with cellular metabolism. Signaling pathways that regulate energy homeostasis can also affect actin dynamics, whereas a variety of actin binding proteins directly or indirectly interact with the anabolic and catabolic regulators in cells. Here, we discuss the inter-regulation between actin filaments and cellular metabolism, reviewing recent discoveries on key metabolic enzymes that respond to actin remodeling as well as historical findings on metabolic stress-induced cytoskeletal reorganization. We also address emerging techniques that would benefit the study of cytoskeletal dynamics and cellular metabolism in high spatial-temporal resolution.  相似文献   

2.
Regulated disassembly of actin filaments is involved in several cellular processes that require dynamic rearrangement of the actin cytoskeleton. Actin-interacting protein (AIP) 1 specifically enhances disassembly of actin-depolymerizing factor (ADF)/cofilin-bound actin filaments. In vitro, AIP1 actively disassembles filaments, caps barbed ends, and binds to the side of filaments. However, how AIP1 functions in the cellular actin cytoskeletal dynamics is not understood. We compared biochemical and in vivo activities of mutant UNC-78 proteins and found that impaired activity of mutant UNC-78 proteins to enhance disassembly of ADF/cofilin-bound actin filaments is associated with inability to regulate striated organization of actin filaments in muscle cells. Six functionally important residues are present in the N-terminal beta-propeller, whereas one residue is located in the C-terminal beta-propeller, suggesting the presence of two separate sites for interaction with ADF/cofilin and actin. In vitro, these mutant UNC-78 proteins exhibited variable alterations in actin disassembly and/or barbed end-capping activities, suggesting that both activities are important for its in vivo function. These results indicate that the actin-regulating activity of AIP1 in cooperation with ADF/cofilin is essential for its in vivo function to regulate actin filament organization in muscle cells.  相似文献   

3.
微丝骨架在细胞的生命活动中具有重要的功能,而其动态的解聚聚合特性是其实现功能的前提. 丝束蛋白(fimbrin/plastin)做为微丝结合蛋白质,是微丝骨架的重要调控因子之一,含有2个肌动蛋白结合结构域,目前对其结合微丝的机制并不清楚. 本文以烟草丝束蛋白的肌动蛋白结合结构域2(NtFAbd2) 为研究对象,通过原核细胞表达纯化NtFAbd2,利用体外沉淀法分析发现,NtFAbd2能够与微丝结合;利用激光共聚焦扫描显微镜分析发现,在烟草BY-2悬浮细胞内,NtAbd2-GFP与微丝共分布,这些结果为深入分析植物丝束蛋白的作用机制提供了新的数据.  相似文献   

4.
Actin filaments and microtubules are principal components of the cytoskeleton that regulate the basic cellular phenomena underlying many fundamental cellular processes. Therefore, analyzing their dynamics in living cells is important for understanding cellular events more precisely. In this article, we report two novel transgenic zebrafish lines expressing red fluorescent proteins tagged with Lifeact or EB1 that interact with actin filaments and microtubule plus ends, respectively, under the control of the GAL4‐UAS system. Using these transgenic lines, we could detect F‐actin and microtubule plus end dynamics in specific tissues of living zebrafish embryos by crossing with GAL4 driver lines. In addition, we could achieve multi‐color imaging using these transgenic lines with GFP‐expressing transgenic lines. Therefore, our transgenic lines that carry UAS‐driven red fluorescent cytoskeletal probes are useful tools for analyzing spatiotemporal changes of the cytoskeletal elements using multicolor live imaging.  相似文献   

5.
Actin cytoskeleton undergoes rapid reorganization in response to internal and external cues. How the dynamics of actin cytoskeleton are regulated, and how its dynamics relate to its function are fundamental questions in plant cell biology. The pollen tube is a well characterized actin-based cell morphogenesis in plants. One of the striking features of actin cytoskeleton characterized in the pollen tube is its surprisingly low level of actin polymer. This special phenomenon might relate to the function of actin cytoskeleton in pollen tubes. Understanding the molecular mechanism underlying this special phenomenon requires careful analysis of actin-binding proteins that modulate actin dynamics directly. Recent biochemical and biophysical analyses of several highly conserved plant actin-binding proteins reveal unusual and unexpected properties, which emphasizes the importance of carefully analyzing their action mechanism and cellular activity. In this review, we highlight an actin monomer sequestering protein, a barbed end capping protein and an F-actin severing and dynamizing protein in plant. We propose that these proteins function in harmony to regulate actin dynamics and maintain the low level of actin polymer in pollen tubes.  相似文献   

6.
A convergence of cellular, genetic and biochemical studies supports the hypothesis that the actin cytoskeleton is coupled to endocytic processes, but the roles played by actin filaments during endocytosis are not yet clear. Recent studies have identified several proteins that may functionally link the endocytic machinery with actin filament dynamics. Three of these proteins, Abp1p, Pan1p and cortactin, are activators of actin assembly nucleated by the Arp2/3 complex, a key regulator of actin assembly in vivo. Two others, intersectin and syndapin, bind N-WASp, a potent activator of actin assembly via the Arp2/3 complex. All of these proteins also bind components of the endocytic machinery, and thus, could coordinately regulate actin assembly and trafficking events. Hip1R, an F-actin-binding protein that associates with clathrin-coated vesicles, may physically link endocytic vesicles to actin filaments. The GTPase dynamin is implicated in modulating actin filaments at specialized actin-rich structures of the cell cortex, suggesting that dynamin may regulate the organization of cortical actin filaments as well as regulate actin dynamics during endocytosis. Finally, myosin VI may generate actin-dependent forces for membrane invagination or vesicle movement during the early stages of endocytosis.  相似文献   

7.
Arf family proteins are critical regulators of intracellular trafficking and actin cytoskeleton dynamics. To carry out their cellular functions, Arf family proteins interact with various effectors that differ in nature and structure. Understanding how these proteins interact with structurally different partners and are distinguished by specific effectors while being closely related requires a structural characterization and comparison of the various Arf family:effector complexes. Recent structural reports of Arf and Arl proteins in complex with different downstream effectors shed new light on general and specific structural recognition determinants characteristic of Arf family proteins.  相似文献   

8.
RGK proteins constitute a novel subfamily of small Ras-related proteins that function as potent inhibitors of voltage-dependent (VDCC) Ca(2+) channels and regulators of actin cytoskeletal dynamics. Within the larger Ras superfamily, RGK proteins have distinct regulatory and structural characteristics, including nonconservative amino acid substitutions within regions known to participate in nucleotide binding and hydrolysis and a C-terminal extension that contains conserved regulatory sites which control both subcellular localization and function. RGK GTPases interact with the VDCC beta-subunit (Ca(V)beta) and inhibit Rho/Rho kinase signaling to regulate VDCC activity and the cytoskeleton respectively. Binding of both calmodulin and 14-3-3 to RGK proteins, and regulation by phosphorylation controls cellular trafficking and the downstream signaling of RGK proteins, suggesting that a complex interplay between interacting protein factors and trafficking contribute to their regulation.  相似文献   

9.
Annexin-actin interactions   总被引:1,自引:0,他引:1  
The actin cytoskeleton is a malleable framework of polymerised actin monomers that may be rapidly restructured to enable diverse cellular activities such as motility, endocytosis and cytokinesis. The regulation of actin dynamics involves the coordinated activity of numerous proteins, among which members of the annexin family of Ca2+- and phospholipid-binding proteins play an important role. Although the roles of annexins in actin dynamics are not understood at a mechanistic level, annexins have the requisite properties to integrate Ca2+-signaling with actin dynamics at membrane contact sites. In this review we discuss the current state of knowledge on this topic, and consider how and where annexins may fit into the complex molecular machinery that regulates the actin cytoskeleton.  相似文献   

10.
Rnd proteins comprise a branch of the Rho family of small GTP-binding proteins, which have been implicated in rearrangements of the actin cytoskeleton and microtubule dynamics. Particularly in the nervous system, Rnd family proteins regulate neurite formation, dendrite development and axonal branching. A secreted form of the co-chaperone Stress-Inducible Protein 1 (STI1) has been described as a prion protein partner that is involved in several processes of the nervous system, such as neurite outgrowth, neuroprotection, astrocyte development, and the self-renewal of neural progenitor cells. We show that cytoplasmic STI1 directly interacts with the GTPase Rnd1. This interaction is specific for the Rnd1 member of the Rnd family. In the COS collapse assay, overexpression of STI1 prevents Rnd1–plexin-A1-mediated cytoskeleton retraction. In PC-12 cells, overexpression of STI1 enhances neurite outgrowth in cellular processes initially established by Rnd1. Therefore, we propose that STI1 participates in Rnd1-induced signal transduction pathways that are involved in the dynamics of the actin cytoskeleton.  相似文献   

11.
Clathrin-mediated endocytosis is a major cellular pathway for internalization of proteins and lipids and for recycling of synaptic vesicles. The GTPase dynamin plays a key role in this process, and the proline-rich domain of dynamin participates in various protein-protein interactions to ensure a proper coordination of endocytic processes. Although dynamin is not directly associated with actin, several dynamin-binding proteins can interact with actin or with proteins that regulate actin assembly, thereby coordinately regulating actin assembly and trafficking events. This article summarizes dynamin interactions with various Src homology 3-containing proteins, many of which are actin-binding proteins. It also discusses the recently identified two new dynamin binding proteins, SH3 protein interacting with Nck, 90 kDa/Wiskott-Aldrich syndrome protein interacting with SH3 protein (SPIN90/WISH) and sorting nexin 9, and outlines their potential role as a link between endocytosis and actin dynamics.  相似文献   

12.
Actin dynamics provide the driving force for many cellular processes including motility and endocytosis. Among the central cytoskeletal regulators are actin-depolymerizing factor (ADF)/cofilin, which depolymerizes actin filaments, and twinfilin, which sequesters actin monomers and caps filament barbed ends. Both interact with actin through an ADF homology (ADF-H) domain, which is also found in several other actin-binding proteins. However, in the absence of an atomic structure for the ADF-H domain in complex with actin, the mechanism by which these proteins interact with actin has remained unknown. Here, we present the crystal structure of twinfilin's C-terminal ADF-H domain in complex with an actin monomer. This domain binds between actin subdomains 1 and 3 through an interface that is conserved among ADF-H domain proteins. Based on this structure, we suggest a mechanism by which ADF/cofilin and twinfilin inhibit nucleotide exchange of actin monomers and present a model for how ADF/cofilin induces filament depolymerization by weakening intrafilament interactions.  相似文献   

13.
The actin cytoskeleton plays a central role in many cell biological processes. The structure and dynamics of the actin cytoskeleton are regulated by numerous actin-binding proteins that usually contain one of the few known actin-binding motifs. WH2 domain (WASP homology domain-2) is a approximately 35 residue actin monomer-binding motif, that is found in many different regulators of the actin cytoskeleton, including the beta-thymosins, ciboulot, WASP (Wiskott Aldrich syndrome protein), verprolin/WIP (WASP-interacting protein), Srv2/CAP (adenylyl cyclase-associated protein) and several uncharacterized proteins. The most highly conserved residues in the WH2 domain are important in beta-thymosin's interactions with actin monomers, suggesting that all WH2 domains may interact with actin monomers through similar interfaces. Our sequence database searches did not reveal any WH2 domain-containing proteins in plants. However, we found three classes of these proteins: WASP, Srv2/CAP and verprolin/WIP in yeast and animals. This suggests that the WH2 domain is an ancient actin monomer-binding motif that existed before the divergence of fungal and animal lineages.  相似文献   

14.
Barak Reicher 《FEBS letters》2010,584(24):4858-4864
Dynamic rearrangements of the actin cytoskeleton, following T-cell antigen receptor (TCR) engagement, provide the structural matrix and flexibility to enable intracellular signal transduction, cellular and subcellular remodeling, and driving effector functions. Recently developed cutting-edge imaging technologies have facilitated the study of TCR signaling and its role in actin-dependent processes. In this review, we describe how TCR signaling cascades induce the activation of actin regulatory proteins and the formation of actin networks, and how actin dynamics is important for T-cell homeostasis, activation, migration, and other effector functions.  相似文献   

15.
14-3-3 Proteins are thought to function as adapters in signaling complexes [1,2], thereby participating in cellular processes including vesicle trafficking and exocytosis [3,4]. To delineate further the function of 14-3-3 proteins during vesicle trafficking, we generated dominant-negative alleles of the two 14-3-3 homologues, Bmh1p and Bmh2p, in budding yeast and analyzed their phenotype in respect to exocytosis. Cells overexpressing the carboxy-terminal region of Bmh2p failed to polarize vesicular transport although bulk exocytosis remained unaffected and showed a disrupted actin cytoskeleton. Our data suggest that 14-3-3 proteins may act primarily on the actin cytoskeleton to regulate vesicle targeting.  相似文献   

16.
Phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P(2)] is a key second messenger that regulates actin and membrane dynamics, as well as other cellular processes. Many of the effects of PtdIns(4,5)P(2) are mediated by binding to effector proteins that contain a pleckstrin homology (PH) domain. Here, we identify two novel effectors of PtdIns(4,5)P(2) in the budding yeast Saccharomyces cerevisiae: the PH domain containing protein Slm1 and its homolog Slm2. Slm1 and Slm2 serve redundant roles essential for cell growth and actin cytoskeleton polarization. Slm1 and Slm2 bind PtdIns(4,5)P(2) through their PH domains. In addition, Slm1 and Slm2 physically interact with Avo2 and Bit61, two components of the TORC2 signaling complex, which mediates Tor2 signaling to the actin cytoskeleton. Together, these interactions coordinately regulate Slm1 targeting to the plasma membrane. Our results thus identify two novel effectors of PtdIns(4,5)P(2) regulating cell growth and actin organization and suggest that Slm1 and Slm2 integrate inputs from the PtdIns(4,5)P(2) and TORC2 to modulate polarized actin assembly and growth.  相似文献   

17.
The function of the NF2 tumor suppressor merlin has remained elusive despite increasing evidence for its role in actin cytoskeleton reorganization. The closely related ERM proteins (ezrin, radixin, and moesin) act as linkers between the cell membrane and cytoskeleton, and have also been implicated as active actin reorganizers. We report here that merlin and the ERMs can interact with and regulate N-WASP, a critical regulator of actin dynamics. Merlin and moesin were found to inhibit N-WASP-mediated actin assembly in vitro, a function that appears independent of their ability to bind actin. Furthermore, exogenous expression of a constitutively active ERM inhibits N-WASP-dependent Shigella tail formation, suggesting that the ERMs may function as inhibitors of N-WASP function in vivo. This novel function of merlin and the ERMs illustrates a mechanism by which these proteins directly exert their effects on actin reorganization and also provides new insight into N-WASP regulation.  相似文献   

18.
WASP-homology 2 (WH2) domains, which were first identified in the WASP/Scar (suppressor of cAMP receptor)/WAVE (WASP-family verprolin homologous protein) family of proteins, are multifunctional regulators of actin assembly. Two recently discovered actin-binding proteins, Spire and Cordon-bleu (Cobl), which have roles in axis patterning in developmental processes, use repeats of WH2 domains to generate a large repertoire of novel regulatory activities, including G-actin sequestration, actin-filament nucleation, filament severing and barbed-end dynamics regulation. We describe how these multiple functions selectively operate in a cellular context to control the dynamics of the actin cytoskeleton. In vivo, Spire and Cobl can synergize with other actin regulators. As an example, we outline potential methods to gain insight into the functional basis for reported genetic interactions among Spire, profilin and formin.  相似文献   

19.
Cytoskeleton and plant organogenesis   总被引:4,自引:0,他引:4  
The functions of microtubules and actin filaments during various processes that are essential for the growth, reproduction and survival of single plant cells have been well characterized. A large number of plant structural cytoskeletal or cytoskeleton-associated proteins, as well as genes encoding such proteins, have been identified. Although many of these genes and proteins have been partially characterized with respect to their functions, a coherent picture of how they interact to execute cytoskeletal functions in plant cells has yet to emerge. Cytoskeleton-controlled cellular processes are expected to play crucial roles during plant cell differentiation and organogenesis, but what exactly these roles are has only been investigated in a limited number of studies in the whole plant context. The intent of this review is to discuss the results of these studies in the light of what is known about the cellular functions of the plant cytoskeleton, and about the proteins and genes that are required for them. Directions are outlined for future work to advance our understanding of how the cytoskeleton contributes to plant organogenesis and development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号