首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Quantitative genetic divergence may be driven by drift or selection. The rainbowfish Melanotaenia australis exhibits phenotypic divergence among populations in Western Australia, although the mechanisms driving this divergence are unknown. We used microsatellites to assess neutral genetic divergence (FST), and found a hierarchical pattern of subdivision consistent with low divergence between upstream and downstream populations (within drainages), moderate divergence between drainages (within regions), and high divergence between regions. Using a common‐garden approach, we measured quantitative genetic divergence in phenotypic traits (QST). By comparing this to expectations from neutral processes (FST), we concluded that the effect of selection varies depending on the spatial scale considered. Within drainages, selection may be causing divergence between upstream and downstream phenotypes but, between regions, selection appears to homogenize phenotypes. This highlights the importance of spatial scale in studies of this kind, and suggests that, because variance in selection pressures can drive speciation, polymorphism in M. australis may represent speciation in action. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 144–160.  相似文献   

2.
Microsatellites were isolated from the western rainbowfish, Melanotaenia australis, for use as molecular markers. Twelve polymorphic loci were found. When characterized using 32 individuals, these had between two and 24 alleles each, and observed heterozygosities ranged from 0.00 to 0.97. Ten loci were in Hardy-Weinberg equilibrium, and all of them showed independent inheritance. These loci will be useful for the study of molecular subdivision in this species.  相似文献   

3.
    
The Kimberley region of Western Australia possesses a poorly studied freshwater fish fauna with high endemism in an aquatic landscape subject to monsoonal floods and dry season isolation. In the first population genetic study of freshwater fish in this region, the authors tested the effects of geographic barriers on genetic structure at multiple spatial scales in east Kimberley populations of the western rainbowfish, Melanotaenia australis , the most widespread and abundant species in the region. Based on allozyme comparisons, hierarchical analysis of F ST revealed increasing genetic subdivision with spatial scale. Minimal genetic structure within creeklines demonstrated that wet season dispersal, rather than dry season isolation, determines genetic structure at small scales. At the scale of sub-catchments, a pattern of isolation by distance along creeklines was evident. Genetic subdivision between adjacent river systems was greater between rivers separated by a plateau than by lowlands. This implies greater connectivity of populations in lowland areas and may explain the greater similarity of the east Kimberly freshwater fish fauna with lowlands to the east than with the more rugged regions to the west. Similarly, greater connectivity between lowland populations may account for the on-average larger distribution of lowland Melanotaeniids.  相似文献   

4.
    
We examined genetic structure and levels of connectivity among subpopulations within each of four cryptic species belonging to the freshwater mussel genus Velesunio. We used allozymes and a fragment of the mitochondrial cytochrome c oxidase I gene to examine genetic variation in populations from isolated waterholes, belonging to four major inland drainages in eastern Australia. Based on evidence from other invertebrates in the region we predicted that, in each species, we would find evidence of historical connectivity among populations from different drainages. This was clearly not the case, as for the two species that occurred in more than one drainage there was evidence of both current and past restriction to gene flow. Moreover, given the potential for extensive dispersal of these mussels through the river systems during flood times via their fish hosts, we predicted low levels of genetic variation among populations from waterholes in the same drainage. Contrary to our expectations, all four species showed some evidence of restricted gene flow among waterholes within drainages. This suggests that either (a) mussel larvae are not produced during flood times, when their fish hosts would be free to move between waterholes, or (b) mussel larvae are attached to their hosts at these times, but the fish movement is limited between waterholes.  相似文献   

5.
    
Analysis of mitochondrial DNA (mtDNA) haplotypes of Sclerotinia sclerotiorum points to a common origin of some genotypes from agricultural populations, especially when compared with two wild populations that are sharply distinguished from the agricultural sample and from each other. Five agricultural population samples from canola (Alberta, Canada and Norway), cabbage (North Carolina, USA), sunflower (Manitoba, Canada and Queensland, Australia) and two Norwegian populations from a wild plant, Ranunculus ficaria were compared. Haplotypes were determined by Southern hybridization of purified organelle DNA from S. sclerotiorum and Neurospora crassa to total genomic DNA of S. sclerotiorum. Each isolate had one haplotype. Haplotypes of S. sclerotiorum from R. ficaria were different between the two wild populations and also from all haplotypes observed in the agricultural populations. Among the wild isolates, DNA fingerprint, mtDNA haplotype and location in the sampling transect were all associated. Among the agricultural isolates, four haplotypes were observed in at least two agricultural populations and one haplotype was observed in all agricultural populations. In the Canadian canola sample some clones had one mtDNA haplotype, indicating association with DNA fingerprint, some clones had more than one haplotype, and some groups of clones shared haplotypes. Some of the haplotype diversity may be due to the presence of extra-chromosomal elements associated with the mitochondria of S. sclerotiorum.  相似文献   

6.
Genetic studies of waterfowl (Anatidae) have observed the full spectrum of mitochondrial (mt) DNA population divergence, from apparent panmixia to deep, reciprocally monophyletic lineages. Yet, these studies often found weak or no nuclear (nu) DNA structure, which was often attributed to male‐biased gene flow, a common behaviour within this family. An alternative explanation for this ‘conflict’ is that the smaller effective population size and faster sorting rate of mtDNA relative to nuDNA lead to different signals of population structure. We tested these alternatives by sequencing 12 nuDNA introns for a Holarctic pair of waterfowl subspecies, the European goosander (Mergus merganser merganser) and the North American common merganser (M. m. americanus), which exhibit strong population structure in mtDNA. We inferred effective population sizes, gene flow and divergence times from published mtDNA sequences and simulated expected differentiation for nuDNA based on those histories. Between Europe and North America, nuDNA ФST was 3.4‐fold lower than mtDNA ФST, a result consistent with differences in sorting rates. However, despite geographically structured and monophyletic mtDNA lineages within continents, nuDNA ФST values were generally zero and significantly lower than predicted. This between‐ and within‐continent contrast held when comparing mtDNA and nuDNA among published studies of ducks. Thus, male‐mediated gene flow is a better explanation than slower sorting rates for limited nuDNA differentiation within continents, which is also supported by nonmolecular data. This study illustrates the value of quantitatively testing discrepancies between mtDNA and nuDNA to reject the null hypothesis that conflict simply reflects different sorting rates.  相似文献   

7.
    
The recent extraction of mitochondrial DNA sequences from three European Neandertal fossils has led many to the conclusion that ancient DNA analysis supports the African replacement model of modern human origins and rejects models of multiregional evolution that propose some Neandertal ancestry in living humans. This conclusion is based, in part, on the lack of regional affinity of Neandertal DNA to that from living Europeans. Consideration of migration matrix models shows that this conclusion is premature, since under a model of interregional gene flow we expect to see similar levels of Neandertal ancestry in all contemporary regions, and living Europeans should not necessarily show closer affinity. The absence of regional affinity in Neandertal DNA does not distinguish between replacement and multiregional models.  相似文献   

8.
    
The ant Formica exsecta has two types of colonies that exist in sympatry but usually as separate subpopulations: colonies with simple social organization and single queens (M type) or colonial networks with multiple queens (P type). We used both nuclear (DNA microsatellites) and mitochondrial markers to study the transition between the social types, and the contribution of males and females in gene flow within and between the types. Our results showed that the social types had different spatial genetic structures. The M subpopulations formed a fairly uniform population, whereas the P subpopulations were, on average, more differentiated from each other than from the nearby M subpopulations and could have been locally established from the M-type colonies, followed by philopatric behavior and restricted emigration of females. Thus, the relationship between the two social types resembles that of source (M type) and sink (P type) populations. The comparison of mitochondrial (phiST) and nuclear (FST) differentiation indicates that the dispersal rate of males is four to five times larger than that of females both among the P-type subpopulations and between the social types. Our results suggest that evolution toward complex social organization can have an important effect on genetic population structure through changes in dispersal behavior associated with different sociogenetic organizations.  相似文献   

9.
唐鱼(Tanichthys albonubes)是为数不多的几种原产中国的世界性观赏鱼类之一。自2003年以来, 多个唐鱼野生种群相继被发现, 其濒危状态和等级由野外灭绝降为极危。为研究唐鱼养殖种群与广州附近野生种群之间的遗传关系, 本文分析了唐鱼3个代表性养殖种群和4个野生种群, 共计186个样本的Cyt b基因、2个核基因(ENC1RAG1)以及13个微卫星位点数据。基于K2P模型的遗传距离结果显示, 唐鱼野生种群间的遗传距离在0.005-0.015之间, 养殖种群间的遗传距离为0.001-0.009。系统发育分析表明, 唐鱼养殖种群包含4个单倍型谱系分支, 其中2个分别与广州附近2个野生种群聚在一起, 另外2个分别独立成支。单倍型网络亲缘关系分析显示, 清远种群只有1个单倍型且与芳村养殖种群共享, 芳村养殖种群拥有最多的单倍型。基于微卫星数据的STRUCTURE分析表明, 所有种群最佳分簇数为2, 清远种群与养殖种群聚为一簇, 良口和石门种群聚为另一簇。主成分分析结果显示, 养殖种群高度重叠并能与野生种群分开, 清远种群与养殖种群存在部分重叠。利用IMa3的基因流分析表明, 存在清远种群至芳村养殖种群的单向基因流。综合本文结果, 作者认为唐鱼养殖种群应起源于广州附近多个野生种群。清远种群来源于养殖种群中的芳村养殖种群。建议在未来唐鱼的保护策略中, 应禁止不规范的放流活动并且禁止将不同野生种群补充至养殖种群, 同时加强唐鱼养殖种群和野生种群的遗传资源管理和持续监测。  相似文献   

10.
Intra-deme molecular diversity in spatially expanding populations   总被引:23,自引:0,他引:23  
We report here a simulation study examining the effect of a recent spatial expansion on the pattern of molecular diversity within a deme. We first simulate a range expansion in a virtual world consisting in a two-dimensional array of demes exchanging a given proportion of migrants (m) with their neighbors. The recorded demographic and migration histories are then used under a coalescent approach to generate the genetic diversity in a sample of genes. We find that the shape of the gene genealogies and the overall pattern of diversity within demes depend not only on the age of the expansion but also on the level of gene flow between neighboring demes, as measured by the product Nm, where N is the size of a deme. For small Nm values (< approximately 20 migrants sent outwards per generation), a substantial proportion of coalescent events occur early in the genealogy, whereas with larger levels of gene flow, most coalescent events occur around the time of the onset of the spatial expansion. Gene genealogies are star shaped, and mismatch distributions are unimodal after a range expansion for large Nm values. In contrast, gene genealogies present a mixture of both very short and very long branch lengths, and mismatch distributions are multimodal for small Nm values. It follows that statistics used in tests of selective neutrality like Tajima's D statistic or Fu's F(S) statistic will show very significant negative values after a spatial expansion only in demes with high Nm values. In the context of human evolution, this difference could explain very simply the fact that analyses of samples of mitochondrial DNA sequences reveal multimodal mismatch distributions in hunter-gatherers and unimodal distributions in post-Neolithic populations. Indeed, the current simulations show that a recent increase in deme size (resulting in a larger Nm value) is sufficient to prevent recent coalescent events and thus lead to unimodal mismatch distributions, even if deme sizes (and therefore Nm values) were previously much smaller. The fact that molecular diversity within deme is so dependent on recent levels of gene flow suggests that it should be possible to estimate Nm values from samples drawn from a single deme.  相似文献   

11.
    
Various intrinsic factors connected to the special features of sociality influence the persistence of social insect populations, including low effective population size, reduced amount of genetic variation easily leading to inbreeding depression, and spatially structured populations. In this work, we studied an isolated, small and fragmented population system of the red wood ant Formica lugubris, and evaluated the impact of social and genetic population structure on the persistence and conservation of the populations. The effective population size was large in our study population because all nests were polygynous. As a result, and despite the apparent isolation, the amount of nuclear genetic variability was similar to that in a nonisolated population system. Lack of inbreeding, as well as a high level of variability, indirectly suggests that this population does not suffer from inbreeding depression. The spatial distribution of genetic variation between local populations suggests intensive, but strongly male-biased, nuclear gene flow. Thus, the persistence of this population system does not seem to be threatened by any immediate social or genetic factor, but colonization of new habitat patches may be difficult because of restricted female dispersal.  相似文献   

12.
    
The major subspecies group of the great tit, Parus major , has experienced demographic and spatial expansions during the last century in several sites at the edges of its distribution range. These expansions, although temporarily very even, have resulted in dissimilar patterns of molecular diversity. Populations locating at regions of contact to other subspecies groups (in Amur, Kirghizia–Kazakhstan, and Iran) show divergence from central population by nuclear and mitochondrial markers. In Amur, gene flow from minor group could be detected based on the existence of private minor alleles in the major population. In Kirghizia and Kazakhstan, the bokharensis and major groups share almost all the microsatellite alleles detected though frequencies differ. In Iran, three geographically close populations are distinct according to the mitochondrial sequences but also indications of present or recent admixture is detected. Populations, which have expanded to regions previously unoccupied by the species (northern UK and Finland), show divergence only by one of the markers. The variability in molecular differentiation may be due to dissimilar expansions, depending on whether the colonized regions have previously been occupied by another subspecies or not, on the amount of colonizing birds, and on the amount of past and present gene flow.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 201–210.  相似文献   

13.
  总被引:2,自引:0,他引:2  
Twenty-one to 58 individual Necator americanus were sampled from each of four villages in south-western China. Each nematode was sequenced for 588 bp of the mitochondrial cytochrome oxidase I gene. Allelic and nucleotide diversity varied two-fold among villages. Overall FST among populations was approximately 0.28, but this large value resulted from one low-diversity population that had a large genetic distance to the other three populations (F(ST) = 0.10 without that population). There was no correlation between geographical and genetic distance among sites. Thus, the genetic structure of this species in China may be characterized by variable effective sizes and uneven movement among sites. We discuss the implications of this genetic structure for vaccine development and the spread of drug resistance in human hookworms, and compare the genetic structure of hookworms with that of other nematodes.  相似文献   

14.
  总被引:9,自引:0,他引:9  
Abstract.— We examined genetic variation at 21 polymorphic allozyme loci, 15 nuclear DNA loci, and mitochondrial DNA in four spawning populations of sockeye salmon ( Oncorhynchus nerka ) from Cook Inlet, Alaska, to test for differences in the patterns of divergence among different types of markers. We were specifically interested in testing the suggestion that natural selection at allozyme loci compromises the effectiveness of these markers for describing the amount and patterns of gene flow among populations. We found concordance among markers in the amount of genetic variation within and among populations, with the striking exception of one allozyme locus ( sAH ), which exhibited more than three times the amount of among-population differentiation as other loci. A consideration of reports of discordance between allozymes and other loci indicates that these differences usually result from one or two exceptional loci. We conclude that it is important to examine many loci when estimating genetic differentiation to infer historical amounts of gene flow and patterns of genetic exchange among populations. It is less important whether those loci are allozymes or nuclear DNA markers.  相似文献   

15.
  总被引:7,自引:0,他引:7  
The Turkic language was introduced in Anatolia at the start of this millennium, by nomadic Turkmen groups from Central Asia. Whether that cultural transition also had significant population-genetics consequences is not fully understood. Three nuclear microsatellite loci, the hypervariable region I of the mitochondrial genome, six microsatellite loci of the Y chromosome, and one Alu insertion (YAP) were amplified and typed in 118 individuals from four populations of Anatolia. For each locus, the number of chromosomes considered varied between 51-200. Genetic variation was large within samples, and much less so between them. The contribution of Central Asian genes to the current Anatolian gene pool was quantified using three different methods, considering for comparison populations of Mediterranean Europe, and Turkic-speaking populations of Central Asia. The most reliable estimates suggest roughly 30% Central Asian admixture for both mitochondrial and Y-chromosome loci. That (admittedly approximate) figure is compatible both with a substantial immigration accompanying the arrival of the Turkmen armies (which is not historically documented), and with continuous gene flow from Asia into Anatolia, at a rate of 1% for 40 generations. Because a military invasion is expected to more deeply affect the male gene pool, similar estimates of admixture for female- and male-transmitted traits are easier to reconcile with continuous migratory contacts between Anatolia and its Asian neighbors, perhaps facilitated by the disappearance of a linguistic barrier between them.  相似文献   

16.
The Australian ghost bat is a large, opportunistic carnivorous species that has undergone a marked range contraction toward more mesic, tropical sites over the past century. Comparison of mitochondrial DNA (mtDNA) control region sequences and six nuclear microsatellite loci in 217 ghost bats from nine populations across subtropical and tropical Australia revealed strong population subdivision (mtDNA φST = 0.80; microsatellites URST = 0.337). Low-latitude (tropical) populations had higher heterozygosity and less marked phylogeographic structure and lower subdivision among sites within regions (within Northern Territory [NT] and within North Queensland [NQ]) than did populations at higher latitudes (subtropical sites; central Queensland [CQ]), although sampling of geographically proximal breeding sites is unavoidably restricted for the latter. Gene flow among populations within each of the northern regions appears to be male biased in that the difference in population subdivision for mtDNA and microsatellites (NT φST = 0.39, URST = 0.02; NQ φST = 0.60, URST = ?0.03) is greater than expected from differences in the effective population size of haploid versus diploid loci. The high level of population subdivision across the range of the ghost bat contrasts with evidence for high gene flow in other chiropteran species and may be due to narrow physiological tolerances and consequent limited availability of roosts for ghost bats, particularly across the subtropical and relatively arid regions. This observation is consistent with the hypothesis that the contraction of the species' range is associated with late Holocene climate change. The extreme isolation among higher-latitude populations may predispose them to additional local extinctions if the processes responsible for the range contraction continue to operate.  相似文献   

17.
    
The major aim of this study was to compare the intraspecific variation and genetic structure of the behaviourally distinct British and Swedish populations of the seaweed fly Coelopa frigida. C. frigida has been the subject of intense study into the basis of female choice. The behaviour of British females is consistent with a 'good genes' model, whereas that of the Swedish flies suggests a Fisher process, in which the difference between the former and the latter is defined by female choice increasing offspring viability in 'good genes' models. Through a study of variability in the mitochondrial cytochrome oxidase II gene from more than 600 flies, we show that there is clear differentiation at the molecular level between the two countries' populations, with an FST of > 75% and no shared haplotypes. Tajima's test reveals an excess of rare variants relative to expectation, which, if not the result of selective sweep, indicates either a population expansion or purifying selection against weakly deleterious variants. Within the two populations, substantial subpopulation differentiation is observed in the UK, where there is also evidence of isolation by distance. Swedish populations exhibit lower variability, and no evidence of isolation by distance, with the latter result possibly being related to the continuous distribution of suitable habitat. The pattern of intraspecific variation is explainable by a combination of contemporary and also historical factors. British and Swedish populations may have been descended from at least two separate founding populations during the recolonization of these areas following Pleistocene glaciations.  相似文献   

18.
    
One of the most widely distributed bats in the New World, the big brown bat (Eptesicus fuscus) exhibits well-documented geographic variation in morphology and life history traits, suggesting the potential for significant phylogeographic structure as well as adaptive differentiation among populations. In a pattern broadly consistent with morphologically defined subspecies, we found deeply divergent mitochondrial lineages restricted to different geographic regions. In contrast, sequence data from two nuclear loci suggest a general lack of regional genetic structure except for peripheral populations in the Caribbean and Mexico/South America. Coalescent analyses suggest that the striking difference in population structure between genomes cannot be attributed solely to different rates of lineage sorting, but is likely due to male-mediated gene flow homogenizing nuclear genetic diversity across most of the continental range. Despite this ongoing gene flow, selection has apparently been effective in producing and maintaining adaptive differentiation among populations, while strong female site fidelity, maintained over the course of millions of years, has produced remarkably deep divergence among geographically isolated matrilines. Our results highlight the importance of evaluating multiple genetic markers for a more complete understanding of population structure and history.  相似文献   

19.
20.
We tested for genetic differentiation among six populations of California sea mussels (Mytilus californianus) sampled across 4000 km of its geographical range by comparing patterns of variation at four independent types of genetic markers: allozymes, single‐copy nuclear DNA markers, and DNA sequences from the male and female mitochondrial genomes. Despite our extensive sampling and genotyping efforts, we detected no significant differences among localities and no signal of isolation by distance suggesting that M. californianus is genetically homogeneous throughout its range. This concordance differs from similar studies on other mytilids, especially in the role of postsettlement selection generating differences between exposed coastal and estuarine habitats. To assess if this homogeneity was due to M. californianus not inhabiting estuarine environments, we reviewed studies comparing allozymes with other classes of nuclear DNA markers. Although both types of markers gave broadly consistent results, there was a bias favouring studies in which allozymes were more divergent than DNA markers (nine to three) and a disproportionate number of these cases involved marine taxa (seven). Furthermore, allozymes were significantly more heterogeneous than DNA markers in three of the four studies that sampled coastal and estuarine habitats. We conclude that the genetic uniformity exhibited by M. californianus may result from a combination of extensive gene flow and the lack of exposure to strong selective gradients across its range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号