共查询到20条相似文献,搜索用时 15 毫秒
1.
Erik van Kampen Olivier Beaslas Reeni B. Hildebrand Bart Lammers Theo J. C. Van Berkel Vesa M. Olkkonen Miranda Van Eck 《PloS one》2014,9(10)
Introduction
Oxysterol binding protein Related Proteins (ORPs) mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown.Methods and Results
LDL receptor knockout (KO) mice were transplanted with bone marrow (BM) from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity.Conclusions
Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis. 相似文献2.
Ivan Maillard Pascal Launois Ioannis Xenarios Jacques A. Louis Hans Acha-Orbea Heidi Diggelmann 《Journal of virology》1998,72(4):2638-2646
Mouse mammary tumor virus (MMTV) is a retrovirus which induces a strong immune response and a dramatic increase in the number of infected cells through the expression of a superantigen (SAg). Many cytokines are likely to be involved in the interaction between MMTV and the immune system. In particular, alpha/beta interferon (IFN-α/β) and gamma interferon (IFN-γ) exert many antiviral and immunomodulatory activities and play a critical role in other viral infections. In this study, we have investigated the importance of interferons during MMTV infection by using mice with a disrupted IFN-α/β or IFN-γ receptor gene. We found that the SAg response to MMTV was not modified in IFN-α/βR0/0 and IFN-γR0/0 mice. This was true both for the early expansion of B and T cells induced by the SAg and for the deletion of SAg-reactive cells at later stages of the infection. In addition, no increase in the amount of proviral DNA was detected in tissues of IFN-α/βR0/0 and IFN-γR0/0 mice, suggesting that interferons are not essential antiviral defense mechanisms during MMTV infection. In contrast, IFN-γR0/0 mice had increased amounts of IL-4 mRNA and an altered usage of immunoglobulin isotypes with a reduced frequency of IgG2a- and IgG3-producing cells. This was associated with lower titers of virus-specific antibodies in serum early after infection, although efficient titers were reached later. 相似文献
3.
4.
《Journal of receptor and signal transduction research》2013,33(3):149-164
Abnormalities in dopamine production and receptor function have been described in human essential hypertension and rodent models of genetic hypertension. All of the five dopamine receptor genes (D1, D2, D3, D4, and D5) expressed in mammals and some of their regulators are in loci linked to hypertension in humans and in rodents. Under normal conditions, D1-like receptors (D1 and D5) inhibit sodium transport in the kidney and the intestine. However, in the Dahl salt-sensitive and spontaneously hypertensive rats, and humans with essential hypertension, the D1-like receptor-mediated inhibition of sodium transport is impaired because of an uncoupling of the D1-like receptor from its G protein/effector complex. The uncoupling is genetic, and receptor-, organ-, and nephron segment-specific. In human essential hypertension, the uncoupling of the D1 receptor from its G protein/effector complex is caused by an agonist-independent serine phosphorylation/desensitization by constitutively active variants of the G protein-coupled receptor kinase type 4. The D5 receptor is also important in blood pressure regulation. Disruption of the D5 or the D1 receptor gene in mice increases blood pressure. However, unlike the D1 receptor, the hypertension in D5 receptor null mice is caused by increased activity of the sympathetic nervous system, apparently due to activation of oxytocin, V1 vasopressin, and non-N-methyl D-aspartate receptors in the central nervous system. The cause of the activation of these receptors remains to be determined. 相似文献
5.
Essential Roles for CD8+ T Cells and Gamma Interferon in Protection of Mice against Retrovirus-Induced Immunosuppression
下载免费PDF全文

Ulf Dittmer Brent Race Karin E. Peterson Ingunn M. Stromnes Ronald J. Messer Kim J. Hasenkrug 《Journal of virology》2002,76(1):450-454
It is known that both animal and human retroviruses typically cause immunosuppression in their respective hosts, but the mechanisms by which this occurs are poorly understood. The present study uses Friend virus (FV) infections of mice as a model to determine how major histocompatibility complex (MHC) genes influence immunosuppression. Previously, MHC-I genes were shown to influence antibody responses to potent antigenic challenges given during acute FV infection. The mapping of an immune response to an MHC-I gene implicated CD8+ T cells in the mechanism, so we directly tested for their role by using in vivo CD8+ T-cell depletions. Mice resistant to FV-induced immunosuppression became susceptible when they were depleted of CD8+ T cells. Resistance also required gamma interferon (IFN-gamma), as in vivo neutralization of IFN-gamma converted mice from a resistant to susceptible phenotype. On the other hand, susceptibility to FV-induced immunosuppression was dependent on the immunosuppressive cytokine, interleukin-10 (IL-10), as antibody responses were restored in susceptible mice when IL-10 function was blocked in vivo. Thus, FV-induced immunosuppression of antibody responses involves complex mechanisms controlled at least in part by CD8+ T cells. 相似文献
6.
7.
Laurence Weiss Christophe Piketty Lambert Assoumou Céline Didier Laure Caccavelli Vladimira Donkova-Petrini Yves Levy Pierre-Marie Girard Marianne Burgard Jean-Paul Viard Christine Rouzioux Dominique Costagliola the ANRS SALTO study group 《PloS one》2010,5(7)
Persistent immune activation plays a central role in driving Human Immunodeficiency Virus (HIV) disease progression. Whether CD4+CD25+ regulatory T cells (Tregs) are harmful by suppressing HIV-specific immune responses and/or beneficial through a decrease in immune activation remains debatable. We analysed the relationship between proportion and number of regulatory T cells (Tregs) and immune activation in HIV-infected patients interrupting an effective antiretroviral therapy (ART). Twenty-five patients were included in a substudy of a prospective multicenter trial of treatment interruption (TI) (ANRS 116). Proportions and numbers of Tregs and the proportion of activated CD4 and CD8 T cells were assessed at baseline and month 12 (M12) of TI. Specific anti-HIV CD4 and CD8 responses were investigated at baseline and M12. Non parametric univariate analyses and multivariate linear regression models were conducted. At baseline, the proportion of Tregs negatively correlated with the proportion of HLA-DR+CD8+T cells (r = −0.519). Following TI, the proportion of Tregs increased from 6.3% to 7.2% (p = 0.029); absolute numbers of Tregs decreased. The increase in the proportion of HLA-DR+CD38+CD8+T cells was significantly related to the increase in proportion of Tregs (p = 0.031). At M12, the proportion of Tregs did not negatively correlate with CD8 T-cell activation. Nevertheless, Tregs retain a suppressive function since depletion of Treg-containing CD4+CD25+ cells led to an increase in lymphoproliferative responses in most patients studied. Our data suggest that Tregs are efficient in controlling residual immune activation in patients with ART-mediated viral suppression. However, the insufficient increase in the proportion and/or the decrease in the absolute number of Tregs result in a failure to control immune activation following TI.
Trial Registration
ClinicalTrials.gov NCT00118677相似文献8.
Shao-Rui Chen Hong Chen Wei-Xiu Yuan Jürgen Wess Hui-Lin Pan 《The Journal of biological chemistry》2014,289(20):14321-14330
Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. 相似文献
9.
Masahito Watanabe Kazuaki Nakano Hitomi Matsunari Taisuke Matsuda Miki Maehara Takahiro Kanai Mirina Kobayashi Yukina Matsumura Rieko Sakai Momoko Kuramoto Gota Hayashida Yoshinori Asano Shuko Takayanagi Yoshikazu Arai Kazuhiro Umeyama Masaki Nagaya Yutaka Hanazono Hiroshi Nagashima 《PloS one》2013,8(10)
Zinc finger nuclease (ZFN) is a powerful tool for genome editing. ZFN-encoding plasmid DNA expression systems have been recently employed for the generation of gene knockout (KO) pigs, although one major limitation of this technology is the use of potentially harmful genome-integrating plasmid DNAs. Here we describe a simple, non-integrating strategy for generating KO pigs using ZFN-encoding mRNA. The interleukin-2 receptor gamma (IL2RG) gene was knocked out in porcine fetal fibroblasts using ZFN-encoding mRNAs, and IL2RG KO pigs were subsequently generated using these KO cells through somatic cell nuclear transfer (SCNT). The resulting IL2RG KO pigs completely lacked a thymus and were deficient in T and NK cells, similar to human X-linked SCID patients. Our findings demonstrate that the combination of ZFN-encoding mRNAs and SCNT provides a simple robust method for producing KO pigs without genomic integration. 相似文献
10.
Bart Lammers Ying Zhao Amanda C. Foks Reeni B. Hildebrand Johan Kuiper Theo J. C. Van Berkel Miranda Van Eck 《PloS one》2012,7(10)
Aim
ATP-binding cassette transporter A1 (ABCA1) is an important mediator of macrophage cholesterol efflux. It mediates the efflux of cellular cholesterol to lipid-poor apolipoprotein A-I. LDL receptor (LDLr) knockout (KO) mice deficient for leukocyte ABCA1 (ABCA1 KO→LDLr KO) show increased atherosclerosis and splenic lipid accumulation despite largely attenuated serum cholesterol levels. In the present study, we aimed to explore the importance of the spleen for the atheroprotective effects of leukocyte ABCA1.Methods
LDLr KO mice were transplanted with bone marrow from ABCA1 KO mice or wild-type (WT) controls. After 8 weeks recovery, mice were either splenectomized (SP-x) or underwent a sham operation, and were subsequently challenged with a Western-type diet (WTD).Results
In agreement with previous studies, the atherosclerotic lesion area in ABCA1 KO→LDLr KO sham animals (655±82×103 µm2) was 1.4-fold (p = 0.03) larger compared to sham WT→LDLr KO mice (459±33×103 µm2) after 8 weeks WTD feeding, despite 1.7-fold (p<0.001) lower serum cholesterol levels. Interestingly, deletion of ABCA1 in leukocytes led to 1.6-fold higher neutrophil content in the spleen in absence of differences in circulating neutrophils. Levels of KC, an important chemoattractant for neutrophils, in serum, however, were increased 2.9-fold (p = 0.07) in ABCA1 KO→LDLr KO mice. SP-x induced blood neutrophilia as compared to WT→LDLr KO mice (1.9-fold; p<0.05), but did not evoke differences in serum cholesterol and anti-oxLDL antibody levels. Atherosclerotic lesion development, however, was 1.3-fold induced both in the presence and absence of leukocyte ABCA1 (WT: 614±106×103 µm2, ABCA1 KO: 786±44×103 µm2). Two-way ANOVA revealed independent effects on atherosclerosis for both leukocyte ABCA1 deficiency and SP-x (p<0.05).Conclusions
The observed splenic alterations induced by leukocyte ABCA1 deficiency do not play a significant role in the anti-atherogenic effects of leukocyte ABCA1 on lesion development. 相似文献11.
Carsten Kallfass Andreas Ackerman Stefan Lienenklaus Siegfried Weiss Bernd Heimrich Peter Staeheli 《Journal of virology》2012,86(20):11223-11230
Beta interferon (IFN-β) is a major component of innate immunity in mammals, but information on the in vivo source of this cytokine after pathogen infection is still scarce. To identify the cell types responsible for IFN-β production during viral encephalitis, we used reporter mice that express firefly luciferase under the control of the IFN-β promoter and stained organ sections with luciferase-specific antibodies. Numerous luciferase-positive cells were detected in regions of La Crosse virus (LACV)-infected mouse brains that contained many infected cells. Double-staining experiments with cell-type-specific markers revealed that similar numbers of astrocytes and microglia of infected brains were luciferase positive, whereas virus-infected neurons rarely contained detectable levels of luciferase. Interestingly, if a mutant LACV unable of synthesizing the IFN-antagonistic factor NSs was used for challenge, the vast majority of the IFN-β-producing cells in infected brains were astrocytes rather than microglia. Similar conclusions were reached in a second series of experiments in which conditional reporter mice expressing the luciferase reporter gene solely in defined cell types were infected with wild-type or mutant LACV. Collectively, our data suggest that glial cells rather than infected neurons represent the major source of IFN-β in LACV-infected mouse brains. They further indicate that IFN-β synthesis in astrocytes and microglia is differentially affected by the viral IFN antagonist, presumably due to differences in LACV susceptibility of these two cell types. 相似文献
12.
13.
14.
Kotaro Azuma Stephanie C. Casey Tomohiko Urano Kuniko Horie-Inoue Yasuyoshi Ouchi Bruce Blumberg Satoshi Inoue 《PloS one》2015,10(3)
Steroid and xenobiotic receptor (SXR) and its murine ortholog, pregnane X receptor (PXR), are nuclear receptors that are expressed at high levels in the liver and the intestine where they function as xenobiotic sensors that induce expression of genes involved in detoxification and drug excretion. Recent evidence showed that SXR and PXR are also expressed in bone tissue where they mediate bone metabolism. Here we report that systemic deletion of PXR results in aging-dependent wearing of articular cartilage of knee joints. Histomorphometrical analysis showed remarkable reduction of width and an enlarged gap between femoral and tibial articular cartilage in PXR knockout mice. We hypothesized that genes induced by SXR in chondrocytes have a protective effect on articular cartilage and identified Fam20a (family with sequence similarity 20a) as an SXR-dependent gene induced by the known SXR ligands, rifampicin and vitamin K2. Lastly, we demonstrated the biological significance of Fam20a expression in chondrocytes by evaluating osteoarthritis-related gene expression of primary articular chondrocytes. Consistent with epidemiological findings, our results indicate that SXR/PXR protects against aging-dependent wearing of articular cartilage and that ligands for SXR/PXR have potential role in preventing osteoarthritis caused by aging. 相似文献
15.
CD8 cells may contribute towards an autoimmune process in COPD. Down regulation of T cell receptor (TCR) signalling molecules occurs in autoimmune diseases with consequent T cell dysfunction. We hypothesise that TCR signalling is abnormal in COPD pulmonary CD8 cells. Micro-array gene expression analysis of blood and pulmonary COPD CD8 samples was performed and compared to pulmonary CD8 cells from smoker controls (S). We focused on the TCR signalling pathway, with validation of key findings using polymerase chain reaction and immunofluorescence. TCR signalling molecules in COPD pulmonary CD8 cells were down regulated compared to blood CD8 cells (CD247: fold change (FC) −2.43, Q = 0.001; LCK: FC −2.25, Q = 0.01). Micro-array analysis revealed no significant differences between COPD and S pulmonary CD8 cells. However, PCR revealed significantly lower gene expression levels of CD247 (FC −1.79, p = 0.04) and LCK (FC −1.77, p = 0.01) in COPD compared to S pulmonary CD8 cells. CD247 down regulation in COPD CD8 cells was confirmed by immunofluorescent staining of bronchoalveolar lavage cells: Significantly fewer COPD CD8 cells co-expressed CD247 compared to healthy non-smoker CD8 cells (mean 88.9 vs 75.2%, p<0.05) There is down regulation of TCR signalling molecules in COPD pulmonary CD8 cells. This may cause T cell dysfunction. 相似文献
16.
Chepkova A Yanovsky E Parmentier R Ohtsu H Haas HL Lin JS Sergeeva OA 《Cellular and molecular neurobiology》2012,32(1):17-25
Genetic ablation of the histamine producing enzyme histidine decarboxylase (HDC) leads to alteration in exploratory behaviour and hippocampus-dependent learning. We investigated how brain histamine deficiency in HDC knockout mice (HDC KO) affects hippocampal excitability, synaptic plasticity, and the expression of histamine receptors. No significant alterations in: basal synaptic transmission, long-term potentiation (LTP) in the Schaffer collateral synapses, histamine-induced transient changes in the CA1 pyramidal cell excitability, and the expression of H1 and H2 receptor mRNAs were found in hippocampal slices from HDC KO mice. However, when compared to WT mice, HDC KO mice demonstrated: 1. a stronger enhancement of LTP by histamine, 2. a stronger impairment of LTP by ammonia, 3. no long-lasting potentiation of population spikes by histamine, 4. a decreased expression of H3 receptor mRNA, and 5. less potentiation of population spikes by H3 receptor agonism. Parallel measurements in the hypothalamic tuberomamillary nucleus, the origin of neuronal histamine, demonstrated an increased expression of H3 receptors in HDC KO mice without any changes in the spontaneous firing of “histaminergic” neurons without histamine and their responses to the H3 receptor agonist (R)-α-methylhistamine. We conclude that the absence of neuronal histamine results in subtle changes in hippocampal synaptic transmission and plasticity associated with alteration in the expression of H3 receptors. 相似文献
17.
Veera D'mello Sukhwinder Singh Yi Wu Raymond B. Birge 《The Journal of biological chemistry》2009,284(25):17030-17038
The urokinase receptor (uPAR), expressed on the surface of many cell types, coordinates plasmin-mediated cell surface proteolysis for matrix remodeling and promotes cell adhesion by acting as a binding protein for vitronectin. There is great clinical interest in uPAR in the cancer field as numerous reports have demonstrated that up-regulation of the uPA system is correlated with malignancy of various carcinomas. Using both stable cell lines overexpressing uPAR and transient gene transfer, here we provide evidence for a non-reported role of uPAR in the phagocytosis of apoptotic cells, a process that has recently been termed efferocytosis. When uPAR was expressed in human embryonic kidney cells, hamster melanoma cells, or breast cancer cells (BCCs), there was a robust enhancement in the efferocytosis of apoptotic cells. uPAR-expressing cells failed to stimulate engulfment of viable cells, suggesting that uPAR enhances recognition of one or more determinant on the surface of the apoptotic cell. uPAR-mediated engulfment was not inhibited by expression of mutant β5 integrin, nor was αvβ5 integrin-mediated engulfment modulated by cleavage of uPAR by phosphatidylinositol-specific phospholipase C. Further, we found that the more aggressive BCCs had a higher phagocytic capacity that correlated with uPAR expression and cleavage of membrane-associated uPAR in MDA-MB231 BCCs significantly impaired phagocytic activity. Because efferocytosis is critical for the resolution of inflammation and production of anti-inflammatory cytokines, overexpression of uPAR in tumor cells may promote a tolerogenic microenvironment that favors tumor progression.The urokinase plasminogen activator receptor (uPAR3 or CD87) is a multidomain glycosylphosphatidylinositol (GPI)-anchored protein (1) implicated in many cellular processes, ranging from wound repair, inflammation, motility, tumor invasion, to metastasis (2–6). Although the best understood functions of uPAR lie in its ability to act as a saturable receptor for urokinase (uPA) resulting in plasminogen activation and subsequent pericellular proteolysis and matrix remodeling (7, 8), its ability to regulate cell adhesion and migration acting as a vitronectin (VN) receptor is likely equally important (9, 10). The human uPAR cDNA encodes a 335-amino acid polypeptide that undergoes extensive post-translational glycosylation upon cell sorting through the secretory pathways, and the mature protein is covalently attached to the plasma membrane via a C-terminally modified GPI anchor (11, 12). Because uPAR lacks a trans-membrane domain, the signal transduction originating from this receptor, at least at the plasma membrane, requires lateral interactions with co-receptors. In this capacity, a wide range of surface proteins have been implicated as uPAR co-receptors, including integrins (13, 14), receptor tyrosine kinases (15), G-protein-coupled receptors (16), chemokine receptors (17, 18), and low density lipoprotein receptors (19). This not only allows for increased signal complexity, but also co-localizes uPAR with a number of diverse extracellular ligands within the extracellular environment (20, 21).In addition to the physiological roles in tissue remodeling, numerous studies have reported up-regulation of both uPAR and uPA/tissue plasminogen activator in malignant carcinomas (22–26). In both knockout and transgenic mouse models, overexpression of either uPAR or uPA is associated with enhanced metastasis and poor survival, and efforts aimed at inhibiting the protease activation of uPA are considered promising therapeutic strategies (27). Paradoxically, however, expression of the primary inhibitors of endogenous uPA, the type-1 plasminogen activator inhibitors (28), also correlate with poor prognoses in cancer patients (29, 30), suggesting there may be non-proteolysis-mediated uPAR activation events (31). Indeed, uPAR is a saturable receptor for VN, which binds this ligand in an RGD-independent manner via the somatomedin-B domain (14). The structures of the extracellular domains of uPAR in complexes with peptide substrates of either uPA or VN reveal these proteins bind to overlapping but clearly distinct domains in uPAR (32, 33), although all three domains in uPAR (D1, D2, and D3) are required for binding. Binding of VN to uPAR induces alterations in the actin cytoskeleton, cell shape changes, and activation of signaling pathways (ERK, FAK, and Rac1) that favor cell migration (34). These data suggest that uPAR can modify integrin function that lead to enhanced matrix binding, adhesion and migration, and cell signaling.In the present study, we have found that uPAR has a strong ability to promote efferocytosis of apoptotic cells. This was demonstrated using transient overexpression and creation of stable cell lines, as well as inhibitors of uPAR function. Expression of uPAR promoted engulfment of apoptotic T cells (CEM-1 and Jurkat cell lines), but not viable T cells, and this effect was abrogated using phosphatidylinositol-specific phospholipase C to cleave the GPI anchor of uPAR. Because uPAR and β5-integrin cooperate to promote migration and metastasis in breast cancer cells (BCCs), and both uPAR and β5-integrin are often elevated in metastatic cancers, we also investigated whether BCCs might have acquired greater phagocytic ability and investigated whether uPAR might regulate the process of β5-integrin-mediated phagocytosis. Interestingly, we found that BCCs that natively overexpress uPAR had significantly increased phagocytic capacity compared with less transformed or non-transformed epithelial cells. Surprisingly, although uPAR expression modified the expression and distribution of αvβ5 integrins, we discovered that uPAR apparently mediates phagocytosis independently of αvβ5 or αvβ3 integrins. The studies presented here reveal a novel function of uPAR in the uptake of apoptotic cells. 相似文献
18.
沙眼衣原体感染细胞中IFN—γ信号通路的初步研究 总被引:2,自引:1,他引:2
研究IFN γ诱导激活沙眼衣原体感染细胞中信号转导。采用Westernblotting检测IFN γ作用于沙眼衣原体K型株感染的McCoy细胞引起蛋白激酶磷酸化及其对Jak1,Stat1p91诱导活化的浓度效应和时相特点。IFN γ可以在短时间内引起沙眼衣原体感染细胞蛋白激酶的瞬时磷酸化 ;并在短时间内激活Jak1,Stat1p91,不同浓度作用下 ,5 μg/L时达最大活化 ;10min时活化程度最高。IFN γ可诱导沙眼衣原体感染细胞蛋白激酶磷酸化 ;并激活Jak1,Stat1p91。 相似文献
19.
Punitee Garyali Dyann M. Segvich Anna A. DePaoli-Roach Peter J. Roach 《The Journal of biological chemistry》2014,289(30):20606-20614
Lafora disease is a progressive myoclonus epilepsy caused by mutations in the EPM2A or EPM2B genes that encode a glycogen phosphatase, laforin, and an E3 ubiquitin ligase, malin, respectively. Lafora disease is characterized by accumulation of insoluble, poorly branched, hyperphosphorylated glycogen in brain, muscle, heart, and liver. The laforin-malin complex has been proposed to play a role in the regulation of glycogen metabolism and protein quality control. We evaluated three arms of the protein degradation/quality control process (the autophago-lysosomal pathway, the ubiquitin-proteasomal pathway, and the endoplasmic reticulum (ER) stress response) in mouse embryonic fibroblasts from Epm2a−/−, Epm2b−/−, and Epm2a−/−
Epm2b−/− mice. The levels of LC3-II, a marker of autophagy, were decreased in all knock-out cells as compared with wild type even though they still showed a slight response to starvation and rapamycin. Furthermore, ribosomal protein S6 kinase and S6 phosphorylation were increased. Under basal conditions there was no effect on the levels of ubiquitinated proteins in the knock-out cells, but ubiquitinated protein degradation was decreased during starvation or stress. Lack of malin (Epm2b−/− and Epm2a−/−
Epm2b−/− cells) but not laforin (Epm2a−/− cells) decreased LAMP1, a lysosomal marker. CHOP expression was similar in wild type and knock-out cells under basal conditions or with ER stress-inducing agents. In conclusion, both laforin and malin knock-out cells display mTOR-dependent autophagy defects and reduced proteasomal activity but no defects in the ER stress response. We speculate that these defects may be secondary to glycogen overaccumulation. This study also suggests a malin function independent of laforin, possibly in lysosomal biogenesis and/or lysosomal glycogen disposal. 相似文献
20.
Kai D. Michel Anja Uhmann Ralf Dressel Jens van den Brandt Heidi Hahn Holger M. Reichardt 《PloS one》2013,8(4)
Hedgehog (Hh) signaling modulates T cell development and function but its exact role remains a matter of debate. To further address this issue we made use of conditional knock-out mice in which the Hh receptor Patched1 (Ptch) is inactivated in the T cell lineage. Thymocyte development was moderately compromised by the deletion of Ptch as characterized by reduced numbers of CD4 and CD8 single-positive cells. In contrast, peripheral T cells were not affected. Proliferation and IFNγ secretion by Ptch-deficient T cells were indistinguishable from controls irrespectively of whether we used strong or suboptimal conditions for stimulation. Analysis of CTL and Treg cell functions did not reveal any differences between both genotypes, and T cell apoptosis induced by glucocorticoids or γ-irradiation was also similar. Surprisingly, absence of Ptch did not lead to an activation of canonic Hh signaling in peripheral T cells as indicated by unaltered expression levels of Gli1 and Gli2. To test whether we could uncover any role of Ptch in T cells in vivo we subjected the mutant mice to three different disease models, namely allogeneic bone marrow transplantation mimicking graft-versus-host disease, allergic airway inflammation as a model of asthma and growth of adoptively transferred melanoma cells as a means to test tumor surveillance by the immune system. Nonetheless, we were neither able to demonstrate any difference in the disease courses nor in any pathogenic parameter in these three models of adaptive immunity. We therefore conclude that the Hh receptor Ptch is dispensable for T cell function in vitro as well as in vivo. 相似文献