首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zusammenfassung Vergleichende phasenkontrast- und elektronenmikroskopische Untersuchungen der Moosfaserschicht des Ammonshorns des Kaninchens ergaben:Im Phasenkonstrastbild hebt sich die Moosfaserschicht besonders deutlich ab. Der infrapyramidale Trakt der Moosfasern ist fast ebenso lang wie der suprapyramidale Trakt.In der Moosfaserschicht sind nach einer Nachfixierung mit OsO4 die apikalen und basalen Dendriten der Pyramidenzellen nahezu vollständig von kontraststärkeren Strukturen umgeben als im übrigen Gewebe. Diese sind elektronenmikroskopisch eindeutig als die synaptischen Endformationen der Moosfasern zu identifizieren. Die synaptischen Endformationen der Moosfasern enthalten größere Mengen dicht gelagerter synaptischer Vesikel, außerdem Vesikel, die ein osmiophiles Zentrum besitzen. Die Befunde werden im Zusammenhang mit dem verstärkten Zinkgehalt der Moosfaserschicht diskutiert.
Summary Comparative phase- and electron microscopical investigations have been carried out on the hippocampal layer of mossy fibres of the rabbit.The phase contrast microscope allows a particularly distinct demonstration of the layer of mossy fibres. The infrapyramidal tract of the mossy fibres is of approximately the same length as the suprapyramidal tract.After postfixation with OsO4 it is seen that the apical and basal dendrites of pyramidal cells in the mossy fibre layer are almost entirely surrounded by darker structures, which are more clearly definable than in the surrounding tissue. Electron microscopically these structures could definitely be identified as the boutons of the mossy fibres. The synaptic endings of the mossy fibres contain larger masses of more densely packed synaptic vesicles and also a moderate number of vesicles, which include an osmiophilic centre. Our results are discussed with regard to the increased zinc content of hippocampal mossy fiber layer.
  相似文献   

2.
We have studied the role of endogenous neurotrophins in the formation and maturation of intrinsic hippocampal connections in vivo and analyzed the dentate granule cell projections in both trkB(-/-) and trkC(-/-) mice. Immunohistochemistry against calbindin did not show major alterations in the distribution of granule cell axons, which were located exclusively in the hilus and the stratum lucidum. However, the thickness of the stratum lucidum (mossy fiber termination zone) and the density of mossy fiber terminals were reduced in the absence of TrkB signaling. Electron-microscopic analyses showed that the fine structure of mossy terminals was altered in both trkB(-/-) and trkC(-/-) mice. Mutant granule cell terminals were smaller than those in wild-type animals and showed a reduction in both the number of synaptic contacts and synaptic vesicles. Immunofluorescence assays demonstrated that the expression levels of most synaptic-associated proteins (v-SNAREs and t-SNAREs) were altered in the mossy fibers of trkB- and trkC-deficient mice. Our results therefore reveal that TrkB and TrkC signaling is required for the maturation of granule cell axons.  相似文献   

3.
Abstract: Hippocampal mossy fiber (MF) nerve endings may be isolated in a subcellular fraction (P3) that releases both prodynorphin-derived peptides and glutamate (Glu) in a calcium-dependent manner when depolarized. However, this isolation procedure does not yield a pure preparation of MF synaptosomes. The present study evaluates the proportion of dynorphin (Dyn) and Glu that is released from synaptosomes in the P3 fraction that are of MF origin. We have addressed this issue by determining the degree to which a selective lesion of the dentate granule cell/MF system in vivo concomitantly reduces the exocytosis of Dyn and Glu from the P3 subcellular fraction. Unilateral injections of colchicine into the dentate gyrus resulted in a substantial and selective degeneration of the granule cell/ MF pathway in the rat hippocampal formation. The overall integrated density of the Timm-stained band, which corresponds to the position of the MF terminal field, was estimated to be reduced by 75%. After this extensive loss of MF boutons, the K+-evoked release of Dyn and Glu from the P3 fraction was reduced by 95 and 51 %, respectively. The loss of Timm staining and evoked Dyn release indicate that colchicine effectively eliminated MF synaptosomes from the P3 fraction. Those subcellular entities that were not destroyed by colchicine comprised ~50% of the protein and evoked Glu release measured by using the P3fraction. In addition, the present results demonstrate that the inhibitory potency of the K opioid agonist U-50.488H was not altered by the elimination of MF boutons from this synaptosomal preparation. This finding indicates that U-50,488H is capable of suppressing Glu exocytosis from both MF and non-MF synaptosomes. These results are consistent with the hypothesis that Dyn peptides and Glu are coreleased from hippocampal MF terminals.  相似文献   

4.
THE DEVELOPMENT OF D-AMINO ACID OXIDASE IN RAT CEREBELLUM   总被引:1,自引:0,他引:1  
D-Amino acid oxidase (D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3; D-AAO) activity is biochemically undetected in rat brain stem, cerebellum and forebrain until 14 days after birth. Adult levels are attained by day 30 in the brain stem, and by day 36 in the cerebellum. At adulthood, forebrain D-AAO activity per g wet weight of tissue is less than 2% that of the cerebellum. In contrast to the pattern in the CNS, substantial D-AAO activity is present in both liver and kidney 2 days before birth and adult levels are approached within 2 weeks of birth. Nonetheless, D-AAO activities in rat liver, kidney, brain stem and cerebellum are likely to be due to a single enzyme which has properties very similar to the purified hog D-AAO. The late ontogenesis of D-AAO activity in cerebellum and brain stem relative to that in liver and kidney parallels reported phylogenetic data. Histochemical staining for D-AAO in rat cerebellar cortex is absent until 15 days after birth when activity is first observed in some cells of the external germinal zone and adjacent molecular layer. These cells appear to migrate to a final destination around the Purkinje cell soma and leave processes at the pial surface. By 21 days of age an adult pattern of staining is manifest throughout the cerebellum but it is of weak intensity. The adult pattern includes some staining in the granular layer which seems to be associated with mossy fibers and certain cerebellar glomeruli, and strong staining at the pial surface, in the molecular layer, and in cells surrounding, but not within, the Purkinje cell soma. The data suggest that the biochemical appearance of D-AAO in developing cerebellum derives from two sources: one associated with differentiation of one of the last cell types to form from the external germinal zone, and the other with maturation of mossy fibers and their synapses (cerebellar glomeruli).  相似文献   

5.
Summary Ultrastructural changes in hippocampal granule cells, mossy fibers and mossy fiber boutons were examined following the administration of picrotoxin in adult rats. Generalized seizures occurred within 5–10 min after the intraperitoneal injection of picrotoxin. The electron-microscopic examination of hippocampal tissues from rats that had been perfused with fixative during the seizure revealed that the large dense-core vesicles increased in number and accumulated on the presynaptic membranes of mossy fiber boutons; some of these vesicles appeared to be fused with the membranes, and omega-shaped exocytotic profiles were frequently seen. Furthermore, greatly increased numbers of coated vesicles (60–90 nm in diameter) were observed on the maturing faces of Golgi fields of granule cells. Thus, our study not only indicates an increased incidence of exocytosis of large dense-core vesicles during picrotoxin-induced seizures, but also suggests that these vesicles are replaced in excess from the perikaryon of the granule cell.  相似文献   

6.
Synaptic plasticity is a cellular model for learning and memory. However, the expression mechanisms underlying presynaptic forms of plasticity are not well understood. Here, we investigate functional and structural correlates of presynaptic potentiation at large hippocampal mossy fiber boutons induced by the adenylyl cyclase activator forskolin. We performed 2-photon imaging of the genetically encoded glutamate sensor iGluu that revealed an increase in the surface area used for glutamate release at potentiated terminals. Time-gated stimulated emission depletion microscopy revealed no change in the coupling distance between P/Q-type calcium channels and release sites mapped by Munc13-1 cluster position. Finally, by high-pressure freezing and transmission electron microscopy analysis, we found a fast remodeling of synaptic ultrastructure at potentiated boutons: Synaptic vesicles dispersed in the terminal and accumulated at the active zones, while active zone density and synaptic complexity increased. We suggest that these rapid and early structural rearrangements might enable long-term increase in synaptic strength.

This study uses several high-resolution imaging techniques to investigate the structural correlates of presynaptic potentiation at hippocampal mossy fiber boutons, observing an increase in release sites and in release synchronicity accompanied by synaptic vesicle dispersion in the terminal and accumulation at release sites, but no modulation of the distance between calcium channel and release sites.  相似文献   

7.
Timm's staining material has been detected in the rat hippocampus as early as day 1 postnatally. However, staining was diffuse and widespread and light granulation was observed only in the mossy fiber layer. By day 6 postnatally most diffuse staining had disappeared and the characteristic pattern of granulation had intensified in the mossy fiber layer. Pronounced staining of the mossy fibers became apparent from day 6. Electron microscopic autoradiography indicated that65Zn injected intraperitoneally into suckling pups became localized largely in the axons and axon terminals of the mossy fiber layer in the CA3 and CA4 regions of the Horn of Ammon. In vitro studies with hippocampal slices have demonstrated that zinc is accumulated by an active transport system, but the kinetic characteristics of this uptake do not appear to alter with age. Zinc located intracellularly in the hippocampus appears to be associated mainly with large molecular weight ligands, with more than 75% of newly acquired zinc being bound to substances having molecular weights greater than 70,000 Daltons.  相似文献   

8.
The Recurrent Mossy Fiber Pathway of the Epileptic Brain   总被引:20,自引:0,他引:20  
The dentate gyrus is believed to play a key role in the pathogenesis of temporal lobe epilepsy. In normal brain the dentate granule cells serve as a high-resistance gate or filter, inhibiting the propagation of seizures from the entorhinal cortex to the hippocampus. The filtering function of the dentate gyrus depends in part on the near absence of monosynaptic connections among granule cells. In humans with temporal lobe epilepsy and in animal models of temporal lobe epilepsy, dentate granule cells form an interconnected synaptic network associated with loss of hilar interneurons. This recurrent mossy fiber pathway mediates reverberating excitation that can reduce the threshold for granule cell synchronization. Factors that augment activity in this pathway include modest increases in [K+]o; loss of GABA inhibition; short-term, frequency-dependent facilitation (frequencies of 1–2 Hz); feedback activation of kainate autoreceptors; and release of zinc from recurrent mossy fiber boutons. Factors that diminish activity include short-term, frequency-dependent depression (frequencies <1 Hz); feedback activation of type II metabotropic glutamate receptors; and the potential release of GABA, neuropeptide Y, adenosine, and dynorphin from recurrent mossy fiber boutons. The axon sprouting and reactive synaptogenesis that follow seizure-related brain damage can also create or strengthen recurrent excitation in other brain regions. These changes are expected to facilitate participation of these regions in seizures. Thus, reactive processes that are often considered important for recovery of function after most brain injuries probably contribute to neurological dysfunction in epilepsy.  相似文献   

9.
Summary The stratum radiatum of h 3 and h 4 in the hippocampus of the rahbit, where the mossy fiber endings are distributed, was investigated under the electron microscope. These regions contain a certain number of electron dense presynaptic endings. These are characterized by highly dense synaptic vesicles and mitochondrial matrices. The dense endings are not considered as degenerated. Electron dense silver particles, substituted for zinc, occurred on the synaptic vesicles of these dense terminals as well as the mossy fiber endings after the application of Timm's histochemical method modified for electron microscopy. It is concluded that the dark synaptic endings observed might represent mossy fiber terminals in a special functional phase, or might be the result of structural alteration in the course of tissue preparation. The zinc localized in the synaptic vesicles is thought to be associated with the neurotransmitter present in these endings.  相似文献   

10.
Abstract: The high concentration of zinc in the hippocampal mossy fiber axon boutons is localized in the vesicles and is mobilized by exocytosis of the zinc-laden vesicles. Because "free" zinc in excess is a neurotoxic substance inhibiting an extensive number of sulfhydryl-containing enzymes and receptor sites, we hypothesized that low-molecular-weight zinc binding proteins must exist in the hippocampus to regulate the steady-state concentration of zinc. In this communication, we report that the bovine hippocampus synthesizes metallothionein (MT) isoforms that are similar, but not identical, to those of the rat brain MT isoforms and cross-react poorly with antibodies formed against the hepatic MT isoforms, suggesting that the immunologically dominant regions of hippocampal MT (residues 1–29) are not conserved. A comparative sequence analysis of bovine hippocampal MTs and bovine hepatic MT isoforms I and II revealed a 90% sequence identity, being mostly different in residues 1–29. The results of these studies suggest that the hippocampal MT isoforms, which are synthesized on a continuous basis, may play a role in regulating the transport, accumulation, and compartmentation of zinc in the hippocampus.  相似文献   

11.
The response of hippocampal mossy fiber zinc to excessive glutamate release was examined to understand the role of the zinc in excessive excitation in the hippocampus. Extracellular zinc and glutamate concentrations during excessive stimulation with high K(+) were compared between the hippocampal CA3 and CA1 by the in vivo microdialysis. Zinc concentration in the CA3 was more increased than that in the CA1, while glutamate concentration in the CA3 was less increased than that in the CA1. It is likely that more increase in extracellular zinc is linked with less increase in extracellular glutamate in the CA3. To see zinc action in mossy fiber synapses during excessive excitation, furthermore, 1mM glutamate was regionally delivered to the stratum lucidum in the presence of zinc or CaEDTA, a membrane-impermeable zinc chelator, and intracellular calcium signal was measured in the CA3 pyramidal cell layer. The persistent increase in calcium signal during stimulation with glutamate was significantly attenuated in the presence of 100 microM zinc, while significantly enhanced in the presence of 1mM CaEDTA. These results suggest that zinc released from mossy fibers attenuates the increase in intracellular calcium signal in mossy fiber synapses and postsynaptic CA3 neurons after excessive inputs to dentate granular cells.  相似文献   

12.
In the hippocampus of Borna disease virus (BDV)-infected newborn rats, dentate granule cells undergo progressive cell death. BDV is noncytolytic, and the pathogenesis of this neurodevelopmental damage in the absence of immunopathology remains unclear. A suitable model system to study early events of the pathology is lacking. We show here that organotypic hippocampal slice cultures from newborn rat pups are a suitable ex vivo model to examine BDV neuropathogenesis. After challenging hippocampal slice cultures with BDV, we observed a progressive loss of calbindin-positive granule cells 21 to 28 days postinfection. This loss was accompanied by reduced numbers of mossy fiber boutons when compared to mock-infected cultures. Similarly, the density of dentate granule cell axons, the mossy fiber axons, appeared to be substantially reduced. In contrast, hilar mossy cells and pyramidal neurons survived, although BDV was detectable in these cells. Despite infection of dentate granule cells 2 weeks postinfection, the axonal projections of these cells and the synaptic connectivity patterns were comparable to those in mock-infected cultures, suggesting that BDV-induced damage of granule cells is a post-maturation event that starts after mossy fiber synapses are formed. In summary, we find that BDV infection of rat organotypic hippocampal slice cultures results in selective neuronal damage similar to that observed with infected newborn rats and is therefore a suitable model to study BDV-induced pathology in the hippocampus.  相似文献   

13.

Background

The hippocampal CA3 area contains large amounts of vesicular zinc in the mossy fiber terminals which is released during synaptic activity, depending on presynaptic calcium. Another characteristic of these synapses is the presynaptic localization of high concentrations of group II metabotropic glutamate receptors, specifically activated by DCG-IV. Previous work has shown that DCG-IV affects only mossy fiber-evoked responses but not the signals from associational-commissural afferents, blocking mossy fiber synaptic transmission. Since zinc is released from mossy fibers even for single stimuli and it is generally assumed to be co-released with glutamate, the aim of the work was to investigate the effect of DCG-IV on mossy fiber zinc signals.

Results

Studies were performed using the membrane-permeant fluorescent zinc probe TSQ, and indicate that DCG-IV almost completely abolishes mossy fiber zinc changes as it does with synaptic transmission.

Conclusions

Zinc signaling is regulated by the activation of type II metabotropic receptors, as it has been previously shown for glutamate, further supporting the corelease of glutamate and zinc from mossy fibers.  相似文献   

14.
Summary Opioid receptors can be localized to the hippocampal formation of the rat by autoradiography. The binding of 3H-enkephalinamide to fixed and mounted tissue sections has all the characteristics associated with binding to opioid receptors. It is saturable, of high affinity and displays stereospecificity. The opioid receptor distribution shows striking regional variation throughout the hippocampal formation. Areas with high density include the pyramidal cell layer of both regio superior (CA1) and regio inferior (CA3), stratum moleculare of the hippocampus, the cell layer of subiculum, the superficial part of presubiculum and the deep layer (VI) of the medial and lateral entorhinal cortices. Areas with low to medium densities include regions corresponding to the dendritic field of the pyramidal cells (str. oriens, str. radiatum and the mossy fiber zone), the dentate granule cell layer and the molecular layer of the dentate area. Enkephalin-like immunoreactivity is detected in both intrinsic neuronal systems: 1) the mossy fibers which terminate on the proximal part of the CA3 pyramidal cell dendrites and on CA4 pyramidal cells, 2) cell bodies with multiple short processes, probably interneurons, dispersed throughout the hilus of the dentate area, the pyramidal cell layer of hippocampus, the str. radiatum, and occasionally in the str. moleculare and in the str. oriens, and extrinsic neuronal systems: 1) the lateral perforant path and 2) the lateral temporo-ammonic tract. Thus, the hippocampus contains intrinsic systems of enkephalin-like immunoreactive nerve terminals which may exert their effect on the opioid receptors with a localization corresponding to the pyramidal cells and their apical dendrites. Extrinsic enkephalinergic systems corresponding to the terminal fields of the lateral perforant path and the temporoammonic tract, both of entorhinal origin, may influence the opioid receptors located in the molecular layer of the dentate area, and in the molecular layer of the hippocampus and the subiculum. Thus, the enkephalinlike immunoreactive nerve terminals are all located in areas which contain opioid binding sites. This suggests that the opioid peptide-opioid receptor systems may regulate hippocampal neuronal activity via neurotransmission or neuromodulation. However, a high or medium number of opioid binding sites occur over the pyramidal cell bodies and the dentate granule cell bodies, and these opioid binding sites are not in close contact with the major enkephalinergic systems. Such binding sites could represent newly synthesized opioid receptors ready for the enkephalinergic synapses of the cells and/or internalization of opioid receptors after stimulation at the synapses. Another possibility is the existence of cytoplasmic opioid binding sites (possibly t-RNA synthetase) with specific intracellular functions.  相似文献   

15.
The effect of dietary zinc deficiency on the mossy fiber zinc content of the rat hippocampus was investigated using PIXE (Particle Induced X-Ray Emission) spectroscopy. Using the proton microbeam (60 X 60 microns), 2 mm line-scans were made on hippocampal sections and the data were expressed as absolute zinc concentrations. Values of 55 and 136 ppm (dry weight) were found for the mean background zinc level and the maximum mossy fiber zinc level, respectively, in animals fed a control diet containing 50 ppm zinc. Treatment of these animals with dithizone caused about 50% reduction in the maximum mossy fiber zinc level. Feeding a zinc-deficient diet for 28 days did not cause a decrease in the mossy fiber zinc level, however, feeding the zinc-deficient diet for 90 days reduced the maximum mossy fiber zinc level by about 30%. The results are discussed in relation to the behavioral abnormalities that have been observed in zinc-deficient animals.  相似文献   

16.
This paper describes a perivascular staining pattern that is obtained when dithizone or sodium selenite are used to label zinc intravitally. Our observations indicate that the perivascular staining is a result of zinc labeling in mossy fiber boutons adjacent to capillaries and suggest that there might be a special blood brain barrier in the mossy fiber regions.  相似文献   

17.

Background

The lysophosphatidic acid LPA1 receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPA1 receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory.

Methodology/Principal Findings

Male LPA1-null (NULL) and wild-type (WT) mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day). Immunohistochemistry for bromodeoxyuridine and endogenous markers was performed to examine hippocampal cell proliferation, survival, number and maturation of young neurons, hippocampal structure and apoptosis in the hippocampus. Corticosterone levels were measured in another a separate cohort of mice. Finally, the hole-board test assessed spatial reference and working memory. Under control conditions, NULL mice showed reduced cell proliferation, a defective population of young neurons, reduced hippocampal volume and moderate spatial memory deficits. However, the primary result is that chronic stress impaired hippocampal neurogenesis in NULLs more severely than in WT mice in terms of cell proliferation; apoptosis; the number and maturation of young neurons; and both the volume and neuronal density in the granular zone. Only stressed NULLs presented hypocortisolemia. Moreover, a dramatic deficit in spatial reference memory consolidation was observed in chronically stressed NULL mice, which was in contrast to the minor effect observed in stressed WT mice.

Conclusions/Significance

These results reveal that the absence of the LPA1 receptor aggravates the chronic stress-induced impairment to hippocampal neurogenesis and its dependent functions. Thus, modulation of the LPA1 receptor pathway may be of interest with respect to the treatment of stress-induced hippocampal pathology.  相似文献   

18.
Long-term potentiation (LTP) is a well-established experimental model used to investigate the synaptic basis of learning and memory. LTP at mossy fibre - CA3 synapses in the hippocampus is unusual because it is normally N-methyl-d-aspartate (NMDA) receptor-independent. Instead it seems that the trigger for mossy fibre LTP involves kainate receptors (KARs). Although it is generally accepted that pre-synaptic KARs play an essential role in frequency facilitation and LTP, their subunit composition remains a matter of significant controversy. We have reported previously that both frequency facilitation and LTP can be blocked by selective antagonism of GluK1 (formerly GluR5/Glu(K5))-containing KARs, but other groups have failed to reproduce this effect. Moreover, data from receptor knockout and mRNA expression studies argue against a major role of GluK1, supporting a more central role for GluK2 (formerly GluR6/Glu(K6)). A potential reason underlying the controversy in the pharmacological experiments may reside in differences in the preparations used. Here we show differences in pharmacological sensitivity of synaptic plasticity at mossy fibre - CA3 synapses depend critically on slice orientation. In transverse slices, LTP of fEPSPs was invariably resistant to GluK1-selective antagonists whereas in parasagittal slices LTP was consistently blocked by GluK1-selective antagonists. In addition, there were pronounced differences in the magnitude of frequency facilitation and the sensitivity to the mGlu2/3 receptor agonist DCG-IV. Using anterograde labelling of granule cells we show that slices of both orientations possess intact mossy fibres and both large and small presynaptic boutons. Transverse slices have denser fibre tracts but a smaller proportion of giant mossy fibre boutons. These results further demonstrate a considerable heterogeneity in the functional properties of the mossy fibre projection.  相似文献   

19.
The extent of trimethyltin (TMT) induced lesions in the rat hippocampal formation was reviewed. Adult rats were treated with a single dose of 6.0 mg TMT/kg body wt and were sacrificed between 3–60 d following exposure. In the hippocampal formation, the granule cells of fascia dentata showed early changes, which subsided considerably at a later time of the intoxication. On the other hand, destruction of the pyramidal neurons in the Ammon’s horn became more pronounced with time, resulting in an extensive destruction of this structure. It is interesting to note that the CA3 neurons in the septal portion of the Ammon’s horn were more vulnerable than those located more temporally, whereas the reverse pattern was observed for the dentate granule cells as well as for the CA1,2 neurons of the Ammon’s horn. Special stain for zinc (Timm’s method) also revealed a progressive depletion of zinc in the mossy fibers. When neonatal rats were treated at various times with a single injection of TMT, rapid and progressive destruction of the Ammon’s horn was observed in animals injected between postnatal day (PND) 5–15. The progression of neuronal involvement was CA3b →CA3a, b →CA3(a,b,c)→CA3+CA2→entire Ammon’s horn (CA1,2,3). This pattern of pathological lesion was in good concert with morphological development and functional maturity of the hippocampal formation. Destruction of the Ammon’s horn neurons was proposed to be the result of hyperexcitation of the dentate granule neurons under the influence of TMT. Other possible mechanisms are also discussed. Author to whom all correspondence and reprint requests should be addressed.  相似文献   

20.
The purpose of these experiments was to determine whether dietary zinc depletion affected protein expression in the hippocampus. Eleven weanling Sprague-Dawley male rats (21 d) were fed the AIN-93G diet containing 1.5 ppm zinc and supplemented with 30 ppm of zinc in the drinking water. After 1 wk, the rats were randomly divided into three groups: control (n=3), pair fed (n=3), and zinc restricted (n=5). All groups consumed the same diet. The zinc-restricted group consumed water containing no zinc. The rats were sacrificed 3 wk later. Chelatable zinc levels in the hippocampus, as measured by N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) staining, were significantly reduced in the zinc-restricted group. Analysis of hippocampal protein expression by two-dimensional electrophoresis (2DE) revealed increased expression of the P2X6 purinergic receptor in the zinc-restricted rats, as determined by MALDI mass spectrometry (MS) and database analysis. The data provided evidence for the dual effects of dietary zinc deficiency on the hippocampus, reducing ionic zinc levels and stimulating protein expression. The role the P2X6 receptor plays in the physiological response of the hippocampus to zinc depletion remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号