首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe here an algorithm for distinguishing sequential from nonsequentially folding proteins. Several experiments have recently suggested that most of the proteins that are synthesized in the eukaryotic cell may fold sequentially. This proposed folding mechanism in vivo is particularly advantageous to the organism. In the absence of chaperones, the probability that a sequentially folding protein will misfold is reduced significantly. The problem we address here is devising a procedure that would differentiate between the two types of folding patterns. Footprints of sequential folding may be found in structures where consecutive fragments of the chain interact with each other. In such cases, the folding complexity may be viewed as being lower. On the other hand, higher folding complexity suggests that at least a portion of the polypeptide backbone folds back upon itself to form three-dimensional (3D) interactions with noncontiguous portion(s) of the chain. Hence, we look at the mechanism of folding of the molecule via analysis of its complexity, that is, through the 3D interactions formed by contiguous segments on the polypeptide chain. To computationally splice the structure into consecutively interacting fragments, we either cut it into compact hydrophobic folding units or into a set of hypothetical, transient, highly populated, contiguous fragments ("building blocks" of the structure). In sequential folding, successive building blocks interact with each other from the amino to the carboxy terminus of the polypeptide chain. Consequently, the results of the parsing differentiate between sequentially vs. nonsequentially folded chains. The automated assessment of the folding complexity provides insight into both the likelihood of misfolding and the kinetic folding rate of the given protein. In terms of the funnel free energy landscape theory, a protein that truly follows the mechanism of sequential folding, in principle, encounters smoother free energy barriers. A simple sequentially folded protein should, therefore, be less error prone and fold faster than a protein with a complex folding pattern.  相似文献   

2.
Folding funnels, binding funnels, and protein function.   总被引:9,自引:0,他引:9       下载免费PDF全文
Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly, with a range of complexed conformations. Hence, knowledge of the shape of the folding funnels is biologically very useful. The converse also holds: If kinetic and thermodynamic data are available, hints regarding the role of the protein and its binding selectivity may be obtained. Thus, the utility of the concept of the funnel carries over to the origin of the protein and to its function.  相似文献   

3.
Understanding the energetic and structural basis of protein folding in a physiological context may represent an important step toward the elucidation of protein misfolding and aggregation events that take place in several pathological states. In particular, investigation of the structure and thermodynamic properties of partially folded intermediate states involved in productive folding or in misfolding/aggregation may provide insight into these processes and suggest novel approaches to prevent misfolding in living organisms. This goal, however, has remained elusive, because such intermediates are often transient and correspond to metastable states that are little populated under physiological conditions. Characterization of these states requires their stabilization by means of manipulation of the experimental conditions, involving changes in temperature, pH, or addition of different types of denaturants. In the past few years, hydrostatic pressure has been increasingly used as a thermodynamic variable in the study of both protein folding and misfolding/aggregation transitions. Compared with other chemical or physical denaturing agents, a unique feature of pressure is its ability to induce subtle changes in protein conformation, allowing the stabilization of partially folded states that are usually not significantly populated under more drastic conditions. Much of the recent work in this field has focused on the characterization of folding intermediates, because they seem to be involved in a variety of disease-causing protein misfolding and aggregation reactions. Here, we review recent examples of the use of hydrostatic pressure as a tool to gain insight into the forces and energetics governing the productive folding or the misfolding and amyloid aggregation of proteions.  相似文献   

4.
Understanding, and ultimately predicting, how a 1-D protein chain reaches its native 3-D fold has been one of the most challenging problems during the last few decades. Data increasingly indicate that protein folding is a hierarchical process. Hence, the question arises as to whether we can use the hierarchical concept to reduce the practically intractable computational times. For such a scheme to work, the first step is to cut the protein sequence into fragments that form local minima on the polypeptide chain. The conformations of such fragments in solution are likely to be similar to those when the fragments are embedded in the native fold, although alternate conformations may be favored during the mutual stabilization in the combinatorial assembly process. Two elements are needed for such cutting: (1) a library of (clustered) fragments derived from known protein structures and (2) an assignment algorithm that selects optimal combinations to "cover" the protein sequence. The next two steps in hierarchical folding schemes, not addressed here, are the combinatorial assembly of the fragments and finally, optimization of the obtained conformations. Here, we address the first step in a hierarchical protein-folding scheme. The input is a target protein sequence and a library of fragments created by clustering building blocks that were generated by cutting all protein structures. The output is a set of cutout fragments. We briefly outline a graph theoretic algorithm that automatically assigns building blocks to the target sequence, and we describe a sample of the results we have obtained.  相似文献   

5.
There is a fundamental conflict between two different views of how proteins fold. Kinetic experiments and theoretical calculations are often interpreted in terms of different population fractions folding through different intermediates in independent unrelated pathways (IUP model). However, detailed structural information indicates that all of the protein population folds through a sequence of intermediates predetermined by the foldon substructure of the target protein and a sequential stabilization principle. These contrary views can be resolved by a predetermined pathway--optional error (PPOE) hypothesis. The hypothesis is that any pathway intermediate can incorporate a chance misfolding error that blocks folding and must be reversed for productive folding to continue. Different fractions of the protein population will then block at different steps, populate different intermediates, and fold at different rates, giving the appearance of multiple unrelated pathways. A test of the hypothesis matches the two models against extensive kinetic folding results for hen lysozyme which have been widely cited in support of independent parallel pathways. The PPOE model succeeds with fewer fitting constants. The fitted PPOE reaction scheme leads to known folding behavior, whereas the IUP properties are contradicted by experiment. The appearance of a conflict with multipath theoretical models seems to be due to their different focus, namely on multitrack microscopic behavior versus cooperative macroscopic behavior. The integration of three well-documented principles in the PPOE model (cooperative foldons, sequential stabilization, optional errors) provides a unifying explanation for how proteins fold and why they fold in that way.  相似文献   

6.
The native serpin fold is metastable and possesses the inherent ability to convert into more stable, but inactive, conformations. In order to understand why serpins attain the native fold instead of other more thermodynamically favourable folds we have investigated the presence of residual structure within denatured antichymotrypsin (ACT). Through mutagenesis we created a single tryptophan variant of ACT in which a Trp residue (276) is situated on the H-helix, located within a region known as the B/C barrel. The presence of residual structure around Trp 276 in 5 M guanidine hydrochloride (GdnHCl) was shown by fluorescence and circular dichroism spectroscopy and fluorescence lifetime experiments. The residual structure was disrupted in the presence of 5 M guanidine thiocyanate (GdnSCN). Protein refolding studies showed that significant refolding could be achieved from the GdnHCl denatured state but not the GdnSCN denatured form. The implications of these data on the folding and misfolding of the serpin superfamily are discussed.  相似文献   

7.
Currently there is increasing interest in nanostructures and their design. Nanostructure design involves the ability to predictably manipulate the properties of the self-assembly of autonomous units. Autonomous units have preferred conformational states. The units can be synthetic material science-based or derived from functional biological macromolecules. Autonomous biological building blocks with available structures provide an extremely rich and useful resource for design. For proteins, the structural databases contain large libraries of protein molecules and their building blocks with a range of shapes, surfaces, and chemical properties. The introduction of engineered synthetic residues or short peptides into these can expand the available chemical space and enhance the desired properties. Here we focus on the principles of nanostructure design with protein building blocks.  相似文献   

8.
White SH 《FEBS letters》2003,555(1):116-121
Recent three-dimensional structures of helical membrane proteins present new challenges for the prediction of structure from amino acid sequence. Membrane proteins reside stably in a thermodynamic free energy minimum after release into the membrane's bilayer fabric from the translocon complex. This means that structure prediction is primarily a problem of physical chemistry. But the folding processes within the translocon must also be considered. A distilled overview of the physical principles of membrane protein stability is presented, and extended to encompass translocon-assisted folding.  相似文献   

9.
基于HP模型的蛋白质折叠问题的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
史小红 《生物信息学》2016,14(2):112-116
基于蛋白质二维HP模型提出改进的遗传算法对真实蛋白质进行计算机折叠模拟。结果显示疏水能量函数最小值的蛋白质构象对应含疏水核心的稳定结构,疏水作用在蛋白质折叠中起主要作用。研究表明二维HP模型在蛋白质折叠研究中是可行的和有效的并为进一步揭示蛋白质折叠机理提供重要参考信息。  相似文献   

10.
Cannabinoid receptor Type 2(简称CB2)是大麻素受体的一种亚型,因为其无中枢神经副作用,不会产生成瘾性及耐受性,显示出了非常好的开发前景和潜在的应用价值。其作为免疫调节剂、神经保护剂和抗癌药等将具有巨大市场价值。目前,CB2蛋白的空间结构还未被测定出来,对于CB2的折叠问题研究也开展的较少,为了研究大麻素受体亚型蛋白CB2的折叠问题以及方便更多的研究人员对CB2空间结构和相关药理特性的研究,本文提出了一种基于HP模型的折叠求解方法。通过使用回溯机制和蒙特卡罗方法对此优化问题进行求解,算法可有效的在全局范围内进行寻找最优解,避免了掉入局部最优问题。实验结果表明,本文方法获取的CB2蛋白空间构象具有较低的能量值,折叠情况较好。  相似文献   

11.
Dong Q  Wang X  Lin L 《Proteins》2008,72(1):353-366
In recent years, protein structure prediction using local structure information has made great progress. In this study, a novel and effective method is developed to predict the local structure and the folding fragments of proteins. First, the proteins with known structures are split into fragments. Second, these fragments, represented by dihedrals, are clustered to produce the building blocks (BBs). Third, an efficient machine learning method is used to predict the local structures of proteins from sequence profiles. Finally, a bi-gram model, trained by an iterated algorithm, is introduced to simulate the interactions of these BBs. For test proteins, the building-block lattice is constructed, which contains all the folding fragments of the proteins. The local structures and the optimal fragments are then obtained by the dynamic programming algorithm. The experiment is performed on a subset of the PDB database with sequence identity less than 25%. The results show that the performance of the method is better than the method that uses only sequence information. When multiple paths are returned, the average classification accuracy of local structures is 72.27% and the average prediction accuracy of local structures is 67.72%, which is a significant improvement in comparison with previous studies. The method can predict not only the local structures but also the folding fragments of proteins. This work is helpful for the ab initio protein structure prediction and especially, the understanding of the folding process of proteins.  相似文献   

12.
Substantial progress has been made towards understanding the folding mechanisms of proteins in vitro and in vivo even though the general rules governing such folding events remain unknown. This paper reviews current folding models along with experimental approaches used to elucidate the folding pathways. Protein misfolding is discussed in relation to disease states, such as amyloidosis, and the recent findings on the mechanism of converting normally soluble proteins into amyloid fibrils through the formation of intermediates provide an insight into understanding the pathogenesis of amyloid formation and possible clues for the development of therapeutic treatments. Finally, some commonly adopted refolding strategies developed over the past decade are summarized.  相似文献   

13.
Membrane proteins compose more than 30% of all proteins in the living cell. However, many membrane proteins have low abundance in the cell and cannot be isolated from natural sources in concentrations suitable for structure analysis. The overexpression, reconstitution, and stabilization of membrane proteins are complex and remain a formidable challenge in membrane protein characterization. Here we describe a novel, in vitro folding procedure for a cation-selective channel protein, the outer envelope membrane protein 16 (OEP16) of pea chloroplast, overexpressed in Escherichia coli in the form of inclusion bodies. The protein is purified and then folded with detergent on a Ni–NTA affinity column. Final concentrations of reconstituted OEP16 of up to 24 mg/ml have been achieved, which provides samples that are sufficient for structural studies by NMR and crystallography. Reconstitution of OEP16 in detergent micelles was monitored by circular dichroism, fluorescence, and NMR spectroscopy. Tryptophan fluorescence spectra of heterologous expressed OEP16 in micelles are similar to spectra of functionally active OEP16 in liposomes, which indicates folding of the membrane protein in detergent micelles. CD spectroscopy studies demonstrate a folded protein consisting primarily of α-helices. 15N-HSQC NMR spectra also provide evidence for a folded protein. We present here a convenient, effective and quantitative method to screen large numbers of conditions for optimal protein stability by using microdialysis chambers in combination with fluorescence spectroscopy. Recent collection of multidimensional NMR data at 500, 600 and 800 MHz demonstrated that the protein is suitable for structure determination by NMR and stable for weeks during data collection.  相似文献   

14.
Utilizing concepts of protein building blocks, we propose a de novo computational algorithm that is similar to combinatorial shuffling experiments. Our goal is to engineer new naturally occurring folds with low homology to existing proteins. A selected protein is first partitioned into its building blocks based on their compactness, degree of isolation from the rest of the structure, and hydrophobicity. Next, the protein building blocks are substituted by fragments taken from other proteins with overall low sequence identity, but with a similar hydrophobic/hydrophilic pattern and a high structural similarity. These criteria ensure that the designed protein has a similar fold, low sequence identity, and a good hydrophobic core compared with its native counterpart. Here, we have selected two proteins for engineering, protein G B1 domain and ubiquitin. The two engineered proteins share approximately 20% and approximately 25% amino acid sequence identities with their native counterparts, respectively. The stabilities of the engineered proteins are tested by explicit water molecular dynamics simulations. The algorithm implements a strategy of designing a protein using relatively stable fragments, with a high population time. Here, we have selected the fragments by searching for local minima along the polypeptide chain using the protein building block model. Such an approach provides a new method for engineering new proteins with similar folds and low homology.  相似文献   

15.
Kaya H  Chan HS 《Proteins》2005,58(1):31-44
Native-state hydrogen exchange experiments on several proteins have revealed partially unfolded conformations with diverse stabilities. These equilibrium observations have been used to support kinetic arguments that folding proceeds via a sequential "pathway." This interpretative logic is evaluated here by analyzing the relationship between thermodynamic behavior and folding kinetics in a class of simplified lattice protein models. The chain models studied have varying degrees of cooperative interplay (coupling) between local helical conformational preference and favorable nonlocal interactions. When model cooperativity is high, as native conditions are weakened, "isotherms" of free energy of exchange for residues belonging to the same helix merge together before global unfolding. The point of merger depends on the model energetic favorability of the helix. This trend is similar to the corresponding experimental observations. Kinetically, we find that the ordering of helix formation in the very last stage of native core assembly tends to follow the stabilities of their converged isotherms. In a majority (but not all) of folding trajectories, the final assembly of helices that are thermodynamically more stable against exchange precedes that of helices that are less stable against exchange. These model features are in partial agreement with common experimental interpretations. However, the model results also underscore the ensemble nature of the folding process: the kinetics of helix formation is not a discrete, strictly "all-or-none" process as that envisioned by certain non-explicit-chain models. Helices generally undergo many cycles of partial formation and dissolution before their conformations are fixed in the final assembly stage of folding, a kinetic stage that takes up only approximately 2% of the average folding time in the present model; and the ordering of the helices' final assembly in some trajectories can be different from the dominant ordering stipulated by the exchange isotherms.  相似文献   

16.
Although our understanding of globular protein folding continues to advance, the irregular tertiary structures and high cooperativity of globular proteins complicates energetic dissection. Recently, proteins with regular, repetitive tertiary structures have been identified that sidestep limitations imposed by globular protein architecture. Here we review recent studies of repeat-protein folding. These studies uniquely advance our understanding of both the energetics and kinetics of protein folding. Equilibrium studies provide detailed maps of local stabilities, access to energy landscapes, insights into cooperativity, determination of nearest-neighbor interaction parameters using statistical thermodynamics, relationships between consensus sequences and repeat-protein stability. Kinetic studies provide insight into the influence of short-range topology on folding rates, the degree to which folding proceeds by parallel (versus localized) pathways, and the factors that select among multiple potential pathways. The recent application of force spectroscopy to repeat-protein unfolding is providing a unique route to test and extend many of these findings.  相似文献   

17.
18.
In this paper, we propose an analytically tractable model of protein folding based on one-dimensional general random walk. A second-order differential equation for the mean folding time of a single protein is constructed which can be used to derive the observed relationship between the folding rate constant and the number of native contacts. The parameters appearing in the model can be determined by fitting the theoretical prediction to the experimental result. In addition, taking into account the fact that the number of native contacts is almost proportional to the relative contact order, we can also explain the observed relationship between the folding rate constant and the relative contact order.  相似文献   

19.
This paper presents an analytically tractable model that captures the most elementary aspect of the protein folding problem, namely that both the energy and the entropy decrease as a protein folds. In this model, the system diffuses within a sphere in the presence of an attractive spherically symmetric potential. The native state is represented by a small sphere in the center, and the remaining space is identified with unfolded states. The folding temperature, the time-dependence of the populations, and the relaxation rate are calculated, and the folding dynamics is analyzed for both golf-course and funnel-like energy landscapes. This simple model allows us to illustrate a surprising number of concepts including entropic barriers, transition states, funnels, and the origin of single exponential relaxation kinetics.  相似文献   

20.
Although beta-sheets represent a sizable fraction of the secondary structure found in proteins, the forces guiding the formation of beta-sheets are still not well understood. Here we examine the folding of a small, all beta-sheet protein, the E. coli major cold shock protein CspA, using both equilibrium and kinetic methods. The equilibrium denaturation of CspA is reversible and displays a single transition between folded and unfolded states. The kinetic traces of the unfolding and refolding of CspA studied by stopped-flow fluorescence spectroscopy are monoexponential and thus also consistent with a two-state model. In the absence of denaturant, CspA refolds very fast with a time constant of 5 ms. The unfolding of CspA is also rapid, and at urea concentrations above the denaturation midpoint, the rate of unfolding is largely independent of urea concentration. This suggests that the transition state ensemble more closely resembles the native state in terms of solvent accessibility than the denatured state. Based on the model of a compact transition state and on an unusual structural feature of CspA, a solvent-exposed cluster of aromatic side chains, we propose a novel folding mechanism for CspA. We have also investigated the possible complications that may arise from attaching polyhistidine affinity tags to the carboxy and amino termini of CspA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号