首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Nucleotide sequence of a cellulase gene of Bacillus subtilis   总被引:8,自引:0,他引:8  
The nucleotide sequence of an endolytic cellulase gene of Bacillus subtilis was determined and compared with the NH2-terminal amino acid sequence of the purified enzyme. The mature protein appeared to be extended by a signal sequence of 36 amino acids. The putative AUG initiation codon was preceded by a sigma 43-type promoter of B. subtilis and an AAGGAGG sequence, typical of procaryotic ribosomal binding sites. Partial homology of amino acid sequences was found between B. subtilis cellulase and an alkalophilic Bacillus cellulase.  相似文献   

4.
5.
Nucleotide sequence of the amylase gene from Bacillus subtilis.   总被引:49,自引:8,他引:49       下载免费PDF全文
  相似文献   

6.
Nucleotide sequence of the Bacillus subtilis developmental gene spoVE   总被引:4,自引:0,他引:4  
We have determined the nucleotide sequence of a 1159 bp DNA fragment containing the spoVE locus of Bacillus subtilis. The locus contained a single open reading frame of 293 codons. On the basis of the predicted amino acid sequence, the product of the spoVE gene is believed to be a protein with an Mr of 31,539. The amino-terminal portion of the spoVE gene was used to construct a translational fusion with the lacZ' gene. The hybrid spoVE-lacZ' gene was shown to be expressed in Escherichia coli and, therefore, it seems reasonable to conclude that the proposed open reading frame for the spoVE gene does indeed function in vivo.  相似文献   

7.
8.
Three genes from the Bacillus subtilis major che-fla operon have been cloned and sequenced. Two of the genes encode proteins that are homologous to the Escherichia coli and Salmonella typhimurium flagellar biosynthetic proteins FliP and FliQ. The third gene, designated fliZ, encodes a 219-amino-acid protein with a predicted molecular mass of 24,872 Da. FliZ is not significantly homologous to any known proteins. Null mutants in fliP and fliZ do not have flagella; however, motility can be restored to the fliZ null mutant by expression of fliZ from a plasmid. FliZ has a conventional N-terminal signal sequence that does not direct secretion of the protein but appears to target the protein to the membrane. Two possible models of insertion of FliZ into the membrane are described.  相似文献   

9.
10.
Nucleotide sequence of a lysine tRNA from Bacillus subtilis.   总被引:2,自引:5,他引:2       下载免费PDF全文
A lysine tRNA (tRNA1Lys) was purified from Bacillus subtilis W168 by a consecutive use of several column chromatographic systems. The nucleotide sequence was determined to be pG-A-G-C-C-A-U-U-A-G-C-U-C-A-G-U-D-G-G-D-A-G-A-G-C-A-U-C-U-G-A-C-U-U(U*)-U-U-K-A-psi-C-A-G-A-G-G-m7G(G)-U-C-G-A-A-G-G-T-psi-C-G-A-G-U-C-C-U-U-C-A-U-G-G-C-U-C-A-C-C-AOH, where K and U* are unidentified nucleosides. The nucleosides of U34 and m7G46 were partially substituted with U* and G, respectively. The binding ability of lysyl-tRNA1Lys to Escherichia coli ribosomes was stimulated with ApApA as well as ApApG.  相似文献   

11.
The Bacillus subtilis gene encoding FliY has been cloned and sequenced. The gene encodes a 379-amino-acid protein with a predicted molecular mass of 41,054 daltons. FliY is partly homologous to the Escherichia coli and Salmonella typhimurium switch proteins FliM and FliN. The N-terminus of FliY has 33% identity with the first 122 amino acids of FliM, whereas the C-terminus of FliY has 52% identity with the last 30 amino acids of FliN. The middle 60% of FliY is not significantly homologous to either of the proteins. A fliY::cat null mutant has no flagella. Motility can be restored to the mutant by expression of fliY from a plasmid, although chemotaxis is still defective since the strain exhibits smooth swimming behaviour. fliY::cat is in the cheD complementation group. One of the cheD point mutants does not switch although the population grown from a single cell has both smooth swimming and tumbling bacteria, implying that the switch is locked. Expression of fliY in wild-type B. subtilis makes the cells more smooth-swimming but does not appear to affect chemotaxis. Expression of fliY in wild-type S. typhimurium severely inhibits chemotaxis and also makes the cells smooth swimming. Expression in a non-motile S. typhimurium fliN mutant restores motility but not chemotaxis, although expression in a non-motile E. coli fliM mutant does not restore motility. The homology, multiple phenotypes, and interspecies complementation suggest that FliY forms part of the B. subtilis switch complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
15.
16.
17.
Nucleotide sequence of Bacillus phage Nf terminal protein gene.   总被引:2,自引:1,他引:2       下载免费PDF全文
The nucleotide sequence of Bacillus phage Nf gene E has been determined. Gene E codes for phage terminal protein which is the primer necessary for the initiation of DNA replication. The deduced amino acid sequence of Nf terminal protein is approximately 66% homologous with the terminal proteins of Bacillus phages PZA and luminal diameter 29, and shows similar hydropathy and secondary structure predictions. A serine which has been identified as the residue which covalently links the protein to the 5' end of the genome in luminal diameter 29, is conserved in all three phages. The hydropathic and secondary structural environment of this serine is similar in these phage terminal proteins and also similar to the linking serine of adenovirus terminal protein.  相似文献   

18.
We describe the sequence and characterization of the Bacillus subtilis flhF gene. flhF encodes a basic polypeptide of 41 kDa that contains a putative GTP-binding motif. The sequence of FlhF reveals a structural relationship to two Escherichia coli proteins, Ffh and FtsY, as well as to other members of the SRP54 family, in a domain presumed to bind GTP. flhF is located in a large operon consisting of chemotaxis and flagellar genes. Cells deficient in flhF are nonmotile. Through the use of anti-flagellar antibodies we have established that flhF is a flagellar (fla) gene. Thus, flhF is a unique flagellar gene in that it encodes a GTP-binding protein with similarities to members of the SRP54 family of proteins. These data suggest that flagellar biosynthesis in B. subtilis requires GTP.  相似文献   

19.
20.
Nucleotide sequence of threonine tRNA from Bacillus subtilis.   总被引:3,自引:3,他引:3       下载免费PDF全文
A threonine tRNA was purified from Bacillus subtilis W168 by a combined use of column chromatographic systems. The nucleotide sequence was determined to be pG-C-C-G-G-U-G-U-A-G-C-U-C-A-A-U-D-G-G-D(U)-A-G-A-G-C-A-A-C-U-G-A-C-U-mo5U-G-U-t6A-A-psi-C-A-G-U-A-G-m7G-U-U-G-G-G-G-G-T-psi-C-A-A-G-U-C-C-U-C-U-U-G-C-C-G-G-C-A-C-C-AOH, where about 40 % of D20 remained unmodified as U20. It consists of 76 nucleotides including a new minor nucleoside, 5-methoxyuridine (mo5U), which occupies the wobble position of anticodon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号