首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bacillus subtilis gene encoding FliY has been cloned and sequenced. The gene encodes a 379-amino-acid protein with a predicted molecular mass of 41,054 daltons. FliY is partly homologous to the Escherichia coli and Salmonella typhimurium switch proteins FliM and FliN. The N-terminus of FliY has 33% identity with the first 122 amino acids of FliM, whereas the C-terminus of FliY has 52% identity with the last 30 amino acids of FliN. The middle 60% of FliY is not significantly homologous to either of the proteins. A fliY::cat null mutant has no flagella. Motility can be restored to the mutant by expression of fliY from a plasmid, although chemotaxis is still defective since the strain exhibits smooth swimming behaviour. fliY::cat is in the cheD complementation group. One of the cheD point mutants does not switch although the population grown from a single cell has both smooth swimming and tumbling bacteria, implying that the switch is locked. Expression of fliY in wild-type B. subtilis makes the cells more smooth-swimming but does not appear to affect chemotaxis. Expression of fliY in wild-type S. typhimurium severely inhibits chemotaxis and also makes the cells smooth swimming. Expression in a non-motile S. typhimurium fliN mutant restores motility but not chemotaxis, although expression in a non-motile E. coli fliM mutant does not restore motility. The homology, multiple phenotypes, and interspecies complementation suggest that FliY forms part of the B. subtilis switch complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In this report we show that in Bacillus subtilis the flagellar switch, which controls direction of flagellar rotation based on levels of the chemotaxis primary response regulator, CheY-P, also causes hydrolysis of CheY-P to form CheY and Pi. This task is performed in Escherichia coli by CheZ, which interestingly enough is primarily located at the receptors, not at the switch. In particular we have identified the phosphatase as FliY, which resembles E. coli switch protein FliN only in its C-terminal part, while an additional N-terminal domain is homologous to another switch protein FliM and to CheC, a protein found in the archaea and many bacteria but not in E. coli. Previous E. coli studies have localized the CheY-P binding site of the switch to FliM residues 6-15. These residues are almost identical to the residues 6-15 in both B. subtilis FliM and FliY. We were able to show that both of these proteins are capable of binding CheY-P in vitro. Deletion of this binding region in B. subtilis mutant fliM caused the same phenotype as a cheY mutant (clockwise flagellar rotation), whereas deletion of it in fliY caused the opposite. We showed that FliY increases the rate of CheY-P hydrolysis in vitro. Consequently, we imagine that the duration of enhanced CheY-P levels caused by activation of the CheA kinase upon attractant binding to receptors, is brief due both to adaptational processes and to phosphatase activity of FliY.  相似文献   

3.
The flagellar switch of Salmonella typhimurium and Escherichia coli is composed of three proteins, FliG, FliM, and FliN. The switch complex modulates the direction of flagellar motor rotation in response to information about the environment received through the chemotaxis signal transduction pathway. In particular, chemotaxis protein CheY is believed to bind to switch protein FliM, inducing clockwise filament rotation and tumbling. To investigate the function of FliM and its interactions with FliG and FliN, we engineered a series of 34 FliM deletion mutant proteins, each lacking a different 10-amino-acid segment. We have determined the phenotype associated with each mutant protein, the ability of each mutant protein to interfere with the motility of wild-type cells, and the effect of additional FliG and FliN on the function of selected FliM mutant proteins. Overall, deletions at the N terminus produced a counterclockwise switch bias, deletions in the central region of the protein produced poorly motile or nonflagellate cells, and deletions near the C terminus produced only nonflagellate cells. On the basis of this evidence and the results of a previous study of spontaneous FliM mutants (H. Sockett, S. Yamaguchi, M. Kihara, V. M. Irikura, and R. M. Macnab, J. Bacteriol. 174:793-806, 1992), we propose a division of the FliM protein into four functional regions: an N-terminal region primarily involved in switching, an extended N-terminal region involved in switching and assembly, a middle region involved in switching and motor rotation, and a C-terminal region primarily involved in flagellar assembly.  相似文献   

4.
5.
Ralstonia solanacearum, a widely distributed and economically important plant pathogen, invades the roots of diverse plant hosts from the soil and aggressively colonizes the xylem vessels, causing a lethal wilting known as bacterial wilt disease. By examining bacteria from the xylem vessels of infected plants, we found that R. solanacearum is essentially nonmotile in planta, although it can be highly motile in culture. To determine the role of pathogen motility in this disease, we cloned, characterized, and mutated two genes in the R. solanacearum flagellar biosynthetic pathway. The genes for flagellin, the subunit of the flagellar filament (fliC), and for the flagellar motor switch protein (fliM) were isolated based on their resemblance to these proteins in other bacteria. As is typical for flagellins, the predicted FliC protein had well-conserved N- and C-terminal regions, separated by a divergent central domain. The predicted R. solanacearum FliM closely resembled motor switch proteins from other proteobacteria. Chromosomal mutants lacking fliC or fliM were created by replacing the genes with marked interrupted constructs. Since fliM is embedded in the fliLMNOPQR operon, the aphA cassette was used to make a nonpolar fliM mutation. Both mutants were completely nonmotile on soft agar plates, in minimal broth, and in tomato plants. The fliC mutant lacked flagella altogether; moreover, sheared-cell protein preparations from the fliC mutant lacked a 30-kDa band corresponding to flagellin. The fliM mutant was usually aflagellate, but about 10% of cells had abnormal truncated flagella. In a biologically representative soil-soak inoculation virulence assay, both nonmotile mutants were significantly reduced in the ability to cause disease on tomato plants. However, the fliC mutant had wild-type virulence when it was inoculated directly onto cut tomato petioles, an inoculation method that did not require bacteria to enter the intact host from the soil. These results suggest that swimming motility makes its most important contribution to bacterial wilt virulence in the early stages of host plant invasion and colonization.  相似文献   

6.
The FliM protein of Escherichia coli is essential for the assembly and function of flagella. Here, we report the effects of controlled low-level expression of FliM in a fliM null strain. Disruption of the fliM gene abolishes flagellation. Underexpression of FliM causes cells to produce comparatively few flagella, and most flagella built are defective, producing subnormal average torque and fluctuating rapidly in speed. The results imply that in a normal flagellar motor, multiple molecules of FliM are present and can function independently to some degree. The speed fluctuations indicate that stable operation requires most, possibly all, of the normal complement of FliM. Thus, the FliM subunits are not as fully independent as the motility proteins MotA and MotB characterized in earlier work, suggesting that FliM occupies a location in the motor distinct from the MotA/MotB torque generators. Several mutations in fliM previously reported to cause flagellar paralysis in Salmonella typhimurium (H. Sockett, S. Yamaguchi, M. Kihara, V.M. Irikura, and R. M. Macnab, J. Bacteriol. 174:793-806, 1992) were made and characterized in E. coli. These mutations did not cause flagellar paralysis in E. coli; their phenotypes were more complex and suggest that FliM is not directly involved in torque generation.  相似文献   

7.
We describe the sequence and characterization of the Bacillus subtilis flhF gene. flhF encodes a basic polypeptide of 41 kDa that contains a putative GTP-binding motif. The sequence of FlhF reveals a structural relationship to two Escherichia coli proteins, Ffh and FtsY, as well as to other members of the SRP54 family, in a domain presumed to bind GTP. flhF is located in a large operon consisting of chemotaxis and flagellar genes. Cells deficient in flhF are nonmotile. Through the use of anti-flagellar antibodies we have established that flhF is a flagellar (fla) gene. Thus, flhF is a unique flagellar gene in that it encodes a GTP-binding protein with similarities to members of the SRP54 family of proteins. These data suggest that flagellar biosynthesis in B. subtilis requires GTP.  相似文献   

8.
In the course of an analysis of the three genes encoding the flagellar motor switch, we isolated a paralyzed mutant whose defect proved to be a 4-bp deletion of the ribosome binding sequence of the fliN switch gene (V. M. Irikura, M. Kihara, S. Yamaguchi, H. Sockett, and R. M. Macnab, J. Bacteriol. 175:802-810,1993). This sequence lies just before the 3' end of the coding sequence of the upstream fliM switch gene, in the same operon. This mutant readily gave rise to pseudorevertants which, though much less motile than the wild type, did exhibit significant swarming. One such pseudorevertant was found to contain a compensating frameshift such that the fliM and fliN genes were placed in frame, coding for an essentially complete FliM-FliN protein fusion. Minicell analysis demonstrated that, as expected, the parental mutant synthesized an essentially full-length FliM protein but no detectable FliN. The pseudorevertant, in contrast, synthesized a protein with the predicted size for the FliM-FliN fusion protein and no detectable FliM or FliN. Immunoblotting of minicells with antibodies against FliM and FliN confirmed the identities of these various proteins. Immunoblotting of book-basal-body complexes from the wild-type strain gave a strong signal for the three switch proteins FliG, FliM, and FliN. Complexes from the FliM-FliN fusion mutant gave a strong signal for FliG but no signal for either FIiM or FliN; a moderately strong signal for the FliM-FliN fusion protein was seen with the anti-FliM antibody, and a weaker signal was seen with the anti-FliN antibody. The cytoplasmic C ring of the structure, which is seen consistently in electron microscopy of wild-type complexes and which is known to contain the FliM and FliN proteins, was much more labile in the FliM-FliN fusion mutant, giving a fragmented and variable appearance or being completely absent. Complementation data indicated that wild-type FliM had a mild dominant negative effect over the fusion protein, that wild-type FliN and the fusion protein work much better than the fusion protein alone, and that wild-type FliM and FliN together have no major positive or negative effect on the function of the fusion protein. We interpret these data to mean that the FliM-FliN fusion protein incorporates into structure but less stably than do the FliM and FliN proteins separately, that wild-type FliM tends to displace the fusion protein, and that wild-type FliN can supplement the FliN domain of the fusion protein without displacing the FliM domain. The data support, but do not prove, a model in which FliM and FliN in the wild-type switch complex are stationary with respect to each other.  相似文献   

9.
The Bacillus subtilis gene encoding CheB, which is homologous to Escherichia coli CheY, the regulator of flagellar rotation, has been cloned and sequenced. It has been verified, using a phage T7 expression system, by showing that a small protein, the same size as E. coli CheY, is actually made from this DNA. Despite the fact that the two proteins are 36% identical, with many highly conserved residues, they appear to play different roles. Unlike CheY null mutants, which swim smoothly, CheB null mutants tumble incessantly. However, a CheB point mutant swims smoothly, even in the presence of a plasmid bearing cheB, which restores the null mutants to wild type. Expression of CheB in wild type B. subtilis makes the cells exhibit more tumbling. Since both absence of CheB and presence of high levels of CheB cause tumbling, CheB appears to be required, in certain circumstances, for both smooth swimming and tumbling. Expression in wild type E. coli makes the cells smooth swimmers and strongly inhibits chemotaxis.  相似文献   

10.
CheY is the response regulator protein that interacts with the flagellar switch apparatus to modulate flagellar rotation during chemotactic signaling. CheY can be phosphorylated and dephosphorylated in vitro, and evidence indicates that CheY-P is the activated form that induces clockwise flagellar rotation, resulting in a tumble in the cell's swimming pattern. The flagellar switch apparatus is a complex macromolecular structure composed of at least three gene products, FliG, FliM, and FliN. Genetic analysis of Escherichia coli has identified fliG and fliM as genes in which mutations occur that allele specifically suppress cheY mutations, indicating interactions among these gene products. We have generated a class of cheY mutations selected for dominant suppression of fliG mutations. Interestingly, these cheY mutations dominantly suppressed both fliG and fliM mutations; this is consistent with the idea that the CheY protein interacts with both switch gene products during signaling. Biochemical characterization of wild-type and suppressor CheY proteins did not reveal altered phosphorylation properties or evidence for phosphorylation-dependent CheY multimerization. These data indicate that suppressor CheY proteins are specifically altered in the ability to transduce chemotactic signals to the switch at some point subsequent to phosphorylation. Physical mapping of suppressor amino acid substitutions on the crystal structure of CheY revealed a high degree of spatial clustering, suggesting that this region of CheY is a signaling surface that transduces chemotactic signals to the switch.  相似文献   

11.
One of the major questions in bacterial chemotaxis is how the switch, which controls the direction of flagellar rotation, functions. It is well established that binding of the signaling molecule CheY to the switch protein FliM shifts the rotation from the default direction, counterclockwise, to clockwise. How this shift is done is still a mystery. Our aim in this study was to determine the correlation between the fraction of FliM molecules in the clockwise state (i.e. occupied by CheY) and the probability of clockwise rotation. For this purpose we gradually expressed, from a plasmid, a clockwise FliM mutant protein in cells that express, from the chromosome, wild-type FliM but no chemotaxis proteins. We verified that plasmid-borne FliM exchanges chromosomal FliM in the switch. Surprisingly, a substantial clockwise probability was not obtained before the large majority of the FliM molecules in the switch were clockwise molecules. Thereafter, the rise in clockwise probability was very steep. These results suggest that an increase in the clockwise probability requires a high level of FliM occupancy by CheY approximately P. They further suggest that the steep increase in clockwise rotation upon increasing CheY levels, reported in several studies, is due, at least in part, to cooperativity of post-binding interactions within the switch. We also carried out the inverse experiment, in which wild-type FliM was gradually expressed in a background of a clockwise fliM mutant. In this case, the level of the clockwise mutant protein, required for establishing a certain clockwise probability, was lower than in the original experiment. If our system (in which the ratio between the rotational states of FliM in the switch is established by slow exchange) and the native system (in which the ratio is established by fast changes in FliM occupancy) are comparable, the results suggest that hysteresis is involved in the switch function. Such a situation might reflect a damping mechanism, which prevents a situation in which fluctuations in the phosphorylation level of CheY throw the switch from one direction of rotation to the other.  相似文献   

12.
Among the many proteins needed for assembly and function of bacterial flagella, FliG, FliM, and FliN have attracted special attention because mutant phenotypes suggest that they are needed not only for flagellar assembly but also for torque generation and for controlling the direction of motor rotation. A role for these proteins in torque generation is suggested by the existence of mutations in each of them that produce the Mot- (or paralyzed) phenotype, in which flagella are assembled and appear normal but do not rotate. The presumption is that Mot- defects cause paralysis by specifically disrupting functions essential for torque generation, while preserving the features of a protein needed for flagellar assembly. Here, we present evidence that the reported mot mutations in fliM and fliN do not disrupt torque-generating functions specifically but, instead, affect the incorporation of proteins into the flagellum. The fliM and fliN mutants are immotile at normal expression levels but become motile when the mutant proteins and/or other, evidently interacting flagellar proteins are overexpressed. In contrast, many of the reported fliG mot mutations abolish motility at all expression levels, while permitting flagellar assembly, and thus appear to disrupt torque generation specifically. These mutations are clustered in a segment of about 100 residues at the carboxyl terminus of FliG. A slightly larger carboxyl-terminal segment of 126 residues accumulates in the cells when expressed alone and thus probably constitutes a stable, independently folded domain. We suggest that the carboxyl-terminal domain of FliG functions specifically in torque generation, forming the rotor portion of the site of energy transduction in the flagellar motor.  相似文献   

13.
Defects in the chemotaxis proteins CheY and CheZ of Salmonella typhimurium can be suppressed by mutations in the flagellar switch, such that swarming of a pseudorevertant on semisolid plates is significantly better than that of its parent. cheY suppressors contribute to a clockwise switch bias, and cheZ suppressors contribute to a counterclockwise bias. Among the three known switch genes, fliM contributes most examples of such suppressor mutations. We have investigated the changes in FliM that are responsible for suppression, as well as the changes in CheY or CheZ that are being compensated for. Ten independently isolated parental cheY mutations represented nine distinct mutations, one an amino acid duplication and the rest missense mutations. Several of the altered amino acids lie on one face of the three-dimensional structure of CheY (A. M. Stock, J. M. Mottonen, J. B. Stock, and C. E. Schutt, Nature (London) 337:745-749, 1989; K. Volz and P. Matsumura, J. Biol. Chem. 266:15511-15519, 1991); this face may constitute the binding site for the switch. All 10 cheZ mutations were distinct, with several of them resulting in premature termination. cheY and cheZ suppressors in FliM occurred in clusters, which in general did not overlap. A few cheZ suppressors and one cheY suppressor involved changes near the N terminus of FliM, but neither cheY nor cheZ suppressors involved changes near the C terminus. Among the strongest cheY suppressors were changes from Arg to a neutral amino acid or from Val to Glu, suggesting that electrostatic interactions may play an important role in switching. A given cheY or cheZ mutation could be suppressed by many different fliM mutations; conversely, a given fliM mutation was often encountered as a suppressor of more than one cheY or cheZ mutation. The data suggest that an important factor in suppression is a balancing of the shift in switch bias introduced by alteration of CheY or CheZ with an appropriate opposing shift introduced by alteration of FliM. For strains with a severe parental mutation, such as the cheZ null mutations, adjustment of switch bias is essentially the only factor in suppression, since the attractant L-aspartate caused at most a slight further enhancement of the swarming rate over that occurring in the absence of a chemotactic stimulus. We discuss a model for switching in which there are distinct interactions for the counterclockwise and clockwise states, with suppression occurring by impairment of one of the states and hence by relative enhancement of the other state. FliM can also undergo amino acid changes that result in a paralyzed (Mot-) phenotype; these changes were confined to a very few residues in the protein.  相似文献   

14.
Three flagellar proteins, FliG, FliM, and FliN (FliGMN), are the components of the C ring of the flagellar motor. The genes encoding these proteins are multifunctional; they show three different phenotypes (Fla(-), Mot(-), and Che(-)), depending on the sites and types of mutations. Some of the Mot(-) mutants previously characterized are found to be motile. Reexamination of all Mot(-) mutants in fliGMN genes so far studied revealed that many of them are actually temperature sensitive (TS); that is, they are motile at 20 degrees C but nonmotile at 37 degrees C. There were two types of TS mutants: one caused a loss of function that was not reversed by a return to the permissive temperature (rigid TS), and the other caused a loss that was reversed (hyper-TS). The rigid TS mutants showed an all-or-none phenotype; that is, once a structure was formed, the structure and function were stable against temperature shifts. All of fliM and fliN and most of the fliG TS mutants belong to this group. On the other hand, the hyper-TS mutants (three of the fliG mutants) showed a temporal swimming/stop phenotype, responding to temporal temperature shifts when the structure was formed at a permissive temperature. Those hyper-TS mutation sites are localized in the C-terminal domain of the FliG molecules at sites that are different from the previously proposed functional sites. We discuss a role for this new region of FliG in the torque generation of the flagellar motor.  相似文献   

15.
M Raha  H Sockett    R M Macnab 《Journal of bacteriology》1994,176(8):2308-2311
filL is a small gene of unknown function that lies within the beginning of a large flagellar operon of Salmonella typhimurium and Escherichia coli. A spontaneous fliL mutant of S. typhimurium, containing a frameshift mutation about 40% from the 3' end of the gene, was moderately motile but swarmed poorly, suggesting that FliL might be a component of the flagellar motor or switch. However, in-frame deletions of the E. coli gene, including an essentially total deletion, had little or no effect on motility or chemotaxis. Thus, FliL does not appear to have a major role in flagellar structure or function and is therefore unlikely to be a component of the motor or switch; the effect on motility caused by truncation of the gene is probably an indirect one.  相似文献   

16.
Mechanisms of microbial movement in subsurface materials   总被引:2,自引:0,他引:2  
The biological factors important in the penetration of Escherichia coli through anaerobic, nutrient-saturated, Ottawa sand-packed cores were studied under static conditions. In cores saturated with galactose-peptone medium, motile strains of E. coli penetrated four times faster than mutants defective only in flagellar synthesis. Motile, nonchemotactic mutants penetrated the cores faster than did the chemotactic parental strain. This, plus the fact that a chemotactic galactose mutant penetrated cores saturated with peptone medium at the same rate with or without a galactose gradient, indicates that chemotaxis may not be required for bacterial penetration through unconsolidated porous media. The effect of gas production on bacterial penetration was studied by using motile and nonmotile E. coli strains together with their respective isogenic non-gas-producing mutants. No differences were observed between the penetration rates of the two motile strains through cores saturated with peptone medium with or without galactose. However, penetration of both nonmotile strains was detected only with galactose. The nonmotile, gas-producing strain penetrated cores saturated with galactose-peptone medium five to six times faster than did the nonmotile, non-gas-producing mutant, which indicates that gas production is an important mechanism for the movement of nonmotile bacteria through unconsolidated porous media. For motile strains, the penetration rate decreased with increasing galactose concentrations in the core and with decreasing inoculum sizes. Also, motile strains with the faster growth rates had faster penetration rates. These results imply that, for motile bacteria, the penetration rate is regulated by the in situ bacterial growth rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The biological factors important in the penetration of Escherichia coli through anaerobic, nutrient-saturated, Ottawa sand-packed cores were studied under static conditions. In cores saturated with galactose-peptone medium, motile strains of E. coli penetrated four times faster than mutants defective only in flagellar synthesis. Motile, nonchemotactic mutants penetrated the cores faster than did the chemotactic parental strain. This, plus the fact that a chemotactic galactose mutant penetrated cores saturated with peptone medium at the same rate with or without a galactose gradient, indicates that chemotaxis may not be required for bacterial penetration through unconsolidated porous media. The effect of gas production on bacterial penetration was studied by using motile and nonmotile E. coli strains together with their respective isogenic non-gas-producing mutants. No differences were observed between the penetration rates of the two motile strains through cores saturated with peptone medium with or without galactose. However, penetration of both nonmotile strains was detected only with galactose. The nonmotile, gas-producing strain penetrated cores saturated with galactose-peptone medium five to six times faster than did the nonmotile, non-gas-producing mutant, which indicates that gas production is an important mechanism for the movement of nonmotile bacteria through unconsolidated porous media. For motile strains, the penetration rate decreased with increasing galactose concentrations in the core and with decreasing inoculum sizes. Also, motile strains with the faster growth rates had faster penetration rates. These results imply that, for motile bacteria, the penetration rate is regulated by the in situ bacterial growth rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A shotgun cloning of Bacillus subtilis DNA into pBR322 yielded a 2-kb fragment that suppresses the cold-sensitive defect of the nusA10(Cs) Escherichia coli mutant. The responsible gene encodes an open reading frame that is greater than 50% identical at the amino acid level to the E. coli rph gene, which was formerly called orfE. This B. subtilis gene is located at 251 degrees adjacent to the gerM gene on the B. subtilis genetic map. It has been named rph because, like its E. coli analog, it encodes a phosphate-dependent exoribonuclease activity, RNase PH, that removes the 3' nucleotides from precursor tRNAs. The cloned B. subtilis rph gene also suppresses the cold-sensitive phenotype of other unrelated cold-sensitive mutants of E. coli, but not the temperature-sensitive phenotype of three temperature-sensitive mutants, including the nusA11(Ts) mutant, that were tested.  相似文献   

19.
The Bacillus subtilis cheN gene was isolated, sequenced, and expressed. It encodes a large negatively charged protein with a molecular weight of approximately 74,000. The predicted protein sequence has 33 to 34% identity with the Escherichia coli and Salmonella typhimurium CheA and Myxococcus xanthus FrzE sequences. These proteins are found to autophosphorylate and are members of the same histidine kinase signal modulating family. CheN has several conserved regions (including the histidine that is phosphorylated in CheA) that coincide with other autophosphorylated signal transducers. A null mutant is defective in attractant-induced methanol formation and shows no behavioral response to chemoeffectors. These results imply that in B. subtilis the mechanism of chemotaxis involves phosphoryl transfer similar to that in E. coli. However, the CheN null mutant mostly tumbles, whereas CheA mutants swim smoothly, and only in B. subtilis does excitation lead to methyl transfer and methanol formation. Thus, the overall mechanism of chemotaxis is different in the two organisms.  相似文献   

20.
The chemotaxis machinery of Bacillus subtilis is similar to that of the well characterized system of Escherichia coli. However, B. subtilis contains several chemotaxis genes not found in the E. coli genome, such as cheC and cheD, indicating that the B. subtilis chemotactic system is more complex. In B. subtilis, CheD is required for chemotaxis; the cheD mutant displays a tumbly phenotype, has abnormally methylated chemoreceptors, and responds poorly to most chemical stimuli. Homologs of B. subtilis CheD have been found in chemotaxis-like operons of a large number of bacteria and archaea, suggesting that CheD plays an important role in chemotactic sensory transduction for many organisms. However, the molecular function of CheD has remained unknown. In this study, we show that CheD catalyzes amide hydrolysis of specific glutaminyl side chains of the B. subtilis chemoreceptor McpA. In addition, we present evidence that CheD deamidates other B. subtilis chemoreceptors including McpB and McpC. Previously, deamidation of B. subtilis receptors was thought to be catalyzed by the CheB methylesterase, as is the case for E. coli receptors. Because cheD mutant cells do not respond to most chemoattractants, we conclude that deamidation by CheD is required for B. subtilis chemoreceptors to effectively transduce signals to the CheA kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号