首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NKG2D is an activating receptor expressed on all human NK cells and a subset of T cells. In cytolytic conjugates between NK cells and target cells expressing its ligand MHC class I chain-related gene A, NKG2D accumulates at the immunological synapse with GM1-rich microdomains. Furthermore, NKG2D is specifically recruited to detergent-resistant membrane fractions upon ligation. However, in the presence of a strong inhibitory stimulus, NKG2D-mediated cytotoxicity can be intercepted, and recruitment of NKG2D to the immunological synapse and detergent-resistant membrane fractions is blocked. Also, downstream phosphorylation of Vav-1 triggered by NKG2D ligation is circumvented by coengaging inhibitory receptors. Thus, we propose that one way in which inhibitory signaling can control NKG2D-mediated activation is by blocking its recruitment to GM1-rich membrane domains. The accumulation of activating NK cell receptors in GM1-rich microdomains may provide the necessary platform from which stimulatory signals can proceed.  相似文献   

2.
The NK cell-activating receptor NKG2D recognizes several MHC class I-related molecules expressed on virally infected and tumor cells. Human NKG2D transduces activation signals exclusively via an associated DAP10 adaptor containing a YxNM motif, whereas murine NKG2D can signal through either DAP10 or the DAP12 adaptor, which contains an ITAM sequence. DAP10 signaling is thought to be mediated, at least in part, by PI3K and is independent of Syk/Zap-70 kinases; however, the exact mechanism by which DAP10 induces natural cytotoxicity is incompletely understood. Herein, we identify Vav1, a Rho GTPase guanine nucleotide exchange factor, as a critical signaling mediator downstream of DAP10 in NK cells. Specifically, using mice deficient in Vav1 and DAP12, we demonstrate an essential role for Vav1 in DAP10-induced NK cell cytoskeletal polarization involving both actin and microtubule networks, maturation of the cytolytic synapse, and target cell lysis. Mechanistically, we show that Vav1 interacts with DAP10 YxNM motifs through the adaptor protein Grb2 and is required for activation of PI3K-dependent Akt signaling. Based on these findings, we propose a novel model of ITAM-independent signaling by Vav downstream of DAP10 in NK cells.  相似文献   

3.
Interaction of NK cells with target cells leads to formation of an immunological synapse (IS) at the contact site. NK cells form two distinctly different IS, the inhibitory NK cell IS (NKIS) and the cytolytic NKIS. Cognate ligand binding is sufficient to induce clustering of inhibitory killer cell Ig-like receptors (KIR) and phosphorylation of both the receptor and the phosphatase Src homology domain 2-containing protein tyrosine phosphatase 1 (SHP-1). Recruitment and activation of SHP-1 by a signaling competent inhibitory receptor are essential early events for NK cell inhibition. We have in the present study used three-dimensional immunofluorescence microscopy to analyze distribution of inhibitory KIR, SHP-1, LFA-1, and lipid rafts within the NKIS during cytolytic and noncytolytic interactions. NK clones retrovirally transduced with the inhibitory KIR2DL3 gene fused to GFP demonstrate colocalization of KIR2DL3 with SHP-1 in the center of early inhibitory NKIS. Ligand binding translocates the receptor to the center of the IS where activation signals are accumulating and provides a docking site for SHP-1. SHP-1 and rafts cluster in the center of early inhibitory NKIS and late cytolytic NKIS, and whereas rafts continue to increase in size in cytolytic conjugates, they are rapidly dissolved in inhibitory conjugates. Furthermore, rafts are essential only for cytolytic, not for inhibitory, outcome. These results indicate that the outcome of NK cell-target cell interactions is dictated by early quantitative differences in cumulative activating and inhibitory signals.  相似文献   

4.
NKG2D splice variants: a reexamination of adaptor molecule associations   总被引:3,自引:0,他引:3  
NKG2D is a homodimeric C-type lectin-related receptor expressed on natural killer (NK) cells and T cells. In mice, alternative deoxyribonucleic acid (DNA) splicing generates two isoforms of NKG2D that differ in the length of their cytoplasmic domains. Their ability to induce cellular activation is mediated via association with two membrane-bound, signaling adaptor molecules, DAP10 and DAP12. It has been reported that the long form of NKG2D associates exclusively with DAP10, whereas the short variant can interact with either adaptor. The short isoform was reported to be almost undetectable in naïve NK cells. Using two distinct cell types, we demonstrate that like the short isoform, the long variant of NKG2D also associates not only with DAP10 but also with DAP12. Using reporter cells (70Z/3), we demonstrate that DAP12 can compete equally with DAP10 for association with both variants of NKG2D when DAP10 and DAP12 are coexpressed. Cross-linking either isoform of NKG2D induces a calcium flux when associated exclusively with DAP10 or DAP12. Moreover, using quantitative polymerase chain reaction (PCR), we also show that the short isoform of NKG2D is expressed in naïve NK cells. Our data suggest that signaling via mouse NKG2D isoforms is more complex than originally presented.  相似文献   

5.
NKG2D is an important activating receptor for triggering the NK cell cytotoxic activity, although chronic engagement of specific ligands by NKG2D is also known to provoke decreased cell surface expression of the receptor and compromised NK cell function. We have studied the dynamics of surface NKG2D expression and how exposure to the specific ligand major histocompatibility complex class I chain-related molecule B (MICB) affects receptor traffic and fate. While in the NKL cell line and “resting” NK cells NKG2D was found principally at the cell surface, in activated primary NK cells an intracellular pool of receptor could also be found recycling to the plasma membrane. Exposure of NK cells to targets expressing MICB resulted in degradation of ∼50% of total NKG2D protein and lysosomal degradation of the DAP10 adaptor molecule. Consistent with these observations, confocal microscopy experiments demonstrated that DAP10 trafficked to secretory lysosomes in both transfected NKL cells and in activated primary NK cells upon interaction with MICB-expressing target cells. Interestingly, polarization to the synapse of secretory lysosomes containing DAP10 was also observed. The implications of the intracellular traffic of the NKG2D/DAP10 receptor complex for NK cell activation are discussed. We propose that the rapid degradation of NKG2D/DAP10 observed coincident with recruitment of the receptor to the cytotoxic immune synapse may explain the loss of NKG2D receptor expression after chronic exposure to NKG2D ligands.The killer cell lectin-like receptor NKG2D is one of the best characterized NK3 cell-activating receptors. Signaling via NKG2D depends on its association with DAP10, a transmembrane adaptor molecule containing the sequence YINM, which signals via recruitment of phosphatidylinositol 3-kinase and Grb2 (growth factor receptor-bound protein 2) (1, 2). Effector cell activation mediated by NKG2D has been described as immune recognition of the “induced self,” because the cellular ligands for NKG2D (NKG2D-L): the polymorphic MHC class I chain-related molecules (MIC) A and MICB and the UL16-binding proteins are not normally expressed but instead are up-regulated on target cells after pathogen infection or tumor transformation to render these cells susceptible to NK cell lysis (3). Strikingly, however, although induced expression of NKG2D-L acts as a danger signal to provoke an immune response, a number of studies performed in mouse models have shown that chronic exposure to NKG2D-L can also lead to down-modulation of the surface expression of NKG2D and impaired NK cell cytotoxic function (46).In humans, a common feature of patients with multiple different tumors is the presence in the serum of high levels of soluble MICA and -B or UL16-binding proteins, released by tumor cells, that are associated with an impairment of CTL and NK cell cytotoxic function (710). These observations have been interpreted as suggesting that the release of soluble NKG2D-L is a strategy of tumor immune evasion (11). However, recent data show that receptor interaction with cell membrane-anchored MICB can also lead to impaired NKG2D function. We have shown that brief cytotoxic interactions between NK cells and MICB-expressing target cells trigger a synaptic interchange of NKG2D and MICB as well as a rapid down-modulation of surface NKG2D and compromised NK cell cytotoxicity suggesting that NKG2D traffic is rapidly altered upon recognition of MICB expressed on target cell (12).The surface level of a receptor is dictated by the relative rates of synthesis and transport to the plasma membrane and endocytosis, recycling, and degradation. The loss of cell surface NKG2D observed after NKG2D-L binding (710, 12) raises the question of what is the intracellular fate of the receptor on interaction with NKG2D-L. However, the traffic of this receptor has not been previously studied. Here we describe the dynamics of surface NKG2D expression and examine how cytotoxic interactions between NK cells and the MHC class I- 721.221 (here called 221) cells that express MICB (here called 221B) affect the traffic and fate of the NKG2D/DAP10 receptor complex. In NKL cells and resting primary NK cells NKG2D is mainly expressed at the cell surface; however, in activated primary NK cells an intracellular pool of receptor recycling to the cell surface is detected. During cytotoxic interactions the recognition of MICB expressed on target cells results in a rapid degradation of NKG2D/DAP10 that is associated with the traffic of DAP10 to secretory lysosomes (SLs) (13, 14). Our data provide new insights into the dynamics of NKG2D receptor expression in NK cells and suggest a plausible model to explain how chronic exposure to NKG2D-L could lead to NKG2D down-modulation and compromised NK cell function.  相似文献   

6.
7.
Human CD8+ T cells activated and expanded by TCR cross-linking and high-dose IL-2 acquire potent cytolytic ability against tumors and are a promising approach for immunotherapy of malignant diseases. We have recently reported that in vitro killing by these activated cells, which share phenotypic and functional characteristics with NK cells, is mediated principally by NKG2D. NKG2D is a surface receptor that is expressed by all NK cells and transmits an activating signal via the DAP10 adaptor molecule. Using stable RNA interference induced by lentiviral transduction, we show that NKG2D is required for cytolysis of tumor cells, including autologous tumor cells from patients with ovarian cancer. We also demonstrated that NKG2D is required for in vivo antitumor activity. Furthermore, both activated and expanded CD8+ T cells and NK cells use DAP10. In addition, direct killing was partially dependent on the DAP12 signaling pathway. This requirement by activated and expanded CD8+ T cells for DAP12, and hence stimulus from a putative DAP12-partnered activating surface receptor, persisted when assayed by anti-NKG2D Ab-mediated redirected cytolysis. These studies demonstrated the importance of NKG2D, DAP10, and DAP12 in human effector cell function.  相似文献   

8.
An adequate immune response is the result of the fine balance between activation and inhibitory signals. The exact means by which inhibitory signals obviate activation signals in immune cells are not totally elucidated. Human CD94/NKG2A is an ITIM-containing inhibitory receptor expressed by NK cells and some CD8+ T cells that recognize HLA-E. We show that the engagement of this receptor prevents NK cell activation by disruption of the actin network and exclusion of lipid rafts at the point of contact with its ligand (inhibitory NK cell immunological synapse, iNKIS). CD94/NKG2A engagement leads to recruitment and activation of src homology 2 domain-bearing tyrosine phosphatase 1. This likely explains the observed dephosphorylation of guanine nucleotide exchange factor and regulator of actin, Vav1, as well as ezrin-radixin-moesin proteins that connect actin filaments to membrane structures. In contrast, NK cell activation by NKG2D induced Vav1 and ezrin-radixin-moesin phosphorylation. Thus, CD94/NKG2A prevents actin-dependent recruitment of raft-associated activation receptors complexes to the activating synapse. This was further substantiated by showing that inhibition of actin polymerization abolished lipid rafts exclusion at the iNKIS, whereas cholesterol depletion had no effect on actin disruption at the iNKIS. These data indicate that the lipid rafts exclusion at the iNKIS is an active process which requires an intact cytoskeleton to maintain lipid rafts outside the inhibitory synapse. The net effect is to maintain an inhibitory state in the proximity of the iNKIS, while allowing the formation of activation synapse at distal points within the same NK cell.  相似文献   

9.
10.
The UL16-binding proteins (ULBPs) are a novel family of MHC class I-related molecules that were identified as targets of the human CMV glycoprotein, UL16. We have previously shown that ULBP expression renders a relatively resistant target cell sensitive to NK cytotoxicity, presumably by engaging NKG2D, an activating receptor expressed by NK and other immune effector cells. In this study we show that NKG2D is the ULBP counterstructure on primary NK cells and that its expression is up-regulated by IL-15 stimulation. Soluble forms of ULBPs induce marked protein tyrosine phosphorylation, and activation of the Janus kinase 2, STAT5, extracellular signal-regulated kinase, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signal transduction pathways. ULBP-induced activation of Akt and extracellular signal-regulated kinase and ULBP-induced IFN-gamma production are blocked by inhibitors of PI 3-kinase, consistent with the known binding of PI 3-kinase to DAP10, the membrane-bound signal-transducing subunit of the NKG2D receptor. While all three ULBPs activate the same signaling pathways, ULBP3 was found to bind weakly and to induce the weakest signal. In summary, we have shown that NKG2D is the ULBP counterstructure on primary NK cells and for the first time have identified signaling pathways that are activated by NKG2D ligands. These results increase our understanding of the mechanisms by which NKG2D activates immune effector cells and may have implications for immune surveillance against pathogens and tumors.  相似文献   

11.
Recently, it has become apparent that surface proteins commonly transfer between immune cells in contact. Inhibitory receptors and ligands exchange between cells during NK cell surveillance and we report here that NK cells also acquire activating ligands from target cells. Specifically, the stress-inducible activating ligand for NKG2D, MHC class I-related chain A (MICA), transferred to NK cells upon conjugation with MICA-expressing target cells. Acquisition of MICA from target cells was dependent on cell contact and occurred after accumulation of MICA at the immunological synapse. Moreover, transfer of MICA was facilitated by specific molecular recognition via NKG2D and augmented by Src kinase signaling. Importantly, MICA associated with its new host NK cell membrane in an orientation that allowed engagement with NKG2D in trans and indeed could down-regulate NKG2D in subsequent homotypic interactions with other NK cells. MICA captured from target cells could subsequently transfer between NK cells and, more importantly, NK cell degranulation was triggered in such NK cell-NK cell interactions. Thus, NK cells can influence other NK cells with proteins acquired from target cells and our data specifically suggest that NK cells could lyse other NK cells upon recognition of activating ligands acquired from target cells. This mechanism could constitute an important function for immunoregulation of NK cell activity.  相似文献   

12.
13.
Activation of V gamma 9V delta 2 T cells by NKG2D   总被引:5,自引:0,他引:5  
Human Vgamma9 Vdelta2 T cells recognize phosphorylated nonpeptide Ags (so called phosphoantigens), certain tumor cells, and cells treated with aminobisphosphonates. NKG2D, an activating receptor for NK cells, has been described as a potent costimulatory receptor in the Ag-specific activation of gammadelta and CD8 T cells. This study provides evidence that Vgamma9 Vdelta2 T cells may also be directly activated by NKG2D. Culture of PBMC with immobilized NKG2D-specific mAb or NKG2D ligand MHC class I related protein A (MICA) induces the up-regulation of CD69 and CD25 in NK and Vgamma9 Vdelta2 but not in CD8 T cells. Furthermore, NKG2D triggers the production of TNF-alpha but not of IFN-gamma, as well as the release of cytolytic granules by Vgamma9 Vdelta2 T cells. Purified Vgamma9 Vdelta2 T cells kill MICA-transfected RMA mouse cells but not control cells. Finally, DAP10, which mediates NKG2D signaling in human NK cells, was detected in resting and activated Vgamma9 Vdelta2 T cells. These remarkable similarities in NKG2D function in NK and Vgamma9 Vdelta2 T cells may open new perspectives for Vgamma9 Vdelta2 T cell-based immunotherapy, e.g., by Ag-independent killing of NKG2D ligand-expressing tumors.  相似文献   

14.
Signaling by the CD94/NKG2 heterodimeric NK cell receptor family has been well characterized in the human but has remained unclear in the mouse and rat. In the human, the activating receptor CD94/NKG2C associates with DAP12 by an ionic bond between oppositely charged residues within the transmembrane regions of NKG2C and DAP12. The lysine residue responsible for DAP12 association is absent in rat and mouse NKG2C and -E, raising questions about signaling mechanisms in these species. As a possible substitute, rat and mouse NKG2C and -E contain an arginine residue in the transition between the transmembrane and stalk regions. In this article, we demonstrate that, similar to their human orthologs, NKG2A inhibits, whereas NKG2C activates, rat NK cells. Redirected lysis assays using NK cells transfected with a mutated NKG2C construct indicated that the activating function of CD94/NKG2C did not depend on the transmembrane/stalk region arginine residue. Flow cytometry and biochemical analysis demonstrated that both DAP12 and DAP10 can associate with rat CD94/NKG2C. Surprisingly, DAP12 and DAP10 did not associate with NKG2C but instead with CD94. These associations depended on a transmembrane lysine residue in CD94 that is unique to rodents. Thus, in the mouse and rat, the ability to bind activating adaptor proteins has been transferred from NKG2C/E to the CD94 chain as a result of mutation events in both chains. Remarkable from a phylogenetic perspective, this sheds new light on the evolution and function of the CD94/NKG2 receptor family.  相似文献   

15.
Grb7 is the prototype of a family of adaptor molecules that also include Grb10 and Grb14 that share a conserved molecular architecture including Src homology 2 (SH2) and pleckstrin homology (PH) domains. Grb7 has been implicated as a downstream mediator of integrin-FAK signal pathways in the regulation of cell migration, although the molecular mechanisms are still not well understood. In this paper, we investigated the potential role and mechanisms of PH domain in Grb7 in the regulation of cell migration. We found that the PH domain mediated Grb7 binding to phospholipids both in vitro and in intact cells. Furthermore, both Grb7 and its PH domain preferentially interacted with phosphatidylinositol phosphates showing strongest affinity to the D3- and D5-phosphoinositides. The PH domain interaction with phosphoinositides was shown to play a role in the stimulation of cell migration by Grb7. It was also shown to be necessary for Grb7 phosphorylation by FAK, although it was not required for Grb7 interaction with FAK or recruitment to the focal contacts. Last, we found that PI 3-kinase activity played a role in both Grb7 association with phosphoinositides and its stimulation of cell migration. In addition, both FAK binding to PI 3-kinase via its autophosphorylated Tyr(397) and integrin-mediated cell adhesion increased Grb7 association with phosphoinositides. Together, these results identified the Grb7 PH domain interaction with phosphoinositides and suggested a potential mechanism by which several signaling molecules including Grb7, FAK, and PI 3-kinase and their interactions cooperate to mediate signal transduction pathways in integrin-mediated cell migration.  相似文献   

16.
The mechanism underlying persistent hepatitis B virus (HBV) infection remains unclear. We investigated the role of innate immune responses to persistent HBV infection in 154 HBV-infected patients and 95 healthy controls. The expression of NKG2D- and 2B4-activating receptors on NK cells was significantly decreased, and moreover, the expression of DAP10 and SAP, the intracellular adaptor proteins of NKG2D and 2B4 (respectively), were lower, which then impaired NK cell-mediated cytotoxic capacity and interferon-γ production. Higher concentrations of transforming growth factor-beta 1 (TGF-β1) were found in sera from persistently infected HBV patients. TGF-β1 down-regulated the expression of NKG2D and 2B4 on NK cells in our in vitro study, leading to an impairment of their effector functions. Anti-TGF-β1 antibodies could restore the expression of NKG2D and 2B4 on NK cells in vitro. Furthermore, TGF-β1 induced cell-cycle arrest in NK cells by up-regulating the expression of p15 and p21 in NK cells from immunotolerant (IT) patients. We conclude that TGF-β1 may reduce the expression of NKG2D/DAP10 and 2B4/SAP, and those IT patients who are deficient in these double-activating signals have impaired NK cell function, which is correlated with persistent HBV infection.  相似文献   

17.
18.
NKG2D is an important activating/co-stimulatory receptor harnessed by NK and T cells in immune surveillance. In contrast to NK cells, T cells fail to express the activation-signaling molecule DAP12 even when activated and, therefore, ligation of NKG2D alone is insufficient to induce T cell cytolytic function. To test whether we could endow T cells with NK cell-like effector function, we have engineered DAP12 into T cells by retroviral transduction (T-DAP12). T-DAP12 cells were demonstrated to specifically secrete interferon-gamma following receptor ligation and to mediate potent and specific lysis of the NKG2D ligand (NKG2D-L) (Rae-1beta) expressing MHC class I-deficient and class I-sufficient tumors. To circumvent the inability of T-DAP12 cells to proliferate following NKG2D ligation by Rae-1beta expressing tumors, DAP12 was engineered into OT-1 cells with an endogenous T cell receptor specific for chicken ovalbumin peptide (amino acids 257-264). Importantly, following a period of proliferation through endogenous T cell receptor ligation, OT-1-DAP12 cells retained specificity against NKG2D-L expressing major histocompatibility complex class I-deficient tumor. In adoptive transfer experiments, T-DAP12 cells enhanced the survival of NK cell-depleted RAG-1-deficient mice inoculated with RMA-S-Rae-1beta but not parental RMA-S tumors. Overall, this study demonstrated the significant potential of suppressing tumors and other cellular targets expressing NKG2D-L by endowing T cells with innate NK cell-like function.  相似文献   

19.
Chronic myeloid leukemia is a clonal multilineage myeloproliferative disease of stem cell origin characterized by the presence of the Bcr/Abl oncoprotein, a constitutively active tyrosine kinase. In previous studies, we have provided evidence that Bcr/Abl overexpression in leukemic cells increased their susceptibility to NK-mediated lysis by different mechanisms. In the present study, using UT-7/9 cells, a high level Bcr/Abl transfectant of UT-7 cells, we show that the treatment of Bcr/Abl target by imatinib mesylate (IM), a specific Abl tyrosine kinase inhibitor, hampers the formation of the NK/target immunological synapse. The main effect of IM involves an induction of surface GM1 ganglioside on Bcr/Abl transfectants that prevents the redistribution of MHC-related Ag molecules in lipid rafts upon interaction with NK cells. IM also affects cell surface glycosylation of targets, as assessed by binding of specific lectins resulting in the subsequent modulation of their binding to lectin type NK receptor, particularly NKG2D. In addition, we demonstrate that the tyrosine kinase activity repression results in a decrease of MHC-related Ags-A/B and UL-16-binding protein expression on Bcr/Abl transfectants UT-7/9. We show that NKG2D controls the NK-mediated lysis of UT-7/9 cells, and IM treatment inhibits this activating pathway. Taken together, our results show that the high expression of Bcr/Abl in leukemic cells controls the expression of NKG2D receptor ligands and membrane GM1 via a tyrosine kinase-dependent mechanism and that the modulation of these molecules by IM interferes with NK cell recognition and cytolysis of the transfectants.  相似文献   

20.
Syk regulation of phosphoinositide 3-kinase-dependent NK cell function   总被引:4,自引:0,他引:4  
Emerging evidence suggests that NK-activatory receptors use KARAP/DAP12, CD3zeta, and FcepsilonRIgamma adaptors that contain immunoreceptor tyrosine-based activatory motifs to mediate NK direct lysis of tumor cells via Syk tyrosine kinase. NK cells may also use DAP10 to drive natural cytotoxicity through phosphoinositide 3-kinase (PI3K). In contrast to our recently identified PI3K pathway controlling NK cytotoxicity, the signaling mechanism by which Syk associates with downstream effectors to drive NK lytic function has not been clearly defined. In NK92 cells, which express DAP12 but little DAP10/NKG2D, we now show that Syk acts upstream of PI3K, subsequently leading to the specific signaling of the PI3K-->Rac1-->PAK1-->mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase-->ERK cascade that we earlier described. Tumor cell ligation stimulated DAP12 tyrosine phosphorylation and its association with Syk in NK92 cells; Syk tyrosine phosphorylation and activation were also observed. Inhibition of Syk function by kinase-deficient Syk or piceatannol blocked target cell-induced PI3K, Rac1, PAK1, mitogen-activated protein/ERK kinase, and ERK activation, perforin movement, as well as NK cytotoxicity, indicating that Syk is upstream of all these signaling events. Confirming that Syk does not act downstream of PI3K, constitutively active PI3K reactivated all the downstream effectors as well as NK cytotoxicity suppressed in Syk-impaired NK cells. Our results are the first report documenting the instrumental role of Syk in control of PI3K-dependent natural cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号