首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human gastric bacterial pathogen Helicobacter pylori has been implicated in type B gastritis, peptic ulceration and gastric adenocarcinoma. Here we report on the cloning and genetic characterization of an H. pylori gene named vacA, which encodes the vacuolating cytotoxin VacA, a novel type of antigenic bacterial toxin that induces the formation of intracellular vacuoles in epithelial cells. The vacuolating cytotoxin activity is expressed by a subset of clinical isolates (Vac+), all of which produce the 87kDa cytotoxin antigen, but strains which produce neither the activity nor the cytotoxin protein (Vac) also carry the gene, Isogenic H. pylori mutants in vacA generated by transposon shuttle mutagenesis produce neither the VacA antigen nor a vacuolating activity in a cell culture model. The vacA gene itself encodes a precursor protein of 139.6 kDa consisting of a 33-amino acid signal sequence, the 87 kDa cytotoxin and a 50 kDa C-termlnal domain with features typical of a bacterial outer membrane protein. The VacA precursor shows no significant primary sequence homology with any previously reported protein, but its structural organization closely resembles the IgA protease-type of exoprotein produced by pathogenic Neisseriae and Haemophilus species. Our current data support a model for secretion of the cytotoxin through the two bacterial membranes which involves the 50 kDa domain for outer membrane translocation with subsequent proteolytic cleavage and release of the mature 87 kDa cytotoxin into the extracellular environment.  相似文献   

2.
Background: Colonization of the gastric mucosa by Helicobacter pylori is often associated with chronic gastric pathologies in humans. Development of disease correlates with the presence of distinct bacterial pathogenicity factors, such as the cag type IV secretion system (cag‐T4SS), the vacuolating cytotoxin (VacA), or the ability of the bacteria to acquire and incorporate cholesterol from human tissue. Materials and Methods: The in vitro growth of H. pylori requires media (Brucella broth) complemented with vitamins and horse serum or cyclodextrins, prepared as blood agar plates or liquid cultures. Liquid cultures usually show a slow growth. Here, we describe the successful growth of H. pylori strains 26695, P217, P12, and 60190 on serum‐free media replacing serum components or cyclodextrins with a commercially available cholesterol solution. Results: The effects of cholesterol as a substitute for serum or cyclodextrin were rigorously tested for growth of H. pylori on agar plates in vitro, for its general effects on bacterial protein synthesis (the proteome level), for H. pylori’s natural competence and plasmid DNA transfer, for the production of VacA, and the general function of the cag‐pathogenicity island and its encoded cag‐T4SS. Generally, growth of H. pylori with cholesterol instead of serum supplementation did not reveal any restrictions in the physiology and functionality of the bacteria except for strain 26695 showing a reduced growth on cholesterol media, whereas strain 60190 grew more efficient in cholesterol‐ versus serum‐supplemented liquid medium. Conclusions: The use of cholesterol represents a considerable option to serum complementation of growth media for in vitro growth of H. pylori.  相似文献   

3.
The growth of Helicobacter pylori, a Gram-negative microaerophilic bacterium, is often difficult and requires complex media with the supplementation of 5% to 10% blood or blood derivatives. We have found that Brucella broth supplemented with 1% heated horse serum and 0.1% β-cyclodextrin supports the good growth of H. pylori. The degree of growth and production of urease and vacuolating cytotoxin in this medium were equal to those in the medium supplemented with 5% horse serum. This medium was found to be suitable for both the routine laboratory culture and primary isolation of H. pylori from biopsy samples.  相似文献   

4.
Background and Aims: Several attempts have been successful in liquid cultivation of Helicobaccter pylori. However, there is a need to improve the growth of H. pylori in liquid media in order to get affluent growth and a simple approach for examining bacterial properties. We introduce here a thin‐layer liquid culture technique for the growth of H. pylori. Methods: A thin‐layer liquid culture system was established by adding liquid media to a 90‐mm diameter Petri dish. Optimal conditions for bacterial growth were investigated and then viability, growth curve, and released proteins were examined. Results: Maximal growth of H. pylori was obtained by adding 3 mL of brucella broth supplemented with 10% horse to a Petri dish. H. pylori grew in both DMEM and RPMI‐1640 supplemented with 10% fetal bovine serum and 0.5% yeast extract. Serum‐free RPMI‐1640 supported the growth of H. pylori when supplemented with dimethyl‐β‐cyclodextrin (200 μg/mL) and 1% yeast extract. Under optimal growth, H. pylori grew exponentially for 28 hours, reaching a density of 3.4 OD600 with a generation time of 3.3 hours. After 24 hours, cultures at a cell density of 1.0 OD600 contained 1.3 ± 0.1 × 109 CFU/mL. γ‐Glutamyl transpeptidase, nuclease, superoxide dismutase, and urease were not detected in culture supernatants at 24 hours in thin‐layer liquid culture, but were present at 48 hours, whereas alcohol dehydrogenase, alkylhydroperoxide reductase, catalase, and vacuolating cytotoxin were detected at 24 hours. Conclusions: Thin‐layer liquid culture technique is feasible, and can serve as a versatile liquid culture technique for investigating bacterial properties of H. pylori.  相似文献   

5.
Helicobacter pylori (H. pylori) is a resident bacterium in the stomach that accounts for 75% cases of gastric cancer. In this review, we comprehensively studied published papers on H. pylori vaccines using Google Scholar and NCBI databases to gather information about vaccines against H. pylori. Considering the pivotal roles of the enzyme urease (in production of NH3 and neutralization of the acidic medium of the stomach), cytotoxin-associated gene A, and vacuolating cytotoxin A proteins in H. pylori infection, they could be the best candidates for the construction of recombinant vaccines. The outer membrane porins (Hop), blood group antigen-binding adhesin (BabA), sialic acid-binding adhesin (SabA), and outer inflammatory protein A, play significant roles in binding of bacterium to human gastric tissues, and because binding is the first step in bacterial fixation and colonization, these antigens also can be considered as suitable candidates for designing vaccines. Likely, other significant bacterial antigens, such as NapA (chemotactic factor for recruitment of human neutrophils and monocytes to the site of infection), duodenal ulcer promoting protein A (to promote duodenal ulcer), and Hsp60 (as a molecular chaperon for activation of urease enzyme), can be used in the construction of subunit vaccines. New vaccines in use currently, such as DNA vaccines and subunit vaccines, can efficiently replace the dead and attenuated vaccines. Nonetheless, the results show that urease enzyme is most used compared with bacterial components in the designing and construction of recombinant vaccines. The BabA and SabA antigens belong to the outer membrane porins family in H. pylori and are required for binding and fixation of the bacterium to the human gastric tissues.  相似文献   

6.
Helicobacter pylori, a microaerophilic fastidious bacterium, has been cultured on various plating and broth media since its discovery. Although the agar media can be sufficient for the identification, typing, and antibiotic resistance studies, no secretory antigen of H. pylori can be evaluated in such media. Thus, satisfactory growth of H. pylori in liquid culture which is needed for analysis of secretory proteins without the presence of interfering agents is in demand. We assessed the impact of β-cyclodextrin, Fetal Bovine Serum (FBS), and charcoal as supplements for H. pylori growth. Furthermore, we aimed to identify the most favorable supplement that supports the secretion of the dominant secretory protein, vacuolating cytotoxin (VacA). Five clinical strains were cultured on broth media and the growth, viability, morphology, and protein content of each strain were determined. Our results revealed that β-cyclodextrin supports the growth rate, viability, and cell lysate protein content to the extent similar to FBS. Application of β-cyclodextrin is found to postpone spiral to coccoid conversion up to 72 h of incubation. Although FBS supports a higher VacA protein content, presence of interfering macromolecules in FBS questions its utility particularly for purposes of studying extra cellular proteins such as VacA. This study recommends further application of β-cyclodextrin as a culture supplement with the potential capacity in neutralizing toxic compounds and flourishing the secretion of H. pylori proteins without addition of interfering proteins.  相似文献   

7.
Helicobacter pylori produces a number of proteins associated with the outer membrane, including adhesins and the vacuolating cytotoxin. We observed that the functional expression of such proteins is deleterious to Escherichia coli, the host bacterium used for gene cloning. Therefore, a general method was developed for the functional expression of such genes on a shuttle vector in H. pylori, which has been termed SOMPES (Shuttle vector-based Outer Membrane Protein Expression System). The intact, active gene is reconstituted by recombination in H. pylori from partial gene sequences cloned on an E. coli-H. pylori shuttle vector. This system was established in an H. pylori strain carrying a precise, unmarked chromosomal deletion of the vacA gene, which was constructed by adapting the streptomycin sensitivity system to H. pylori. It is based on the expression of the H. pylori rpsL gene as a counterselectable marker in the genetic background of an rpsL mutant. The utility of this approach is demonstrated by the expression of a recombinant gene encoding vacuolating cytotoxin (vacA) and a recombinant gene encoding an adherence-associated outer membrane protein (alpA) in H. pylori. Received: 10 May 1999 / Accepted: 7 July 1999  相似文献   

8.
Many pathogenic Gram‐negative bacteria possess type IV secretion systems (T4SS) to inject effector proteins directly into host cells to modulate cellular processes to their benefit. The human bacterial pathogen Helicobacter pylori, a major aetiological agent in the development of chronic gastritis, duodenal ulcer and gastric carcinoma, harbours the cag‐T4SS to inject the cytotoxin associated Antigen (CagA) into gastric epithelial cells. This results in deregulation of major signalling cascades, actin‐cytoskeletal rearrangements and eventually gastric cancer. We show here that a pre‐infection with live H. pylori has a dose‐dependent negative effect on the CagA translocation efficiency of a later infecting strain. This effect of the ‘first’ strain was independent of any of its T4SS, the vacuolating cytotoxin (VacA) or flagella. Other bacterial pathogens, e.g. pathogenic Escherichia coli, Campylobacter jejuni, Staphylococcus aureus, or commensal bacteria, such as lactobacilli, were unable to interfere with H. pylori's CagA translocation capacity in the same way. This interference was independent of the β1 integrin receptor availability for H. pylori, but certain H. pylori outer membrane proteins, such as HopI, HopQ or AlpAB, were essential for the effect. We suggest that the specific interference mechanism induced by H. pylori represents a cellularresponse to restrict and control CagA translocation into a host cell to control the cellular damage.  相似文献   

9.
The vacuolating cytotoxin of Helicobacter pylori   总被引:22,自引:1,他引:21  
Helicobacter pylori, the causative agent of chronic superficial gastritis and duodenal ulcer disease in humans, produces a unique cytotoxin (VacA) that induces cytoplasmic vacuolation in eukaryotic cells. The structural organization and processing of the vacuolating cytotoxin are characteristic of a family of proteins exemplified by Neisseria gonorrhoeae IgA protease. Although only 50% of H. pylori isolates produce detectable cytotoxin activity in vitro, vacA homologues are present in virtually all isolates. Several families of vacA alleles have been identified, and there is a strong correlation between presence of specific vacA genotypes, cytotoxin activity, and peptic ulceration. Experiments in a mouse model of H. pylori-induced gastric damage indicate that the cytotoxin plays an important role in inducing gastric epithelial necrosis.  相似文献   

10.
Chronic inflammation induced by Helicobacter pylori infection is a critical factor in the development of peptic ulcer disease and gastric cancer. Central to this inflammation is the initiation of pro‐inflammatory signaling cascades within epithelial cells, in particular those mediated by two sensors of bacterial cell wall components, nucleotide‐binding oligomerization domain‐containing protein 1 (NOD1) and alpha‐protein kinase 1 (ALPK1). H pylori is, however, also highly adept at mitigating inflammation in the host, thereby restricting tissue damage and favoring bacterial persistence. H pylori modulates host immune responses by altering cytokine signaling in epithelial and myeloid cells, which results in increased proliferation of regulatory T cells and downregulation of effector T‐cell responses. H pylori vacuolating cytotoxin A (VacA) has been shown to play an important role in the dampening of immune responses and induction of immune tolerance capable of protecting against asthma. It is also possible to generate protective immune responses by immunization with various H pylori antigens or their epitopes, in combination with an adjuvant, though this for now has only been shown in mouse models. Novel non‐toxic adjuvants, consisting of modified bacterial enterotoxins or nanoparticles, have recently been developed that may not only enhance vaccine efficacy, but also help translate candidate vaccines to the clinic. This review will summarize the main discoveries in the past year regarding host immune responses to H pylori infection, as well as the design of new vaccine approaches against this infection.  相似文献   

11.
Helicobacter pylori is a highly successful bacterial pathogen of humans, infecting the stomach of more than half of the worlds population. The H. pylori infection results in chronic gastritis, eventually followed by peptic ulceration and, more rarely, gastric cancer. H. pylori has developed a unique set of virulence factors, actively supporting its survival in the special ecological niche of the human stomach. Vacuolating cytotoxin (VacA) and cytotoxin-associated antigen A (CagA) are two major bacterial virulence factors involved in host cell modulation. VacA, so far mainly regarded as a cytotoxin of the gastric epithelial cell layer, now turns out to be a potent immunomodulatory toxin, targeting the adapted immune system. Thus, in addition to the well-known vacuolating activity, VacA has been reported to induce apoptosis in epithelial cells, to affect B lymphocyte antigen presentation, to inhibit the activation and proliferation of T lymphocytes, and to modulate the T cell-mediated cytokine response.  相似文献   

12.
Helicobacter pylori is known as a key pathogen for chronic gastric and duodenal ulcers. Egg yolk antibody, IgY produced from chicken immunized withH. pylori antigen was tested for the inhibition of growth and adhesion ofH. pylori to gastric epithelial cell, AGS. The colony forming ofH. pylori was repressed by 30% using 1 mg/mL of IgY while that ofE. coli was only 7% with the same amount of IgY, which showed the growth inhibition ofH. pylori was mainly due to the specific interaction between IgY andH. pylori. The inhibition ofH. pylori adhesion to AGS was as high as 90% using 0.5 mg/mL of antibody only. More than 80% ofH. pylori attached to AGS could be detached treating with the same amount of IgY for one and a half hr. However, this effect was severely dependant on theH. pylori strains tested. The strain used for immunization of chicken was very sensitive to the antibody treatment but changing the test strain generally showed a variation in adhesion inhibition between 15 and 80%. Further studies are necessary to employ the egg yolk antibodies for the treatment ofH. pylori in vivo.  相似文献   

13.
《Autophagy》2013,9(9):1387-1388
Autophagy plays key roles both in host defense against bacterial infection and in tumor biology. Helicobacter pylori (H. pylori) infection causes chronic gastritis and is the single most important risk factor for the development of gastric cancer in humans. Its vacuolating cytotoxin (VacA) promotes gastric colonization and is associated with more severe disease. Acute exposure to VacA initially triggers host autophagy to mitigate the effects of the toxin in epithelial cells. Recently, we demonstrated that chronic exposure to VacA leads to the formation of defective autophagosomes that lack CTSD/cathepsin D and have reduced catalytic activity. Disrupted autophagy results in accumulation of reactive oxygen species and SQSTM1/p62 both in vitro and in vivo in biopsy samples from patients infected with VacA+ but not VacA- strains. We also determined that the Crohn disease susceptibility polymorphism in the essential autophagy gene ATG16L1 increases susceptibility to H. pylori infection. Furthermore, peripheral blood monocytes from individuals with the ATG16L1 risk variant show impaired autophagic responses to VacA exposure. This is the first study to identify both a host autophagy susceptibility gene for H. pylori infection and to define the mechanism by which the autophagy pathway is affected following H. pylori infection. Collectively, these findings highlight the synergistic effects of host and bacterial autophagy factors on H. pylori pathogenesis and the potential for subsequent cancer susceptibility.  相似文献   

14.
Background and Objectives. Intracellular location of Helicobacter pylori in human gastric epithelial cells has been observed in biopsies. Whether this reflects an ability to invade host cells and establish an intracellular niche remains to be determined. Methods. The interactions between a clinical isolate of H. pylori and primary cell cultures from human gastric epithelium or the human epithelial cell line HEp‐2 were monitored using time‐lapse photography. This technique allows studies of the dynamics of host‐microbial interactions. Results. H. pylori cells readily approached and established close contacts with epithelial cells followed by uptake of the bacteria into the cellular cytoplasm. Entry into epithelial cells was achieved through an active process of bacterial motility and penetration of the cell membranes. In conventional invasion assays using HEp‐2 cells, an increased internalization in a strain producing the vacuolating cytotoxin was observed, compared to the isogenic VacA knockout mutant. Conclusion. Invasion of gastric epithelium represents a hitherto unappreciated trait of H. pylori that could contribute to the bacterium's ability to establish persistent infection that evades the mucosal immune defense and sometimes also antimicrobial therapy. A small number of bacterial cells with a transient intracellular habitat could serve as a seeder population, providing a backup for a constantly challenged and fluctuating luminal population.  相似文献   

15.
16.
《Autophagy》2013,9(1):138-143
Helicobacter pylori is a gram negative pathogen that infects at least half of the world’s population and is associated not only with gastric cancer but also with other diseases such as gastritis and peptic ulcers. Indeed, H. pylori is considered the single most important risk factor for the development of gastric cancer. The vacuolating cytotoxin, VacA, secreted by H. pylori promotes intracellular survival of the bacterium and modulates host immune responses. In a recent study, we reported that VacA induces autophagy. Multilamellar autophagosomes are detected in gastric epithelial cells that are distinct from the large vacuoles formed by VacA. Furthermore, inhibition of autophagy stabilizes VacA and reduces vacuolation in the cells indicating that the toxin is being degraded by autophagy, thus limiting toxin-induced host cell damage. Many of the methods that were used for this study are commonly employed techniques that were adapted for H. pylori infection and VacA intoxication. In this paper, we describe the various methods and specific protocols used for the assessment and monitoring of autophagy during H. pylori infection.  相似文献   

17.
Aims: To demonstrate the application of a new quantitative polymerase chain reaction (qPCR) technique for the determination of Helicobacter pylori concentrations in water, and to use this method to investigate the occurrence of the bacteria in sewage. The other aim was to study the survival capacity and detectability of the bacteria in artificially contaminated groundwater at different temperatures of 4 and 15°C. Methods and Results: The detection of H. pylori in water was aided by PCR using specific primers designed for the amplification of a fragment within the major vacuolating cytotoxin gene. Conventional culture was compared with conventional PCR and the new real-time (RT) qPCR approach for the quantification of the bacterium. Helicobacter pylori remained culturable for 120 h at 4°C as opposed to only 24 h at 15°C. RT qPCR demonstrated a 100-fold greater sensitivity for the detection of H. pylori DNA in comparison with conventional PCR. Scanning electron microscopic (SEM) observation showed that the normal spiral form changed to a coccoid form after 24 and 72 h at 15 and 4°C, respectively. Helicobacter pylori was found at 2–28 cells ml−1 in sewage, of the 23 sewage samples – 84% were positive for H. pylori species-specific vacuolating cyctotoxin gene (vacA) by RT qPCR, but were negative by conventional PCR. Conclusions: The RT qPCR assay provided a specific, sensitive and rapid method for the quantitative detection of H. pylori in sewage. This molecular method would be valuable in studying the prevalence of H. pylori as required by the United States Environmental Protection Agency Contaminant Candidate List, particularly in nondisinfected ground waters, in sewage as a source of contamination, and for addressing the possible presence of viable but nonculturable of H. pylori. Significance and Impact of the Study: The quantitative detection of H. pylori by rapid and less-expensive methods than the TaqMan Assay using SYBR green could be an important tool to monitor infection in community by measuring the concentrations in sewage and to meet the new regulatory and risk-based frameworks for water supplies.  相似文献   

18.
Background: viral and bacterial antigens have been suspected to be able to mimic the antigenic profile of the thyroid cell membrane and to play an important role in the onset of the autoimmune diseases, such as Graves’ disease and Hashimoto thyroiditis. The Helicobacter pylori infection is worldwide diffused and is present in the developed countries up to 50% of the population. The presence of the cytotoxin‐associated gene A antigens identifies the most virulent strains of the bacterium. Previous studies have demonstrated the possible correlation between the Helicobacter pylori and Hashimoto’s thyroiditis but these results are controversial. Aims: We studied the prevalence rate of this bacterium in the Graves’ disease and two selected subgroups such as the hyperthyroid patients, at the first time of diagnosis, and the euthyroid methimazole‐treated patients. Materials and Methods: We analyzed Helicobacter pylori in fresh stool samples with an enzyme immunoassay method and the presence of cytotoxin‐associated gene A antigens with a serological test. Results: Our results show that a significative increased rate of prevalence is present in Graves' patients, when the disease is ongoing, with an overall prevalence of the strains expressing the cytotoxin‐associated gene A antigens compared to the control group. Conclusions: The association between the Helicobacter pylori and Graves’ disease suggests a possible role of this bacterium in the onset and/or the maintenance of the disease.  相似文献   

19.
Helicobacter pylori represents an important pathogen involved in diseases ranging from gastritis, peptic ulceration, to gastric malignancies. Prominent virulence factors comprise the vacuolating cytotoxin VacA and the cytotoxin‐associated genes pathogenicity island (cagPAI)‐encoded type IV secretion system (T4SS). The T4SS effector protein CagA can be translocated into AGS and other gastric epithelial cells followed by phosphorylation through c‐Src and c‐Abl tyrosin kinases to hijack signalling networks. The duodenal cell line AZ‐521 has been recently introduced as novel model system to investigate CagA delivery and phosphorylation in a VacA‐dependent fashion. In contrast, we discovered that AZ‐521 cells display a T4SS incompetence phenotype for CagA injection, which represents the first reported gastrointestinal cell line with a remarkable T4SS defect. We proposed that this deficiency may be due to an imbalanced coexpression of T4SS receptor integrin‐β1 or carcinoembryonic antigen‐related cell adhesion molecules (CEACAMs), which were described recently as novel H. pylori receptors. We demonstrate that AZ‐521 cells readily express integrin‐β1, but overexpression of integrin‐β1 constructs did not restore the T4SS defect. We further show that AZ‐521 cells lack the expression of CEACAMs. We demonstrate that genetic introduction of either CEACAM1 or CEACAM5, but not CEACAM6, in AZ‐521 cells is sufficient to permit injection and phosphorylation of CagA by H. pylori to degrees observed in the AGS cell model. Expression of CEACAM1 or CEACAM5 in infected AZ‐521 cells was also accompanied by tyrosine dephosphorylation of the cytoskeletal proteins vinculin and cortactin, a hallmark of H. pyloriinfected AGS cells. Our results suggest the existence of an integrin‐β1‐ and CEACAM1‐ or CEACAM5‐dependent T4SS delivery pathway for CagA, which is clearly independent of VacA. The presence of two essential host protein receptors during infection with H. pylori represents a unique feature in the bacterial T4SS world. Further detailed investigation of these T4SS functions will help to better understand infection strategies by bacterial pathogens.  相似文献   

20.
《Autophagy》2013,9(3):370-379
Host cell responses to Helicobacter pylori infection are complex and incompletely understood. Here, we report that autophagy is induced within human-derived gastric epithelial cells (AGS) cells in response to H. pylori infection. These autophagosomes were distinct and different from the large vacuoles induced during H. pylori infection. Autophagosomes were detected by transmission electron microscopy, conversion of LC3-I to LC3-II, GFP-LC3 recruitment to autophagosomes, and depended on Atg5 and Atg12. The induction of autophagy depended on the vacuolating cytotoxin (VacA) and, moreover, VacA was sufficient to induce autophagosome formation. The channel forming activity of VacA was necessary for inducing autophagy. Intracellular VacA partially co-localized with GFP-LC3, indicating that the toxin associates with autophagosomes. The inhibition of autophagy increased the stability of intracellular VacA, which in turn resulted in enhanced toxin-mediated cellular vacuolation. These findings suggest that the induction of autophagy by VacA may represent a host mechanism to limit toxin-induced cellular damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号