共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Importin beta family transport receptors shuttle between the nucleus and the cytoplasm and mediate transport of macromolecules through nuclear pore complexes (NPCs). The interactions between these receptors and their cargoes are regulated by binding RanGTP; all receptors probably exit the nucleus complexed with RanGTP, and so should deplete RanGTP continuously from the nucleus. We describe here the development of an in vitro system to study how nuclear Ran is replenished. Nuclear import of Ran does not rely on simple diffusion as Ran's small size would permit, but instead is stimulated by soluble transport factors. This facilitated import is specific for cytoplasmic RanGDP and employs nuclear transport factor 2 (NTF2) as the actual carrier. NTF2 binds RanGDP initially to NPCs and probably also mediates translocation of the NTF2-RanGDP complex to the nuclear side of the NPCs. A direct NTF2-RanGDP interaction is crucial for this process, since point mutations that disturb the RanGDP-NTF2 interaction also interfere with Ran import. The subsequent nuclear accumulation of Ran also requires GTP, but not GTP hydrolysis. The release of Ran from NTF2 into the nucleus, and thus the directionality of Ran import, probably involves nucleotide exchange to generate RanGTP, for which NTF2 has no detectable affinity, followed by binding of the RanGTP to an importin beta family transport receptor. 相似文献
3.
Regulated import of STAT proteins into the nucleus through the nuclear pores is a vital event. We previously identified Arg214/215 in the coiled-coil domain and Arg414/417 in the DNA binding domain involved in the ligand-induced nuclear translocation of Stat3. In this study, we investigated the mechanism for Stat3 nuclear transport. We report here that among five ubiquitously expressed human importin alphas, importin alpha5 and alpha7, but not importin alpha1, alpha3, and alpha4, bind to Stat3 upon cytokine stimulation. Similar results were observed for Stat1, but not for Stat5a and 5b, which were unable to interact with any of the importin alphas. The C-terminus of importin alpha5 is necessary but not sufficient for Stat3 binding. Truncation mutant of Stat3 (aa1-320) that contains Arg214/215 exhibits specific binding to importin alpha5, and an exclusive nuclear localization. Point mutations of Arg214/215 in this mutant destroy importin alpha5 binding and its nuclear localization. In contrast, the truncation mutant (aa320-770) including Arg414/417 fails to interact with importin alpha5 and is localized in the cytoplasm. However, both sequence elements are necessary for the full-length Stat3's interaction with importin alpha5. These results suggest that Arg214/215 is likely the binding site for importin alpha5, whereas Arg414/417 may not be involved in the direct binding, but necessary for maintaining the proper conformation of Stat3 dimer for importin binding. A model for Stat3 nuclear translocation is proposed based on these data. 相似文献
4.
Importin 7 and importin alpha/importin beta are nuclear import receptors for the glucocorticoid receptor 总被引:1,自引:0,他引:1 下载免费PDF全文
The vertebrate glucocorticoid receptor (GR) is cytoplasmic without hormone and localizes to the nucleus after hormone binding. GR has two nuclear localization signals (NLS): NL1 is similar in sequence to the SV40 NLS; NL2 is poorly defined, residing in the ligand-binding domain. We found that GR displayed similar hormone-regulated compartmentalization in Saccharomyces cerevisiae and required the Sxm1 nuclear import receptor for NL2-mediated import. Two metazoan homologues of Sxm1, importin 7 and importin 8, bound both NL1 and NL2, whereas importin alpha selectively bound NL1. In an in vitro nuclear import assay, both importin 7 and the importin alpha-importin beta heterodimer could import a GR NL1 fragment. Under these conditions, full-length GR localized to nuclei in the presence but not absence of an unidentified component in cell extracts. Interestingly, importin 7, importin 8, and importin alpha bound GR even in the absence of hormone; thus, hormonal control of localization is exerted at a step downstream of import receptor binding. 相似文献
5.
Nuclear localization signal and protein context both mediate importin alpha specificity of nuclear import substrates 下载免费PDF全文
Friedrich B Quensel C Sommer T Hartmann E Köhler M 《Molecular and cellular biology》2006,26(23):8697-8709
The "classical" nuclear protein import pathway depends on importin alpha and importin beta. Importin alpha binds nuclear localization signal (NLS)-bearing proteins and functions as an adapter to access the importin beta-dependent import pathway. In humans, only one importin beta is known to interact with importin alpha, while six alpha importins have been described. Various experimental approaches provided evidence that several substrates are transported specifically by particular alpha importins. Whether the NLS is sufficient to mediate importin alpha specificity is unclear. To address this question, we exchanged the NLSs of two well-characterized import substrates, the seven-bladed propeller protein RCC1, preferentially transported into the nucleus by importin alpha3, and the less specifically imported substrate nucleoplasmin. In vitro binding studies and nuclear import assays revealed that both NLS and protein context contribute to the specificity of importin alpha binding and transport. 相似文献
6.
7.
Functional nuclear proteins are selectively imported into the nucleus by transport factors such as importins alpha and beta. The relationship between the efficiency of nuclear protein import and the cell cycle was measured using specific import substrates for the importin alpha/beta-mediated pathway. After the microinjection of SV40 T antigen nuclear localization signal (NLS)-containing substrates into the cytoplasm of synchronized culture cells at a certain phase of the cell cycle, the nuclear import of the substrates was measured kinetically. Cell cycle-dependent change in import efficiency, but not capacity, was found. That is, import efficiency was found low in the early S, G2/M, and M/G1 phases compared with other phases. In addition, we found that the extent of co-imunoprecipitation of importin alpha with importin beta from cell extracts was strongly associated with import efficiency. These results indicate that the importin alpha/beta-mediated nuclear import machinery is regulated in a cell cycle-dependent manner through the modulation of interaction modes between importins alpha and beta. 相似文献
8.
A nonconventional nuclear localization signal within the UL84 protein of human cytomegalovirus mediates nuclear import via the importin alpha/beta pathway 下载免费PDF全文
The open reading frame UL84 of human cytomegalovirus encodes a multifunctional regulatory protein which is required for viral DNA replication and binds with high affinity to the immediate-early transactivator IE2-p86. Although the exact role of pUL84 in DNA replication is unknown, the nuclear localization of this protein is a prerequisite for this function. To investigate whether the activities of pUL84 are modulated by cellular proteins we used the Saccharomyces cerevisiae two-hybrid system to screen a cDNA-library for interacting proteins. Strong interactions were found between pUL84 and four members of the importin alpha protein family. These interactions could be confirmed in vitro by pull down experiments and in vivo by coimmunoprecipitation analysis from transfected cells. Using in vitro transport assays we showed that the pUL84 nuclear import required importin alpha, importin beta, and Ran, thus following the classical importin-mediated import pathway. Deletion mutagenesis of pUL84 revealed a domain of 282 amino acids which is required for binding to the importin alpha proteins. Its function as a nuclear localization signal (NLS) was confirmed by fusion to heterologous proteins. Although containing a cluster of basic amino acids similar to classical NLSs, this cluster did not contain the NLS activity. Thus, a complex structure appears to be essential for importin alpha binding and import activity. 相似文献
9.
10.
The Nup358-RanGAP complex is required for efficient importin alpha/beta-dependent nuclear import 下载免费PDF全文
In vertebrate cells, the nucleoporin Nup358/RanBP2 is a major component of the filaments that emanate from the nuclear pore complex into the cytoplasm. Nup358 forms a complex with SUMOylated RanGAP1, the GTPase activating protein for Ran. RanGAP1 plays a pivotal role in the establishment of a RanGTP gradient across the nuclear envelope and, hence, in the majority of nucleocytoplasmic transport pathways. Here, we investigate the roles of the Nup358-RanGAP1 complex and of soluble RanGAP1 in nuclear protein transport, combining in vivo and in vitro approaches. Depletion of Nup358 by RNA interference led to a clear reduction of importin alpha/beta-dependent nuclear import of various reporter proteins. In vitro, transport could be partially restored by the addition of importin beta, RanBP1, and/or RanGAP1 to the transport reaction. In intact Nup358-depleted cells, overexpression of importin beta strongly stimulated nuclear import, demonstrating that the transport receptor is the most rate-limiting factor at reduced Nup358-concentrations. As an alternative approach, we used antibody-inhibition experiments. Antibodies against RanGAP1 inhibited the enzymatic activity of soluble and nuclear pore-associated RanGAP1, as well as nuclear import and export. Although export could be fully restored by soluble RanGAP, import was only partially rescued. Together, these data suggest a dual function of the Nup358-RanGAP1 complex as a coordinator of importin beta recycling and reformation of novel import complexes. 相似文献
11.
RCC1 is the only known guanine nucleotide exchange factor for the small GTPase Ran and is normally found inside the nucleus bound to chromatin. In order to analyze in more detail the nuclear import of RCC1, we created a fusion construct in which four IgG binding domains of protein A were fused to the amino terminus of human RCC1 (pA-RCC1). Surprisingly, we found that neither Xenopus ovarian cytosol nor a mixture of recombinant import factors (karyopherin alpha2, karyopherin beta1, Ran, and p10/NTF2) were able to support the import of pA-RCC1 into the nuclei of digitonin-permeabilized cells. Both, in contrast, were capable of supporting the import of a construct containing another classical nuclear localization sequence (NLS), glutathione S-transferase-green fluorescent protein-NLS. Subsequently, we found that only one of the NLS receptors, karyopherin alpha3 (Kapalpha3/Qip), would support significant nuclear import of pA-RCC1 in permeabilized cells, while members of the other two main classes, Kapalpha1 and Kapalpha2, would not. Accordingly, in vitro binding studies revealed that only Kapalpha3 showed significant binding to RCC1 (unlike Kapalpha1 and Kapalpha2) and that this binding was dependent on the basic amino acids present in the RCC1 NLS. In addition to Kapalpha3, we found that the nuclear import of pA-RCC1 also required both karyopherin beta1 and Ran. 相似文献
12.
Miyamoto Y Saiwaki T Yamashita J Yasuda Y Kotera I Shibata S Shigeta M Hiraoka Y Haraguchi T Yoneda Y 《The Journal of cell biology》2004,165(5):617-623
We report here that importin alpha accumulates reversibly in the nucleus in response to cellular stresses including UV irradiation, oxidative stress, and heat shock. The nuclear accumulation of importin alpha appears to be triggered by a collapse in the Ran gradient, resulting in the suppression of the nuclear export of importin alpha. In addition, nuclear retention and the importin beta/Ran-independent import of importin alpha also facilitate its rapid nuclear accumulation. The findings herein show that the classical nuclear import pathway is down-regulated via the removal of importin alpha from the cytoplasm in response to stress. Moreover, whereas the nuclear accumulation of heat shock cognate 70 is more sensitive to heat shock than the other stresses, importin alpha is able to accumulate in the nucleus at all the stress conditions tested. These findings suggest that the stress-induced nuclear accumulation of importin alpha can be involved in a common physiological response to various stress conditions. 相似文献
13.
Evidence for distinct substrate specificities of importin alpha family members in nuclear protein import. 总被引:13,自引:0,他引:13 下载免费PDF全文
M K?hler C Speck M Christiansen F R Bischoff S Prehn H Haller D G?rlich E Hartmann 《Molecular and cellular biology》1999,19(11):7782-7791
Importin alpha plays a pivotal role in the classical nuclear protein import pathway. Importin alpha shuttles between nucleus and cytoplasm, binds nuclear localization signal-bearing proteins, and functions as an adapter to access the importin beta-dependent import pathway. In contrast to what is found for importin beta, several isoforms of importin alpha, which can be grouped into three subfamilies, exist in higher eucaryotes. We describe here a novel member of the human family, importin alpha7. To analyze specific functions of the distinct importin alpha proteins, we recombinantly expressed and purified five human importin alpha's along with importin alpha from Xenopus and Saccharomyces cerevisiae. Binding affinity studies showed that all importin alpha proteins from humans or Xenopus bind their import receptor (importin beta) and their export receptor (CAS) with only marginal differences. Using an in vitro import assay based on permeabilized HeLa cells, we compared the import substrate specificities of the various importin alpha proteins. When the substrates were tested singly, only the import of RCC1 showed a strong preference for one family member, importin alpha3, whereas most of the other substrates were imported by all importin alpha proteins with similar efficiencies. However, strikingly different substrate preferences of the various importin alpha proteins were revealed when two substrates were offered simultaneously. 相似文献
14.
15.
16.
Transport into and out of the nucleus is regulated by the nuclear pore complex. Vital to this regulation are nuclear pore proteins with FG sequence repeats, which have been shown to be crucial for cell viability and which interact with nuclear transport receptors. Here we use molecular dynamics simulations to investigate the binding of FG-repeat peptides to the surface of NTF2, the Ran importer. The simulations, covering over 254 ns, agree with previous X-ray, mutational, NMR, and computational data in identifying four binding spots. They also serve to provide an all-atom view of binding at each spot, whereas FG-repeat binding has been only directly observed at a single spot. Furthermore, the simulations identify two novel binding spots in addition to the four others. All six binding spots broadly form a stripe across the surface of NTF2. The resulting regularity and proximity of binding spots on the surface may be necessary for identification of the transport receptor by the FG-repeats in the nuclear pore complex and for the successful transit of NTF2 through the pore. 相似文献
17.
R Bayliss K Ribbeck D Akin H M Kent C M Feldherr D G?rlich M Stewart 《Journal of molecular biology》1999,293(3):579-593
Nuclear transport factor 2 (NTF2) is a small, homodimeric protein that binds to both RanGDP and xFxFG repeat-containing nucleoporins, such as yeast Nsp1p and vertebrate p62. NTF2 is required for efficient nuclear protein import and has been shown to mediate the nuclear import of RanGDP. We have used the crystal structures of rat NTF2 and its complex with RanGDP to design a mutant, W7A-NTF2, in which the affinity for xFxFG-repeat nucleoporins is reduced while wild-type binding to RanGDP is retained. The 2.5 A resolution crystal structure of W7A-NTF2 is virtually superimposable upon the wild-type protein structure, indicating that the mutation had not introduced a more general conformational change. Therefore, our data suggest that the exposed side-chain of residue 7 is crucial to the interaction between NTF2 and xFxFG repeat-containing nucleoporins. Consistent with its reduced affinity for xFxFG nucleoporins, fluorescently labelled W7A-NTF2 binds less strongly to the nuclear envelope of permeabilized cultured cells than wild-type NTF2 and, when microinjected into Xenopus oocytes, colloidal gold coated with W7A-NTF2 binds less strongly to the central channel of nuclear pore complexes than wild-type NTF2-coated gold. Significantly, W7A-NTF2 only weakly stimulated the nuclear import of fluorescein-labelled RanGDP, providing direct evidence that an interaction between NTF2 and xFxFG repeat-containing nucleoporins is required to mediate the nuclear import of RanGDP. 相似文献
18.
Karyopherinbeta (Kapbeta) proteins bind nuclear localization and export signals (NLSs and NESs) to mediate nucleocytoplasmic trafficking, a process regulated by Ran GTPase through its nucleotide cycle. Diversity and complexity of signals recognized by Kap betas have prevented prediction of new Kap beta substrates. The structure of Kap beta 2 (also known as Transportin) bound to one of its substrates, the NLS of hnRNP A1, that we report here explains the mechanism of substrate displacement by Ran GTPase. Further analyses reveal three rules for NLS recognition by Kap beta 2: NLSs are structurally disordered in free substrates, have overall basic character, and possess a central hydrophobic or basic motif followed by a C-terminal R/H/KX(2-5)PY consensus sequence. We demonstrate the predictive nature of these rules by identifying NLSs in seven previously known Kap beta 2 substrates and uncovering 81 new candidate substrates, confirming five experimentally. These studies define and validate a new NLS that could not be predicted by primary sequence analysis alone. 相似文献
19.
20.
A M Healy M Peters-Golden J P Yao T G Brock 《The Journal of biological chemistry》1999,274(42):29812-29818
5-Lipoxygenase catalyzes the synthesis of leukotrienes from arachidonic acid. This enzyme can reside either in the cytoplasm or the nucleus; its subcellular distribution is influenced by extracellular factors, and its nuclear import correlates with changes in leukotriene synthetic capacity. To identify sequences responsible for the nuclear import of 5-lipoxygenase, we transfected NIH 3T3 cells and RAW 264.7 macrophages with expression vectors encoding various 5-lipoxygenase constructs fused to green fluorescent protein. Overexpression of wild type 5-lipoxygenase with or without fusion to green fluorescent protein resulted in a predominantly intranuclear pattern of fluorescence, similar to the distribution of native 5-lipoxygenase in primary alveolar macrophages. Within the 5-lipoxygenase protein is a sequence (Arg(638)-Lys(655)) that closely resembles a bipartite nuclear localization signal. Studies using deletion mutants indicated that this region was necessary for nuclear import of 5-lipoxygenase. Analysis of mutants containing specific amino acid substitutions within this sequence confirmed that it was this sequence that was necessary for nuclear import of 5-lipoxygenase and that a specific arginine residue was critical for this function. As nuclear import of 5-lipoxygenase may regulate leukotriene production, natural or induced mutations in this bipartite nuclear localization sequence may also be important in affecting leukotriene synthesis. 相似文献