首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
De novo purine biosynthesis proceeds by two divergent paths. In bacteria, yeasts, and plants, 5-aminoimidazole ribonucleotide (AIR) is converted to 4-carboxy-AIR (CAIR) by two enzymes: N(5)-carboxy-AIR (N(5)-CAIR) synthetase (PurK) and N(5)-CAIR mutase (class I PurE). In animals, the conversion of AIR to CAIR requires a single enzyme, AIR carboxylase (class II PurE). The CAIR carboxylate derives from bicarbonate or CO(2), respectively. Class I PurE is a promising antimicrobial target. Class I and class II PurEs are mechanistically related but bind different substrates. The spirochete dental pathogen Treponema denticola lacks a purK gene and contains a class II purE gene, the hallmarks of CO(2)-dependent CAIR synthesis. We demonstrate that T. denticola PurE (TdPurE) is AIR carboxylase, the first example of a prokaryotic class II PurE. Steady-state and pre-steady-state experiments show that TdPurE binds AIR and CO(2) but not N(5)-CAIR. Crystal structures of TdPurE alone and in complex with AIR show a conformational change in the key active site His40 residue that is not observed for class I PurEs. A contact between the AIR phosphate and a differentially conserved residue (TdPurE Lys41) enforces different AIR conformations in each PurE class. As a consequence, the TdPurE·AIR complex contains a portal that appears to allow the CO(2) substrate to enter the active site. In the human pathogen T. denticola, purine biosynthesis should depend on available CO(2) levels. Because spirochetes lack carbonic anhydrase, the corresponding reduction in bicarbonate demand may confer a selective advantage.  相似文献   

2.
Meyer E  Kappock TJ  Osuji C  Stubbe J 《Biochemistry》1999,38(10):3012-3018
Formation of 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) in the purine pathway in most prokaryotes requires ATP, HCO3-, aminoimidazole ribonucleotide (AIR), and the gene products PurK and PurE. PurK catalyzes the conversion of AIR to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) in a reaction that requires both ATP and HCO3-. PurE catalyzes the unusual rearrangement of N5-CAIR to CAIR. To investigate the mechanism of this rearrangement, [4,7-13C]-N5-CAIR and [7-14C]-N5-CAIR were synthesized and separately incubated with PurE in the presence of ATP, aspartate, and 4-(N-succinocarboxamide)-5-aminoimidazole ribonucleotide (SAICAR) synthetase (PurC). The SAICAR produced was isolated and analyzed by NMR spectroscopy or scintillation counting, respectively. The PurC trapping of CAIR as SAICAR was required because of the reversibility of the PurE reaction. Results from both experiments reveal that the carboxylate group of the carbamate of N5-CAIR is transferred directly to generate CAIR without equilibration with CO2/HCO3- in solution. The mechanistic implications of these results relative to the PurE-only (CO2- and AIR-requiring) AIR carboxylases are discussed.  相似文献   

3.
N5-Carboxyaminoimidazole ribonucleotide mutase (N5-CAIR mutase or PurE) from Escherichia coli catalyzes the reversible interconversion of N5-CAIR to carboxyaminoimidazole ribonucleotide (CAIR) with direct CO2 transfer. Site-directed mutagenesis, a pH-rate profile, DFT calculations, and X-ray crystallography together provide new insight into the mechanism of this unusual transformation. These studies suggest that a conserved, protonated histidine (His45) plays an essential role in catalysis. The importance of proton transfers is supported by DFT calculations on CAIR and N5-CAIR analogues in which the ribose 5'-phosphate is replaced with a methyl group. The calculations suggest that the nonaromatic tautomer of CAIR (isoCAIR) is only 3.1 kcal/mol higher in energy than its aromatic counterpart, implicating this species as a potential intermediate in the PurE-catalyzed reaction. A structure of wild-type PurE cocrystallized with 4-nitroaminoimidazole ribonucleotide (NO2-AIR, a CAIR analogue) and structures of H45N and H45Q PurEs soaked with CAIR have been determined and provide the first insight into the binding of an intact PurE substrate. A comparison of 19 available structures of PurE and PurE mutants in apo and nucleotide-bound forms reveals a common, buried carboxylate or CO2 binding site for CAIR and N5-CAIR in a hydrophobic pocket in which the carboxylate or CO2 interacts with backbone amides. This work has led to a mechanistic proposal in which the carboxylate orients the substrate for proton transfer from His45 to N5-CAIR to form an enzyme-bound aminoimidazole ribonucleotide (AIR) and CO2 intermediate. Subsequent movement of the aminoimidazole moiety of AIR reorients it for addition of CO2 at C4 to generate isoCAIR. His45 is now in a position to remove a C4 proton to produce CAIR.  相似文献   

4.
The increasing risk of drug-resistant bacterial infections indicates that there is a growing need for new and effective antimicrobial agents. One promising, but unexplored area in antimicrobial drug design is de novo purine biosynthesis. Recent research has shown that de novo purine biosynthesis in microbes is different from that in humans. The differences in the pathways are centered around the synthesis of 4-carboxyaminoimidazole ribonucleotide (CAIR) which requires the enzyme N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) synthetase. Humans do not require and have no homologs of this enzyme. Unfortunately, no studies aimed at identifying small-molecule inhibitors of N5-CAIR synthetase have been published. To remedy this problem, we have conducted high-throughput screening (HTS) against Escherichia coli N5-CAIR synthetase using a highly reproducible phosphate assay. HTS of 48,000 compounds identified 14 compounds that inhibited the enzyme. The hits identified could be classified into three classes based on chemical structure. Class I contains compounds with an indenedione core. Class II contains an indolinedione group, and Class III contains compounds that are structurally unrelated to other inhibitors in the group. We determined the Michaelis–Menten kinetics for five compounds representing each of the classes. Examination of compounds belonging to Class I indicates that these compounds do not follow normal Michaelis–Menten kinetics. Instead, these compounds inhibit N5-CAIR synthetase by reacting with the substrate AIR. Kinetic analysis indicates that the Class II family of compounds are non-competitive with both AIR and ATP. One compound in Class III is competitive with AIR but uncompetitive with ATP, whereas the other is non-competitive with both substrates. Finally, these compounds display no inhibition of human AIR carboxylase:SAICAR synthetase indicating that these agents are selective inhibitors of N5-CAIR synthetase.  相似文献   

5.
BACKGROUND: Conversion of 5-aminoimidazole ribonucleotide (AIR) to 4-carboxyaminoimidazole ribonucleotide (CAIR) in Escherichia coli requires two proteins - PurK and PurE. PurE has recently been shown to be a mutase that catalyzes the unusual rearrangement of N(5)-carboxyaminoimidazole ribonucleotide (N(5)-CAIR), the PurK reaction product, to CAIR. PurEs from higher eukaryotes are homologous to E. coli PurE, but use AIR and CO(2) as substrates to produce CAIR directly. RESULTS: The 1.50 A crystal structure of PurE reveals an octameric structure with 422 symmetry. A central three-layer (alphabetaalpha) sandwich domain and a kinked C-terminal helix form the folded structure of the monomeric unit. The structure reveals a cleft at the interface of two subunits and near the C-terminal helix of a third subunit. Co-crystallization experiments with CAIR confirm this to be the mononucleotide-binding site. The nucleotide is bound predominantly to one subunit, with conserved residues from a second subunit making up one wall of the cleft. CONCLUSIONS: The crystal structure of PurE reveals a unique quaternary structure that confirms the octameric nature of the enzyme. An analysis of the native crystal structure, in conjunction with sequence alignments and studies of co-crystals of PurE with CAIR, reveals the location of the active site. The environment of the active site and the analysis of conserved residues between the two classes of PurEs suggests a model for the differences in their substrate specificities and the relationship between their mechanisms.  相似文献   

6.
N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) mutase (PurE) catalyzes the reversible interconversion of acid-labile compounds N5-CAIR and 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). We have examined PurE from the acidophilic bacterium Acetobacter aceti (AaPurE), focusing on its adaptation to acid pH and the roles of conserved residues His59 and His89. Both AaPurE and Escherichia coli PurE showed quasi-reversible acid-mediated inactivation, but wt AaPurE was much more stable at pH 3.5, with a > or = 20 degrees C higher thermal unfolding temperature at all pHs. His89 is not essential and does not function as part of a proton relay system. The kcat pH-rate profile was consistent with the assignment of pK1 to unproductive protonation of bound nucleotide and pK2 to deprotonation of His59. A 1.85 A resolution crystal structure of the inactive mutant H59N-AaPurE soaked in CAIR showed that protonation of CAIR C4 can occur in the absence of His59. The resulting species, modeled as isoCAIR [4(R)-carboxy-5-iminoimidazoline ribonucleotide], is strongly stabilized by extensive interactions with the enzyme and a water molecule. The carboxylate moiety is positioned in a small pocket proposed to facilitate nucleotide decarboxylation in the forward direction (N5-CAIR --> CAIR) [Meyer, E., Kappock, T. J., Osuji, C., and Stubbe, J. (1999) Biochemistry 38, 3012-3018]. Comparisons with model studies suggest that in the reverse (nonbiosynthetic) direction PurE favors protonation of CAIR C4. We suggest that the essential role of protonated His59 is to lower the barrier to decarboxylation by stabilizing a CO2-azaenolate intermediate.  相似文献   

7.
Thoden JB  Kappock TJ  Stubbe J  Holden HM 《Biochemistry》1999,38(47):15480-15492
Escherichia coli PurK, a dimeric N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) synthetase, catalyzes the conversion of 5-aminoimidazole ribonucleotide (AIR), ATP, and bicarbonate to N5-CAIR, ADP, and Pi. Crystallization of both a sulfate-liganded and the MgADP-liganded E. coli PurK has resulted in structures at 2.1 and 2.5 A resolution, respectively. PurK belongs to the ATP grasp superfamily of C-N ligase enzymes. Each subunit of PurK is composed of three domains (A, B, and C). The B domain contains a flexible, glycine-rich loop (B loop, T123-G130) that is disordered in the sulfate-PurK structure and becomes ordered in the MgADP-PurK structure. MgADP is wedged between the B and C domains, as with all members of the ATP grasp superfamily. Other enzymes in this superfamily contain a conserved Omega loop proposed to interact with the B loop, define the specificity of their nonnucleotide substrate, and protect the acyl phosphate intermediate formed from this substrate. PurK contains a minimal Omega loop without conserved residues. In the reaction catalyzed by PurK, carboxyphosphate is the putative acyl phosphate intermediate. The sulfate of the sulfate ion-liganded PurK interacts electrostatically with Arg 242 and the backbone amide group of Asn 245, components of the J loop of the C domain. This sulfate may reveal the location of the carboxyphosphate binding site. Conserved residues within the C-terminus of the C domain define a pocket that is proposed to bind AIR in collaboration with an N-terminal strand loop helix motif in the A domain (P loop, G8-L1). The P loop is proposed to bind the phosphate of AIR on the basis of similar binding sites observed in PurN and PurE and proposed in PurD and PurT, four other enzymes in the purine pathway.  相似文献   

8.
The conversion of 5-aminoimidazole ribonucleotide (AIR) to 4-carboxy-AIR (CAIR) represents an unusual divergence in purine biosynthesis: microbes and nonmetazoan eukaryotes use class I PurEs while animals use class II PurEs. Class I PurEs are therefore a potential antimicrobial target; however, no enzyme activity assay is suitable for high throughput screening (HTS). Here we report a simple chemical quench that fixes the PurE substrate/product ratio for 24 h, as assessed by the Bratton–Marshall assay (BMA) for diazotizable amines. The ZnSO4 stopping reagent is proposed to chelate CAIR, enabling delayed analysis of this acid-labile product by BMA or other HTS methods.  相似文献   

9.
Phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) is an important bifunctional enzyme in de novo purine biosynthesis in vertebrate with both 5-aminoimidazole ribonucleotide carboxylase (AIRc) and 4-(N-succinylcarboxamide)-5-aminoimidazole ribonucleotide synthetase (SAICARs) activities. It becomes an attractive target for rational anticancer drug design, since rapidly dividing cancer cells rely heavily on the purine de novo pathway for synthesis of adenine and guanine, whereas normal cells favor the salvage pathway. Here, we report the crystal structure of human PAICS, the first in the entire PAICS family, at 2.8 Å resolution. It revealed that eight PAICS subunits, each composed of distinct AIRc and SAICARs domains, assemble a compact homo-octamer with an octameric-carboxylase core and four symmetric periphery dimers formed by synthetase domains. Based on structural comparison and functional complementation analyses, the active sites of SAICARs and AIRc were identified, including a putative substrate CO2-binding site. Furthermore, four symmetry-related, separate tunnel systems in the PAICS octamer were found that connect the active sites of AIRc and SAICARs. This study illustrated the octameric nature of the bifunctional enzyme. Each carboxylase active site is formed by structural elements from three AIRc domains, demonstrating that the octamer structure is essential for the carboxylation activity. Furthermore, the existence of the tunnel system implies a mechanism of intermediate channeling and suggests that the quaternary structure arrangement is crucial for effectively executing the sequential reactions. In addition, this study provides essential structural information for designing PAICS-specific inhibitors for use in cancer chemotherapy.  相似文献   

10.
Phosphoribosylaminoimidazole-succinocarboxamide synthetase (SAICAR synthetase) converts 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) to 4-(N-succinylcarboxamide)-5-aminoimidazole ribonucleotide (SAICAR). The enzyme is a target of natural products that impair cell growth. Reported here are the crystal structures of the ADP and the ADP.CAIR complexes of SAICAR synthetase from Escherichia coli, the latter being the first instance of a CAIR-ligated SAICAR synthetase. ADP and CAIR bind to the active site in association with three Mg(2+), two of which coordinate the same oxygen atom of the 4-carboxyl group of CAIR; whereas, the third coordinates the alpha- and beta-phosphoryl groups of ADP. The ADP.CAIR complex is the basis for a transition state model of a phosphoryl transfer reaction involving CAIR and ATP, but also supports an alternative chemical pathway in which the nucleophilic attack of l-aspartate precedes the phosphoryl transfer reaction. The polypeptide fold for residues 204-221 of the E. coli structure differs significantly from those of the ligand-free SAICAR synthetase from Thermatoga maritima and the adenine nucleotide complexes of the synthetase from Saccharomyces cerevisiae. Conformational differences between the E. coli, T. maritima, and yeast synthetases suggest the possibility of selective inhibition of de novo purine nucleotide biosynthesis in microbial organisms.  相似文献   

11.
Nodules of tropical legumes generally export symbiotically fixed nitrogen in the form of ureides that are produced by oxidation of de novo synthesized purines. To investigate the regulation of de novo purine biosynthesis in these nodules, we have isolated cDNA clones encoding 5-aminoimidazole ribonucleotide (AIR) carboxylase and 5-aminoimidazole-4-N-succinocarboxamide ribonucleotide (SAICAR) synthetase from a mothbean (Vigna aconitifolia) nodule cDNA library by complementation of Escherichia coli purE and purC mutants, respectively. Sequencing of these clones revealed that the two enzymes are distinct proteins in mothbean, unlike in animals where both activities are associated with a single bifunctional polypeptide. As is the case in yeast, the mothbean AIR carboxylase has a N-terminal domain homologous to the eubacterial purK gene product. This PurK-like domain appears to facilitate the binding of CO2 and is dispensable in the presence of high CO2 concentrations. Because the expression of the mothbean PurE cDNA clone in E. coli apparently generates a truncated polypeptide lacking at least 140 N-terminal amino acids, this N-terminal region of the enzyme may not be essential for its CO2-binding activity.  相似文献   

12.
E Meyer  N J Leonard  B Bhat  J Stubbe  J M Smith 《Biochemistry》1992,31(21):5022-5032
Aminoimidazole riobnucleotide carboxylase, the sixth step in the purine biosynthetic pathway, catalyzes the conversion of aminoimidazole ribonucleotide (AIR) to carboxyaminoimidazole ribonucleotide (CAIR). The gene products of the purE and purK genes (PurE and PurK, respectively) thought to be responsible for this activity have been overexpressed and the proteins purified to homogeneity. PurE separates from PurK in the first ammonium sulfate fractionation during the purification. No evidence for association of the two gene products under a variety of conditions using a variety of methods could be obtained. To facilitate the assay for CAIR production, the purC gene product, 5-aminoimidazole-4-N-succinylcarboxamide ribonucleotide (SAICAR) synthetase has also been overexpressed and purified to homogeneity. The activities of PurE, PurK, and PurE.PurK have been investigated. PurE alone is capable of catalyzing the conversion of AIR to CAIR 1 million times faster than the nonenzymatic rate. The Km for HCO3- in the PurE-dependent reaction is 110 mM! PurK possesses an ATPase activity that is dependent on the presence of AIR. No bicarbonate dependence on this reaction could be demonstrated (less than 100 microM), and AIR is not carboxylated during the hydrolysis of ATP. Incubation of a 1:1 mixture of PurE and PurK at low concentrations of bicarbonate (less than 100 microM) revealed that CAIR is produced but requires the stoichiometric conversion of ATP to ADP and Pi. No dependence on the concentration of HCO3- could be demonstrated. A new energy requirement in the purine biosynthetic pathway has been established.  相似文献   

13.
A purine auxotroph with pale purple spores and a derivative with yellowish orange spores were obtained from the wild-type strain of Streptomyces azureus ATCC 14921, which has bluish green spores. The changed color or pigmentation in the mutants was limited to the spores. They accumulated AIR (5′-phosphoribosyl-5-aminoimidazole) due to the lack of AIR carboxylase activity.  相似文献   

14.
Several structural analogs of adenosylcobalamin, containing 2, 3, 4, 5 and 6 methylene carbons instead of the ribofuranose moiety, have been synthesized and their interaction with ribonucleotide reductase from Lactobacillus leichmannii has been investigated. Kinetic studies of the inhibition of the reductase by these analogs showed that the adeninylalkylcobalamins with 4, 5 and 6 carbons interposed between the adenine moiety and the cobalt atom are potent inhibitors of ribonucleotide reduction. The stronger interaction between adeninylpentylcobalamin and the enzyme than that between adenosylcobalamin and the enzyme suggests that the more flexible acyclic analog of adenosine requires fewer adjustments of the protein upon binding.  相似文献   

15.
An isolation procedure for phosphoribosyl succinocarboxamideaminoimidazole synthetase (SAICAR synthetase) (EC 6.3.2.6) has been developed. Pure SAICAR synthetase was found to be a monomeric protein with the apparent molecular weight of 36 kDa. The Michaelis constant for the three substrates of the reaction are 1.6 microM for CAIR, 14 microM for ATP and 960 microM for aspartic acid. The structural analogs of CAIR, 5-aminoimidazole ribotide and 5-aminoimidazole-4-carboxamide ribotide, act as competitive inhibitors of SAICAR synthetase. GTP and 2'-dATP can substitute for ATP in the reaction, while CTP and UTP inhibit the enzyme. No structural analogs of the aspartic acid were found to have affinity for SAICAR synthetase. The optimal reaction conditions for the enzyme were established to be at pH 8.0 and magnesium chloride concentration around 5 mM.  相似文献   

16.
Bazurto JV  Downs DM 《Genetics》2011,187(2):623-631
In Salmonella enterica, 5-aminoimidazole ribonucleotide (AIR) is the precursor of the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) pyrophosphate moiety of thiamine and the last intermediate in the common HMP/purine biosynthetic pathway. AIR is synthesized de novo via five reactions catalyzed by the purF, -D, -T, -G, and -I gene products. In vivo genetic analysis demonstrated that in the absence of these gene products AIR can be generated if (i) methionine and lysine are in the growth medium, (ii) PurC is functional, and (iii) 5-amino-4-imidazolecarboxamide ribotide (AICAR) has accumulated. This study provides evidence that the five steps of the common HMP/purine biosynthetic pathway can be bypassed in the synthesis of AIR and thus demonstrates that thiamine synthesis can be uncoupled from the early purine biosynthetic pathway in bacteria.  相似文献   

17.
1. The pattern of distribution on the purine pathway of mutants of Salmonella typhimurium LT2 that had the double growth requirement for a purine plus the pyrimidine moiety of thiamine (ath mutants) indicated that purines and the pyrimidine moiety of thiamine share the early part of their biosynthetic pathways, and that 4-aminoimidazole ribonucleotide (AIR) is the last common intermediate. Two mutants that at first appeared anomalous were further investigated and found not to affect this deduction. 2. The ribonucleoside form of AIR (AIR(s)) satisfied the requirements both for a purine and for the pyrimidine moiety of thiamine of an ath mutant. 3. Methionine was required for the conversion of AIR into the pyrimidine moiety. 4. Radioactive AIR(s) was converted into radioactive pyrimidine moiety by an ath mutant without significant dilution of specific radioactivity. 5. Possible mechanisms for pyrimidine-moiety biosynthesis from AIR are discussed.  相似文献   

18.
Summary Confirmation that the ad-2 locus of yeast controls the carboxylation of aminoimidazole ribonucleotide (AIR) to 5-amino-4-imidazole carboxylate ribonucleotide (CAIR) is provided by the observation that 21 out of a sample of 113 ad-2 mutants were affected by CO2. 19 of the mutants were stimulated by CO2 and 2 were inhibited. The majority of the CO2-stimulated mutants were confined to one section of the complementation map of the ad-2 locus.  相似文献   

19.
Abstract

A series of bi-valent metal complexes of 5-amino-l-β-D-ribofuranosylimida-zole-4-carboxylic acid and its 5′-phosphate derivative (CAIR), a central intermediate in de novo biosynthesis of purine nucleotides have been synthesised. The nucleotide complexes were found to affect the activity of the enzyme phosphoribosylaminoimidazole carboxylase (EC. 4.1.1.21).  相似文献   

20.
5'-Phosphoribosyl-5-aminoimidazole (AIR) carboxylase (EC 4.1.1.21) catalyzes step 6, the carboxylation of AIR to 5'-phosphoribosyl-5-aminoimidazole-4-carboxylic acid, in the de novo biosynthesis of purine nucleotides. As deduced from the DNA sequence of restriction fragments encoding AIR carboxylase and supported by maxicell analyses, AIR carboxylase was found to be composed of two nonidentical subunits. In agreement with established complementation data, the catalytic subunit (deduced Mr, 17,782) was encoded by the purE gene, while the CO2-binding subunit (deduced Mr, 39,385) was encoded by the purK gene. These two genes formed an operon in which the termination codon of the purE gene overlapped the initiation codon of the purK gene. The 5' end of the purEK mRNA was determined by mung bean nuclease mapping and was located 41 nucleotides upstream of the proposed initiation codon. The purEK operon is regulated by the purR gene product, and a purR regulatory-protein-binding site related to the sequences found in other pur loci was identified in the purEK operon control region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号