首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hymenopteran parasitoids inject various factors including polydnaviruses along with their eggs into their host insects that suppress host immunity reactions to the eggs and larvae. Less is known about the mechanisms evolved in dipteran parasitoids that suppress host immunity. Here we report that the dipteran, Exorista bombycis, parasitization leads to pro‐oxidative reactions and activation of anti‐oxidative enzymes in the silkworm Bombyx mori larva. We recorded increased activity of oxidase, superoxide dismutase, thioredoxin peroxidase, catalase, glutathione‐S‐transferase (GST), and peroxidases in the hemolymph plasma, hemocytes, and fat body collected from B. mori after E. bombycis parasitization. Microarray and qPCR showed differential expression of genes encoding pro‐ and anti‐oxidant enzymes in the hemocytes. The significance of this work lies in increased understanding of dipteran parasitoid biology.  相似文献   

2.
在过去的几十年中,昆虫不育技术(sterile insect technique, SIT)已被用于防治农业害虫和人类健康相关的病媒害虫。相较于传统的农药控制策略,昆虫不育技术具有物种特异性和环境友好型等特点。通过释放不育雄虫的昆虫不育技术的主要障碍是在大规模饲养阶段将雄性与雌性分离,从而提高这些防治方法的成本效率,并防止释放携带和传播疾病的雌性群体。目前大多数针对双翅目害虫的遗传防治策略没有进行性别分离,少数害虫性别分离方法是基于蛹的大小或者雌雄蛹羽化时间差异进行人工识别和机械识别分离。双翅目昆虫性别决定及分化分子机制多种多样,其性别决定主要信号差异巨大,其多种性别决定基因已用于性别分离系统的开发。性比失衡性别分离策略通过破坏性别决定途径关键基因的表达获得雄性偏向后代,雌性条件性致死分离策略利用性别决定关键基因的雌雄选择性剪接差异实现性别分离,这两种性别分离策略目前正在害虫不育防治中接受大规模饲养应用评估,而基于双翅目昆虫雌雄性二态和基因标记发展的可视化性别分离策略也已成功实现多种害虫的性别分离。我们对性比失衡分离策略、雌性条件性致死分离策略和可视化性别分离策略在双翅目害虫中的研究进展进行了综述,重点评估了这些方法在雄虫大规模饲养和释放的应用潜力,以期在更完善的性别分离技术支持下为害虫防治研究取得更多突破性进展。  相似文献   

3.
双翅目昆虫传粉研究进展   总被引:1,自引:0,他引:1  
武鹏峰  郑国 《昆虫学报》2019,62(4):516-526
昆虫传粉不仅在自然生态系统中发挥着十分重要的作用,也和农业生态系统中产量密切相关。众所周知,膜翅目昆虫是最重要的传粉昆虫。双翅目昆虫分布广,物种多,数量大,也是一类十分重要的传粉昆虫,但其传粉作用未受到足够的重视。本文主要综述了双翅目传粉昆虫的主要种类、传粉效力、传粉特征、与植物的协同进化以及双翅目昆虫传粉的生态学意义。据记载双翅目昆虫中至少有71个科涉及虫媒种类,目前有资料显示访花昆虫类群中双翅目约有54 417种,按涉及的种数排序居于昆虫纲传粉昆虫目中第4位。尽管双翅目昆虫单次访问可携带花粉量相对较少(相比于膜翅目),但是较高访问速率及庞大的个体数量,保证了其作为有效传粉者的地位。传粉综合征能够有效揭示植物与传粉者的协同进化关系,尤其是对一些专化传粉现象(如五味子科-瘿蚊系统)和泛化传粉的深入研究,更加深了我们对协同进化的理解。就生态学意义而言,一方面双翅目传粉昆虫是膜翅目传粉昆虫的有益补充,另一方面在一些特殊环境中,双翅目昆虫具有不可替代的作用。当前传粉昆虫(包括双翅目)数量急剧下降,而且双翅目昆虫的传粉价值还利用较少。结合我国当前的研究现状提出了以下未来研究重点:1)加深双翅目传粉效力和适应意义的案例研究以明确双翅目昆虫在传粉体系中的地位;2)加强栖息地格局变化与昆虫多样性的研究以明确栖息地改变对昆虫的影响程度;3)梳理访花和传粉、专化传粉和泛化传粉等关系以更加明确双翅目昆虫在与植物协同进化中的作用;4)逐步深入探讨花粉浪费和花粉竞争以探究传粉策略和植物繁殖策略。这些努力将为双翅目传粉昆虫的知识普及、资源保护与利用研究等方面提供参考。  相似文献   

4.
鳞翅目昆虫种类繁多,对农业生产和人类生活产生重大影响,宿主昆虫与病毒相互关系的研究对于利用病毒杀虫剂进行害虫治理和益虫病毒性疾病的预防具有重要意义.因此,鳞翅目昆虫与病毒的互作研究显得尤为重要,宿主昆虫的免疫系统在抗病毒感染过程中发挥着关键作用,对病毒产生不同程度的免疫反应.本文综述了昆虫围食膜和中肠对病毒入侵的防御作用,病毒进入体腔后昆虫所产生的细胞免疫和体液免疫反应,以及RNAi、细胞的自噬与凋亡、Toll、Imd、JAK-STAT和STING信号通路等相关的抗病毒免疫途径,并对昆虫抗病毒免疫研究的制约因素和未来鳞翅目昆虫抗病毒免疫的研究重点进行了讨论,以期为害虫的生物防治和益虫疾病的防控提供理论依据.  相似文献   

5.
Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight performance. One of the key challenges is the development of an effective and efficient transmission mechanism to control wing motions. Here we present multiple insect-scale robotic thorax designs capable of producing asymmetric wing kinematics similar to those observed in nature and utilized by dipteran insects to maneuver. Inspired by the thoracic mechanics of dipteran insects, which entail a morphological separation of power and control muscles, these designs show that such distributed actuation can also modulate wing motion in a robotic design.  相似文献   

6.
Although dipteran communities play a fundamental role in the ecosystem, little is known about their diversity, richness and abundance in different environments. In spite of the importance of Natural Protected Areas (NPAs) as reservoirs of biological diversity, information about community parameters of most insects, including Diptera, are practically unknown in these areas. In this study, we described and compared the composition and structure of Dipteran communities (considering Tabanidae, Asilidae and Syrphidae families) within six (NPAs) of Yucatan, Southeast Mexico, comprising four main vegetation types: seasonally flooded forest, tropical deciduous forest, semi-deciduous tropical forest and coastal dune. We used Malaise-traps to collect samples during a period of two days, twice a month, for one year (2006–2007) within each NPAs. A total of 6 910 specimens belonging to 33 genera and 78 species/morphospecies were recorded. Our results show that the four vegetation types host a vast diversity of dipterans. However, species richness, abundance, diversity and similarity were higher in the communities of tropical deciduous forests compared with those from semi-deciduous forests and coastal dune vegetation, probably as a result of microhabitat differences between sites. We highlight the role of tropical deciduous forests as a refuge for Diptera species and the importance of these forests for conservation of dipteran communities.  相似文献   

7.
SK Behura  DW Severson 《PloS one》2012,7(8):e43111

Background

Codon bias is a phenomenon of non-uniform usage of codons whereas codon context generally refers to sequential pair of codons in a gene. Although genome sequencing of multiple species of dipteran and hymenopteran insects have been completed only a few of these species have been analyzed for codon usage bias.

Methods and Principal Findings

Here, we use bioinformatics approaches to analyze codon usage bias and codon context patterns in a genome-wide manner among 15 dipteran and 7 hymenopteran insect species. Results show that GAA is the most frequent codon in the dipteran species whereas GAG is the most frequent codon in the hymenopteran species. Data reveals that codons ending with C or G are frequently used in the dipteran genomes whereas codons ending with A or T are frequently used in the hymenopteran genomes. Synonymous codon usage orders (SCUO) vary within genomes in a pattern that seems to be distinct for each species. Based on comparison of 30 one-to-one orthologous genes among 17 species, the fruit fly Drosophila willistoni shows the least codon usage bias whereas the honey bee (Apis mellifera) shows the highest bias. Analysis of codon context patterns of these insects shows that specific codons are frequently used as the 3′- and 5′-context of start and stop codons, respectively.

Conclusions

Codon bias pattern is distinct between dipteran and hymenopteran insects. While codon bias is favored by high GC content of dipteran genomes, high AT content of genes favors biased usage of synonymous codons in the hymenopteran insects. Also, codon context patterns vary among these species largely according to their phylogeny.  相似文献   

8.
Locating potential hosts for egg laying is a critical challenge in the life history of many insects. Female insects in several orders have evolved mechanisms to find hosts by using olfactory and visual signals derived from their hosts. We describe visual and chemical cues used by the dipteran parasitoid Apocephalus paraponerae (Diptera: Phoridae) in the location and acceptance of its host ant Paraponera clavata (Hymenoptera: Formicidae: Ponerinae). Our results show that A. paraponerae uses the visual cue of ant body size when locating hosts at short range and that these flies lay more eggs in ants that retain their surface chemicals than in ants with these chemicals removed. We compare the cues used by A. paraponerae with cues used by tephritid fruit flies in location and acceptance of their hosts, and we suggest further avenues for the study of host location, acceptance, and host discrimination of A. paraponerae and other parasitoids of ants.  相似文献   

9.
An indigenously isolated strain of Bacillus thuringiensis subsp. kenyae exhibited toxicity against lepidopteran as well as dipteran insects. The lepidopteran active cry1Ac protoxin gene coding sequence of 3.5 kb from this strain was cloned into vector pET28a(+). However, it could not be expressed in commonly used Escherichia coli expression hosts, BL21(DE3) and BL21(DE3)pLysS. This gene is classified as cry1Ac17 in the B. thuringiensis toxic nomenclature database. The coding sequence of this gene revealed that it contains about 3% codons, which are not efficiently translated by these expression hosts. Hence, this gene was expressed in a modified expression host, Epicurian coli BL21-Codonplus (DE3)-RIL. The expression of gene yielded a 130-kDa Cry1Ac17 protein. The protein was purified and its toxicity was tested against economically important insect pests, viz., Helicoverpa armigera and Spodoptera litura. LC50 values obtained against these insects were 0.1 ng/cm3 and 1231 ng/cm2, respectively. The higher toxicity of Cry1Ac17 protein, compared to other Cry1Ac proteins, toward these pests demonstrates the potential of this isolate as an important candidate in the integrated resistance management program in India.  相似文献   

10.
The esterase enzymes are a major component of insect detoxification systems and play a crucial role in hydrolyzing lots of xenobiotic compounds. Among insect, generalist herbivores can exhibit developed biochemical defences as a result of exposing to a wide range of plant chemical compounds. To overcome this ability, host plants may affect the level of hydrolases in herbivore insects feeding on. To examine this hypothesis, in the present study total esterase activity was investigated in a highly polyphagous whitefly, Bemisia tabaci, reared on six different varieties of cotton, Gossypium hirsutum. Results showed significant differences in esterase activity of B. tabaci feeding on the host plant varieties. The highest esterase activities were detected in whiteflies feeding on Sk-Tb and Siokra varieties, whereas those whiteflies that feed on Hopicala variety exhibited the least esterase activities. Our findings highlight the important role of host plants in detoxification ability of herbivore insects. The importance of these findings in biology of insect pests and their applications in integrated pest management programmes of B. tabaci have been discussed in detail.  相似文献   

11.
Biological control of insect pests relies on the ability of natural enemies to limit pest populations. The behaviours expressed by natural enemies against their prey or hosts are modulated by a number of factors and a better understanding of these factors is key to obtaining more efficacious pest control. We propose here that optimality models based upon a behavioural ecology approach can provide a framework that should enable optimisation of biological control practices. We limit our discussion to parasitoid natural enemies and review the factors known to influence the behaviour of these insects. The most important areas that have been studied extensively in the behavioural ecology of insect parasitoids are addressed here: (1) residence time in a host patch, (2) clutch size, (3) sex ratio, (4) host and patch marking, and (5) diet choice. We discuss the implications of the incorporation of these optimality models into efficacious biological control practices and suggest areas where a better knowledge of the behavioural ecology of these insects could improve the efficacy of parasitoid‐based pest control.  相似文献   

12.
To clarify the diversity and host associations of dipteran insects exploiting fungal fruiting bodies, we collected fruiting bodies at 18 localities in Hokuriku region, central Japan, from 2012 to 2015 and examined them for the emergence of insects. In total, 14,107 dipteran individuals belonging to 20 families emerged from fungi of 8 orders, 25 families, 49 genera and 129 species. Approximately 79% of dipteran individuals belonged to three families, Phoridae, Muscidae and Drosophilidae. The faunal similarity at the family level was relatively high between central (warm‐temperate) and northern (cool‐temperate) areas of Japan. However, the species composition of Drosophilidae was much different between central and northern Japan. The difference in the species composition was discussed in relation to the climatic conditions and fungal flora. None of the species from Drosophilidae, Phoridae, Muscidae, Mycetophilidae, Lonchaeidae and Chloropidae were specialists (they exploited more than one species of fungi), but they showed differences their fungi preference. Adults of some families, especially Drosophilidae, were frequently collected from fruiting bodies, but those of other families were seldom collected, probably reflecting differences in adult feeding ecology.  相似文献   

13.
郝树广 《昆虫知识》2007,44(2):158-163
2006年9月,国家重点基础研究发展计划(973)农业领域2006年度项目“重大农业害虫猖獗危害的机制及可持续控制的基础研究”经科技部批准正式立项启动。该项目以全系统管理思想为指导,在基因、个体、种群、生态系统等不同层次,阐明我国重大农业害虫种群分化与暴发的分子基础,解析害虫与寄主作物及天敌间的相互作用机制,建立害虫监测与预警系统,提出重大农业害虫可持续控制的新途径和新方法,为我国农业减灾、经济的可持续发展奠定科学基础。项目的主要研究内容包括:害虫生长发育与生殖调控的分子机制;害虫对环境胁迫的适应机制;杀虫药剂诱导害虫再猖獗的机制;害虫与寄主植物的协同进化;天敌与害虫的互作及控害机制;作物-害虫-天敌食物网关系及其调控机理;重大害虫区域性暴发监测与预警。项目的总体目标为:阐明害虫生长发育、种群分化的分子基础,揭示害虫种群调节的内在机制;解析作物、害虫及天敌间的互作机制,丰富和发展植物-害虫-天敌协同进化理论;阐明主要害虫区域性灾变机理,发展害虫预警新技术;发展与环境相容的、增强自然控害功能的新技术,提出重大农业害虫可持续控制的新途径和新方法;凝炼一支害虫控制基础研究的创新团队,丰富和发展我国害虫管理的科学理论与实践,提升我国有害生物防控的原始创新和集成创新能力,扩大国际影响。  相似文献   

14.
An effective immune response requires the engagement of host receptors by pathogen‐derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes—which are extracellular vesicles that function in intercellular communication—may play a key role in the dissemination of pathogen‐ as well as host‐derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity.  相似文献   

15.
Insect pests are part of natural forest ecosystems contributing to forest rejuvenation but can also cause ecological disturbance and economic losses that are expected to increase with climate change. The white pine or spruce weevil (Pissodes strobi) is a pest of conifer forests in North America. Weevil–host interactions with various spruce (Picea) species have been explored as a genomic and molecular reference system for conifer defence against insects. Interactions occur in two major phases of the insect life cycle. In the exophase, adult weevils are free‐moving and display behaviour of host selection for oviposition that is affected by host traits. In the endophase, insects live within the host where mobility and development from eggs to young adults are affected by a complex system of host defences. Genetic resistance exists in several spruce species and involves synergism of constitutive and induced chemical and physical defences that comprise the conifer defence syndrome. Here, we review conifer defences that disrupt the weevil life cycle and mechanisms by which trees resist weevil attack. We highlight molecular and genomic aspects and a possible role for the weevil microbiome. Knowledge of this conifer defence system is supporting forest health strategies and tree breeding for insect resistance.  相似文献   

16.
Host innate immunity plays a central role in detecting and eliminating microbial pathogenic infections in both vertebrate and invertebrate animals. Entomopathogenic or insect pathogenic nematodes are of particular importance for the control of insect pests and vectors of pathogens, while insect-borne nematodes cause serious diseases in humans. Recent work has begun to use the power of insect models to investigate host-nematode interactions and uncover host antiparasitic immune reactions. This review describes recent findings on innate immune evasion strategies of parasitic nematodes and host cellular and humoral responses to the infection. Such information can be used to model diseases caused by human parasitic nematodes and provide clues indicating directions for research into the interplay between vector insects and their invading tropical parasites.  相似文献   

17.
18.
虫瘿与致瘿昆虫   总被引:6,自引:1,他引:5  
王光钺  王义平  吴鸿 《昆虫知识》2010,47(2):419-424
虫瘿是由昆虫等致瘿生物诱导寄主植物而产生的一种特异组织。虫瘿对致瘿生物具有提供营养和保护等作用,虫瘿不仅有一定的经济利用和科学研究价值,而且多数致瘿昆虫是农林害虫。本文对致瘿昆虫在植物上的致瘿部位、致瘿的主要昆虫类群、虫瘿形态结构、虫瘿化学组成、虫瘿对寄主植物的影响以及虫瘿的利用等进行综述。  相似文献   

19.
Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect–host interactions, but also for the development of sustainable pest‐control strategies that exploit insects' host‐seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host‐seeking have focussed on short‐range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of ‘habitat cues’, volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil‐dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non‐host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant‐derived repellents for controlling insect pests.  相似文献   

20.
Legionella pneumophila is a facultative intracellular pathogen capable of replicating in a wide spectrum of cells. Successful infection by Legionella requires the Dot/Icm type IV secretion system, which translocates a large number of effector proteins into infected cells. By co-opting numerous host cellular processes, these proteins function to establish a specialized organelle that allows bacterial survival and proliferation. Even within the vacuole, L. pneumophila triggers robust immune responses. Recent studies reveal that a subset of Legionella effectors directly target some basic components of the host innate immunity systems such as phagosome maturation. Others play essential roles in engaging the host innate immune surveillance system. This review will highlight recent progress in our understanding of these interactions and discuss implications for the study of the immune detection mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号