首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel selective and sensitive fluorescence ‘on-off-on’ probe based on tetraphenylethylene (TPE) motif for sequential recognition of Fe3+ and Hg2+ in water has been developed. Especially the complex 6-Fe3+ could behave as a ‘turn on’ fluorescent sensor over a wide-range pH value for detection of Hg2+. The selectivity of this complex for Hg2+ over other heavy and transition metal ions is excellent, and its sensitivity for Hg2+ is at 2 ppb in water.  相似文献   

2.
《Process Biochemistry》2014,49(12):2114-2121
The codon-optimized carbonic anhydrase gene of Persephonella marina EX-H1 (PMCA) was expressed and characterized. The gene with the signal peptide removed, PMCA(sp−), resulted in the production of approximately five times more purified protein than from the intact gene PMCA using an Escherichia coli expression system. PMCA(sp−) is formed as homo-dimer complex. PMCA(sp−) has a wide pH tolerance (optimum pH 7.5) and a high thermostability even at 100 °C (88 min of thermal deactivation half-life). The melting temperature for PMCA(sp−) was 84.5 °C. The apparent kcat and Km values for CO2 hydration were 3.2 × 105 s−1 and 10.8 mM. The activity of the PMCA(sp−) enzyme was enhanced by Zn2+, Co2+, and Mg2+, but was strongly inhibited by Cu2+, Fe3+, Al3+, Pb2+, Ag+, and Hg2+. PMCA(sp−) readily catalyzed the hydration of CO2, precipitating CaCO3 as calcite in the presence of Ca2+.  相似文献   

3.
The present study was undertaken to gain insight into the associations of mercury(II) with dicysteinyl tripeptides in buffered media at pH 7.4. We investigated the effects of increasing the distance between cysteinyl residues on mercury(II) associations and complex formations. The peptide–mercury(II) formation constants and their associated thermodynamic parameters in 3-(N-morpholino)propanesulfonic acid (MOPS) buffered solutions were evaluated by isothermal titration calorimetry. Complexes formed in different relative ratios of mercury(II) to cysteinyl peptides in ammonium formate buffered solutions were characterized by LTQ Orbitrap mass spectrometry. The results from these studies show that n-alkyl dicysteinyl peptides (CP 14), and an aryl dicysteinyl peptide (CP 5) can serve as effective “double anchors” to accommodate the coordination sites of mercury(II) to form predominantly one-to-one Hg(peptide) complexes. The aryl dicysteinyl peptide (CP 5) also forms the two-to-two Hg2(peptide)2 complex. In the presence of excess peptide, Hg(peptide)2 complexes are also detected. Notably, increasing the distance between the ligating groups or “anchor points” in CP 15 does not significantly affect their affinity for mercury(II). However, the enthalpy change (ΔH) values (ΔH1  −91 kJ mol−1 and ΔH2  −66 kJ mol−1) for complex formation between CP 4 and 5 with mercury(II) are about one and a half times larger than the related values for CP 1, 2 and 3H1  −66 kJ mol−1 and ΔH2  46 kJ mol−1). The corresponding entropy change (ΔS) values (ΔS1  −129 J K−1 mol−1 and ΔS2  −116 J K−1 mol−1) of the structurally larger dicysteinyl peptides CP 4 and 5 are less entropically favorable than for CP 1, 2 and 3S1  −48 J K−1 mol−1 and ΔS2  −44 J K−1 mol−1). Generally, these associations result in a decrease in entropy, indicating that these peptide–mercury complexes potentially form highly ordered structures. The results from this study show that dicysteinyl tripeptides are effective in binding mercury(II) and they are promising motifs for the design of multi-cysteinyl peptides for binding more than one mercury(II) ion per peptide.  相似文献   

4.
This work is a report of the characterization of an alkaline lipolytic enzyme isolated from Bacillus subtilis DR8806. The extracellular extract was concentrated using ammonium sulfate, and ultrafiltration. The active enzyme was purified by Q-sepharose ion exchange chromatography. The molecular mass of the enzyme was estimated to be 60.25 kDa based on SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis). The optimum pH and temperature of this enzyme were observed to be 8.0 and 50 °C, respectively. The enzyme exhibited a half-life of 72 min at its optimum temperature. It was stable in the presence of metal ions (10 mM) such as Ca2+, K+ and Na+, whereas Cu2+, Fe2+, Zn2+, Mn2+, Co2+, Mg2+ and Hg2+ were found to have inhibitory effects. However, the enzyme activity was not affected significantly by 1% Triton X-100. The study of substrate specificity showed that the purified enzyme has a preferential specificity for small ester of p-nitrophenyl acetate (C2), and it was the most efficiently hydrolyzed substrate as compared to the other esters. The kinetic parameters showed that the enzyme has Km of 4.2 mM and Vmax of 151 μmol min−1 mg−1 for p-nitrophenyl acetate. The hydrolysis rates of the fluorescence substrates were increased in the presence of the purified enzyme. Regarding the features of the enzyme, it may be utilized as a novel candidate for industrial applications.  相似文献   

5.
Two tetracyanometalate building blocks, [Fe(5,5′-dmbipy)(CN)4]? (2) and [Fe(4,4′-dmbipy)(CN)4]? (3) (5,5′-dmbipy = 5,5′-dimethyl-2,2′-bipyridine; 4,4′-dmbipy = 4,4′-dimethyl-2,2′-bipyridine), and two cyano-bridged heterobimetallic complexes, [Cu2(bpca)2(H2O)2Fe2(5,5′-dmbipy)2(CN)8] · 2[Cu(bpca)Fe(5,5′-dmbipy)(CN)4] · 4H2O (4) and [Cu(bpca)Fe(4,4′-dmbipy)(CN)4]n (5) (bpca = bis(2-pyridylcarbonyl)amidate), have been synthesized and structurally characterized. Complex 4 contains two dinuclear and one tetranuclear heterobimetallic clusters in an asymmetric unit whereas the structure of complex 5 features a one-dimensional heterobimetallic zigzag chain. The Cu(II) ion is penta-coordinated in the form of a distorted square-based pyramid. Magnetic studies show ferromagnetic coupling between Cu(II) and Fe(III) ions with g = 2.28, J1 = 2.64 cm?1, J2 = 5.40 cm?1 and TIP = ?2.36 × 10?3 for complex 4, and g = 2.17, J = 4.82 cm?1 and zJ = 0.029 cm?1 for complex 5.  相似文献   

6.
《Inorganica chimica acta》2006,359(1):339-345
Chemical oxidation in acetonitrile of the previously reported phenolato-bridged binuclear Mn(II) complex [(mL)MnMn(mL)]2+ (1), where mLH is pentadentate N,N′-bis-(2-pyridylmethyl)-N-(2-hydroxybenzyl)-N′-methyl-ethane-1,2-diamine ligand [C. Hureau, et al., Chem. Eur. J. 2004, 10, 1998–2010] using iodosylbenzene PhIO (dissolved in methanol) is described. The addition of one to four equivalents of PhIO per Mn ion leads to the transient formation of the mono-μ-oxo binuclear Mn2(III,III) complex [(mL)Mn(μ-O)Mn(mL)]2+ (2), previously studied. After addition of five equivalents of PhIO per Mn ion, the mononuclear Mn(III) species [(mL)Mn(OMe)]+ (3) is quantitatively generated. The UV–Vis spectrum of 3 displays a broad band at 456 nm (ε = 1000 L mol−1 cm−1) attributed to phenolato to Mn(III) charge transfer transition. Complex 3 exhibits a reversible oxidation wave at E1/2 = 0.68 V versus SCE, and the mononuclear Mn(IV) complex [(mL)Mn(OMe)]2+ (3ox) can thus be generated by exhaustive electrolysis at 1.0 V versus SCE. The 9.4 GHz EPR spectrum of complex 3ox shows a strong transition near g = 4 consistent with a rhombically distorted S = 3/2 system with a zero-field splitting dominating the Zeeman effect. UV–Vis spectrum displays a large phenolato to Mn(IV) charge transfer transition at 670 nm (ε = 2450 L mol−1 cm−1).  相似文献   

7.
《Inorganica chimica acta》2006,359(4):1275-1281
Two new complexes of composition [Cu(2-NO2bz)2(3-pyme)2(H2O)2] (1) and/or [Cu{3,5-(NO2)2bz}2(3-pyme)2] (2) (3-pyme = 3-pyridylmethanol, ronicol or 3-pyridylcarbinol, 2-NO2bz = 2-nitrobenzoate and 3,5-(NO2)2bz = 3,5-dinitrobenzoate) have been prepared and studied by elemental analysis, electronic, infrared and EPR spectroscopy, magnetic susceptibility measurements and the structure of both complexes has been solved. Complex (1) shows an unusual molecular type of structure consisting of the [Cu(2-NO2bz)2(3-pyme)2(H2O)2] molecules held together by hydrogen bonds and van der Waals interactions. Complex (2) exhibits a polymeric chain-like structure [Cu{3,5-(NO2)2bz}2(3-pyme)2]n with copper atoms doubly bridged by two 3-pyridylmethanol molecules and the polymeric molecules are held together by van der Waals interactions. Complex (1) exhibits a magnetic moment μeff = 1.84 B.M. at 300 K that remains nearly constant within the temperature region (5–300 K). Further cooling results in lowering the magnetic moment to μeff = 1.82 B.M. at 1.8 K. The magnetic susceptibility temperature dependence obeys Curie–Weiss law with Curie constant of 0.423 cm3 K mol−1 and with Weiss constant of −0.06 K. The magnetic moment of (2) exhibits a small increase with a decrease in the temperature (μeff = 1.80 B.M. at 300 K and μeff = 1.85 B.M. at 1.8 K) with Curie constant of 0.409 cm3 K mol−1 and with Weiss constant of +1.1 K, which can indicate a very weak ferromagnetic interaction between the copper atoms within the chain. Applying the molecular field model resulted in obtaining zJ′ values −0.08 cm−1 for complex (1), and −0.07 cm−1 for complex (2), respectively, that could characterize intermolecular and interchain interactions transmitted through π–π stacking.  相似文献   

8.
The bimetallic [M1M2(tren)2(CAn?)]m+ series, where M = GaIII or CrIII and CA is the chloranilate ligand which can take on diamagnetic (CAcat,cat)4? or paramagnetic (CAsq,cat)3? forms, comprises an electronically diverse series of compounds ranging from the closed-shell [Ga2(tren)2(CAcat,cat)]2+ to the S = 5/2 ground state of [Cr2(tren)2(CAsq,cat)]3+. This report deals with the interpretation of the EPR and ENDOR spectra of [Ga2(tren)2(CAsq,cat)](BPh4)2(BF4) (2) and the related derivative [Ga2(tren)2(DHBQ)](BPh4)2(BF4) (2a) (where DHBQ is the fully deprotonated trianionic form of 2,5-dihydroxy-1,4-benzoquinone) in an effort to further characterize the electronic structure of this radical species. The X-band (~9.5 GHz) EPR spectrum of complex 2 acquired in a butyronitrile/propionitrile glass at 4 K reveals a rhombic g-tensor with gxx = 2.0100, gyy = 2.0097, and gzz = 2.0060 with hyperfine interactions due to spin delocalization onto the two Ga nuclei (axx = 4.902 G, ayy = 4.124 G, azz = 3.167 G); the origin of the hyperfine coupling was confirmed by analysis of the room temperature spectra of complexes 2 and 2a. The low-temperature spectrum of complex 2 also indicates the presence of a triplet electronic state characterized by a g-value of 2.009 and axial zero-field splitting of D = 150 G (0.012 cm?1) as determined from measurements carried out at both X- and W-band (~95 GHz) frequencies. This triplet state is believed to arise due to a weak intermolecular Heisenberg exchange interaction between two aggregating complexes. ENDOR measurements on complex 2a at 20 K allowed for a determination of the magnitude of hyperfine coupling to the protons associated with the radical bridge as well as providing a rare example of an ENDOR signal arising from coupling to a gallium nucleus. Finally, these results were combined with literature data on the free semiquinone form of the bridging ligand in order to assess the extent to which density functional theory can predict unpaired spin density distribution in a complex molecule of this type. Although differences between theory and experiment were noted, DFT was able to provide a reasonably accurate picture of the electronic structure of this system as well as provide insight into the spin polarization mechanism(s) responsible for the observed hyperfine interactions.  相似文献   

9.
A novel β-glucuronidase from filamentous fungus Penicillium purpurogenum Li-3 was purified to electrophoretic homogeneity by ultrafiltration, ammonium sulfate precipitation, DEAE-cellulose ion exchange chromatography, and Sephadex G-100 gel filtration with an 80.7-fold increase in specific activity. The purified β-glucuronidase is a dimeric protein with an apparent molecular mass of 69.72 kDa (m/z = 69,717), determined by MALDI/TOF-MS. The optimal temperature and pH of the purified enzyme are 40 °C and 6.0, respectively. The enzyme is stable within pH 5.0–8.0, and the temperature up to 45 °C. Mg2+ ions enhanced the activity of the enzyme, Ca2+ and Al3+ showed no effect, while Mn2+, Zn2+, Hg2+ and Cu2+ substantially inhibited the enzymatic activity. The Km and Vmax values of the purified enzyme for glycyrrhizin (GL) were evaluated as 0.33 mM and 59.0 mmol mg?1 min?1, respectively. The purified enzyme displayed a highly selective glycyrrhizin-hydrolyzing property and converted GL directly to glycyrrhetic acid mono-glucuronide (GAMG), without producing byproduct glycyrrhetic acid (GA). The results suggest that the purified enzyme may have potential applications in bio-pharmaceutical and biotechnological industry.  相似文献   

10.
The effects of two anion/Cl? channel inhibitors, Zn2+ and niflumic acid (NA), on seedling photosynthetic and fluorescent parameters of two Glycine soja populations (salt-tolerant BB52; salt-sensitive N23227) and Glycine max cultivar (salt-tolerant Lee68) were studied and compared under salt stress. Treatments with Zn2+ and NA only (10, 20 μmol L?1) were also imposed for comparisons. Results showed that, there were non-toxic and non-nutritional effects of Zn2+ and NA treatments alone on seed germination and seedling growth of soybeans. Under 150 mmol L?1 NaCl for 6 d, leaf chlorophyll and carotenoid contents, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), and the maximum photochemical efficiency of photosystem II (PS II) (Fv/Fm) except the stomatal limitation (Ls) significantly decreased in three kinds of soybean seedlings when compared with their control plants. The NaCl stress plus additional 20 μmol L?1 Zn showed an obvious enhancement of leaf chlorophyll and carotenoid contents, Pn, Gs, Ci and Tr, especially for the G. max cultivar Lee68, but the supplementation of 20 μmol L?1 NA showed the reverse effects.  相似文献   

11.
Aminopeptidase B was purified from goat brain with a purification fold of ~280 and a yield of 2.7%. The enzyme revealed a single band on both native acrylamide gel and SDS-PAGE thereby confirming apparent homogeneous preparation and its monomeric nature. The enzyme exhibited a molecular mass of 80.2 kDa and 79.7 kDa on Sephadex G-200 and SDS-PAGE respectively. The pH optimum was 7.4 and the enzyme was stable between pH 6.0 and 9.0. l-Arg-βNA was the most rapidly hydrolyzed substrate followed by Lys-βNA. The Km value with Arg-βNA was found to be 0.1 mM. Metal chelating and –SH reactive agents strongly inhibited the enzyme activity. 1,10-Phenanthroline exhibited mixed type of inhibition with a Ki of 5 × 10?5 M. The enzyme was highly sensitive to urea. Metal ions like Ni2+, Cd2+, Fe2+and Hg2+ inhibited the enzyme, whereas Co2+, Zn2+, Mn2+and Sn2+ slightly activated the enzyme.  相似文献   

12.
《Process Biochemistry》2014,49(5):821-829
Arginine kinase plays an important role in the cellular energy metabolism of invertebrates. We investigated the effects of Zn2+ on the enzymatic activity and unfolding and aggregation of Euphausia superba arginine kinase (ESAK). Zn2+ inhibited the activity of ESAK (IC50 = 0.027 ± 0.002 mM) following first-order kinetics consistent with the transition from a mono-phasic to a bi-phasic reaction. Double-reciprocal Lineweaver–Burk plots indicated that Zn2+ induced non-competitive inhibition of arginine and ATP. Circular dichroism spectra and spectrofluorometry results showed that Zn2+ induced secondary and tertiary structural changes in ESAK with exposure of hydrophobic surfaces and directly induced ESAK aggregation. The addition of osmolytes such as glycine and proline successfully blocked ESAK aggregation, recovering the conformation and activity of ESAK. Our study demonstrates the effect of Zn2+ on ESAK enzymatic function and folding and unfolding mechanisms, and might provide important insights into other metabolic enzymes of invertebrates in extreme climatic marine environments.  相似文献   

13.
The interactions of a ruthenium porphyrin complex [(Py-3′)TPP-Ru(phen)2Cl]Cl (phen = 1,10-phenanthroline, (Py-3′)TPP = 5-(3′-pyridyl-10,15,20-triphenylporphyrin) (1) and its heterometallic derivatives, [Ni(Py-3′)TPP-Ru(phen)2Cl][PF6] (2) and [Cu(Py-3′)TPP-Ru(phen)2Cl][PF6] (3), with calf thymus DNA have been investigated by spectroscopic and viscosity measurements in this study. The results showed that these synthetic complexes can bind to double strand helix DNA in groove binding mode, and the intrinsic binding constants of complexes 1, 2 and 3, as calculated according to the decay of the Soret absorption, are (1.35 ± 0.5) ×105 M?1 (s = 4.2), (1.29 ± 0.5) × 105 M?1 (s = 5.6) and (1.22 ± 0.5) × 105 M?1 (s = 6.2) (s is the binding-site size), respectively, which are consistent with those obtained from ethidium bromide-quenching experiments. Further investigations on the photocleavage properties of these complexes on plasmid pBR 322 DNA showed that complexes 1, 2 and 3 could cleave single chain DNA and convert DNA molecules from supercoiled form to the nicked form. As determined by MTT assay, the complexes were also identified as potent antiproliferative agents against A375 human melanoma cells, MCF-7 human breast adrenocarcinoma cells, Colo201 human colon adenocarcinoma cells and HepG2 human liver cancer cells. Complex 1 inhibits the growth of A375 cells through induction of apoptotic cell death and G0/G1 cell cycle arrest. Further investigation on intracellular mechanisms indicated that Complex 1 induced depletion of mitochondrial membrane potential (ΔΨm) in A375 cells through regulating the expression of pro-survival and pro-apoptotic Bcl-2 family members. Our results suggest that ruthenium porphyrin complexes could be candidates for further evaluation as chemopreventive and chemotherapeutic agents for human cancers.  相似文献   

14.
2-(4-Fluorophenyl)-quinazolin-4(3H)-one (FQ) was synthesized, and its structure was identified with 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), fourier transform infrared spectroscopy (FTIR), and high resolution mass spectrometry (HRMS). From the enzyme analysis, the results showed that it could inhibit the diphenolase activity of tyrosinase (IC50 = 120 ± 2 μM). Furthermore, the results of kinetic studies showed that the compound was a reversible mixed-type inhibitor, and that the inhibition constants were determined to be 703.2 (KI) and 222.1 μM (KIS). The results of fluorescence quenching experiment showed that the compound could interact with tyrosinase and the substrates (tyrosine and l-DOPA). Molecular docking analysis revealed that the mass transfer rate was affected by FQ blocking the enzyme catalytic center. In brief, current study identified a novel tyrosinase inhibitor which deserved further study for hyperpigmentation drugs.  相似文献   

15.
《Inorganica chimica acta》2006,359(7):2015-2022
The reaction of [Cu(tren)(OH2)](ClO4)2 with KCN gave a mononuclear complex [Cu(tren)(CN)](ClO4) (1) (tren = tris(2-aminoethyl)amine). Using 1 as a building block, one pentanuclear compound, [{Cu(tren)(NC)}4Ni](ClO4)6 (2) and two trinuclear complexes, [{Cu(tren)NC}2Co(tren)](ClO4)5 · 2H2O (3), [{Cu(tren)CN}2NiL](ClO4)4 (4) (L = 3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) were prepared and characterized by single crystal X-ray analysis. In 1, Cu(II) atom adopts a distorted trigonal bipyramidal (TBP) geometry. In 2, the Ni(II) atom occupies the center of the pentanuclear compound with a square-planar coordination geometry. In 3, the six-coordinated Co(III) atom presents a distorted octahedral geometry with four nitrogen atoms from tren and two carbon atoms of bridged cyano groups in cis-positions. In 4, the nickel atom is located in an inversion center and coordinated with two [(tren)CuCN]+ moieties through cyano-bridging ligands. Magnetic susceptibility measurements of 24 show that the magnetic interactions between the heterometallic ions are antiferromagnetical coupling through the cyano bridges with g = 2.25, J = −0.142 cm−1 and J = −0.167 cm−1 for 2, g = 2.06, J = −0.094 cm−1 for 3, and g = 2.20, J = −33.133 cm−1 for 4. The correlations between the structures and the J values are discussed.  相似文献   

16.
《Cell calcium》2015,58(5-6):321-336
The quintessential property of developing cardiomyocytes is their ability to beat spontaneously. The mechanisms underlying spontaneous beating in developing cardiomyocytes are thought to resemble those of adult heart, but have not been directly tested. Contributions of sarcoplasmic and mitochondrial Ca2+-signaling vs. If-channel in initiating spontaneous beating were tested in human induced Pluripotent Stem cell-derived cardiomyocytes (hiPS-CM) and rat Neonatal cardiomyocytes (rN-CM). Whole-cell and perforated-patch voltage-clamping and 2-D confocal imaging showed: (1) both cell types beat spontaneously (60–140/min, at 24 °C); (2) holding potentials between −70 and 0 mV had no significant effects on spontaneous pacing, but suppressed action potential formation; (3) spontaneous pacing at −50 mV activated cytosolic Ca2+-transients, accompanied by in-phase inward current oscillations that were suppressed by Na+-Ca2+-exchanger (NCX)- and ryanodine receptor (RyR2)-blockers, but not by Ca2+- and If-channels blockers; (4) spreading fluorescence images of cytosolic Ca2+-transients emanated repeatedly from preferred central cellular locations during spontaneous beating; (5) mitochondrial un-coupler, FCCP at non-depolarizing concentrations (∼50 nM), reversibly suppressed spontaneous pacing; (6) genetically encoded mitochondrial Ca2+-biosensor (mitycam-E31Q) detected regionally diverse, and FCCP-sensitive mitochondrial Ca2+-uptake and release signals activating during INCX oscillations; (7) If-channel was absent in rN-CM, but activated only negative to −80 mV in hiPS-CM; nevertheless blockers of If-channel failed to alter spontaneous pacing.  相似文献   

17.
The solid state structures of [Ni(1)2][NO3]2 · 2MeOH · 2H2O, [Fe(1)2][ClO4]2 · 2MeOH · 0.5H2O, [Ru(1)2][PF6]2 and [Ru(1)2][PF6][NO3] (1 = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine) are presented and the structural variation observed for the {M(1)2}2+ unit is discussed. Protonation of the pendant pyridine group in [Ru(1)2]2+ leads to the formation of a hydrogen-bonded, one-dimensional polymer [{Ru(1)(H1)}n]3n+ exemplifed by the solid-state structure of [{Ru(1)(H1)}{Fe(NCS)6} · 1.25H2O]n.  相似文献   

18.
In an effort to prepare a fluorogenic substrate to be used in activity assays with metallo-β-lactamases, (6R,7R)-8-oxo-7-(2-oxo-2H-chromene-3-carboxamido)-3-((4-(2-oxo-2H-chromene-3-carboxamido)-phenylthio)methyl)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (CA) was synthesized and characterized. CA exhibited a fluorescence quantum yield (φ) of 0.0059, two fluorescence lifetimes of 3.63 × 10?10 and 5.38 × 10?9 s, and fluorescence intensity that is concentration-dependent. Steady-state kinetic assays revealed that CA is a substrate for metallo-β-lactamases (MβLs) L1 and CcrA, exhibiting Km and kcat values of 18 μM and 5 s?1 and 11 μM and 17 s?1, respectively.  相似文献   

19.
The observation that the cyclooxygenase-2 (COX-2) isozyme is over-expressed in multiple types of cancer, relative to that in adjacent non-cancerous tissue, prompted this investigation to prepare a group of hybrid fluorescent conjugates wherein the COX inhibitors ibuprofen, (S)-naproxen, acetyl salicylic acid, a chlororofecoxib analog and celecoxib were coupled via a linker group to an acridone, dansyl or rhodamine B fluorophore. Within this group of compounds, the ibuprofen-acridone conjugate (10) showed potent and selective COX-2 inhibition (COX-2 IC50 = 0.67 μM; SI = 110.6), but its fluorescence emission (λem = 417, 440 nm) was not suitable for fluorescent imaging of cancer cells that over-express the COX-2 isozyme. In comparison, the celecoxib-dansyl conjugate (25) showed a slightly lower COX-2 potency and selectivity (COX-2 IC50 = 1.1 μM; SI > 90) than the conjugate 10, and it possesses a better fluorescence emission (λem = 500 nm). Ultimately, a celecoxib-rhodamine B conjugate (28) that exhibited moderate COX-2 potency and selectivity (COX-2 IC50 = 3.9 μM; SI > 25) having the best fluorescence emission (λem = 580 nm) emerged as the most promising biomarker for fluorescence imaging using a colon cancer cell line that over-expresses the COX-2 isozyme.  相似文献   

20.
Three new compounds formulated (ClO4)2[Fe(pq)3] (1), (BF4)2[Fe(pq)3] · EtOH (2) and {(ClO4)[MnCr(C2O4)3][Fe(pq)2(H2O)2]} (3), where pq is 2,2′-pyridylquinoline, have been synthesised and characterised. Despite the different crystal packing exhibited by 1 and 2, the cationic species [Fe(pq)3]2+ are structurally quite similar. At 293 K, the Fe–N bond lengths are characteristic of the iron(II) in the high-spin state. In contrast to 1, 2 undergoes a continuous spin transition. Indeed, at 95 K its structure experiences a noticeable change in the Fe–N bonds and angles, i.e. the Fe–N bonds shorten by 0.194 Å on the average. The magnetic behaviour confirms that 1 is fully high-spin in the 4–300 K temperature range while 2 shows a spin transition centred at T1/2 = 150 K. The corresponding enthalpy, entropy and interaction parameter are ΔH = 7.49 kJ mol?1, ΔS = 50 J K?1 mol?1and Γ = 1.35 kJ mol?1. Compound 3 has been obtained as a microcrystalline powder. The magnetic properties of 3 point at the occurrence of ferromagnetic coupling below 100 K and the onset of a ferromagnetic ordering below 10 K (Weiss constant equal to 6.8 K). The Mössbauer spectra of 3 show the occurrence of a magnetic order at T ? 4.2 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号