首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A number of novel xanthines bearing a variety of substituents at positions 1, 3, 7 and 8 were prepared and evaluated for their binding affinity to the human adenosine receptor A1, A2A, A2B and A3 subtypes. Several of the 1,3,8- and 1,3,7,8-substituted xanthines showed moderate-to-high affinity at human A2B and A1 receptors, with the most active compound (14q) having a pKi of 7.57 nM for hA2B receptors and a selectivity over hA2A receptors of 8.1-fold and hA1 receptors of 3.7-fold.  相似文献   

2.
The synthesis of an important set of 3-furfurylxanthine derivatives is described. Binding affinities were determined for rat A1 and human A2A, A2B and A3 receptors. Several of the 3-furfuryl-7-methylxanthine derivatives showed moderate-to-high affinity at human A2B receptors, the most active compound (10d) having a Ki of 7.4 nM for hA2B receptors, with selectivities over rA1 and hA2A receptors up to 14-fold and 11-fold, respectively. Affinities for hA3 receptors were very low for all members of the set.  相似文献   

3.
The synthesis of a series of 9-ethyladenine derivatives bearing alkynyl chains in 2- or 8-position was undertaken, based on the observation that replacement of the sugar moiety in adenosine derivatives with alkyl groups led to adenosine receptor antagonists. All the synthesized compounds were tested for their affinity at human and rat A1, A2A, and A3 adenosine receptors in binding assays; the activity at the human A2B receptor was determined in adenylyl cyclase experiments. Biological data showed that the 2-alkynyl derivatives possess good affinity and are slightly selective for the human A2A receptor. The same compounds tested on the rat A1 and A2A subtypes showed in general lower affinity for both receptors. On the other hand, the affinity of the 8-alkynyl derivatives at the human A1, A2A, and A2B receptors proved to be lower than that of the corresponding 2-alkynyl derivatives. On the contrary, the affinity of the same compounds for the human A3 receptor was improved, resulting in A3 selectivity. As in the case of the 2-alkynyl-substituted compounds, the 8-alkynyl derivatives showed decreased affinity for rat receptors. However, it is worthwhile to note that the 8-phenylethynyl-9-ethyladenine was the most active compound of the two series (Ki in the nanomolar range) at both the human and rat A3 subtype. Docking experiments of the 2- and 8-phenylethynyl-9-ethyladenines, at a rhodopsin-based homology model, gave a rational explanation of the preference of the human A3 receptor for the 8-substituted compound.  相似文献   

4.
In this study a new set of thiazolo[5,4-d]pyrimidine derivatives was synthesized. These derivatives bear different substituents at positions 2 and 5 of the thiazolopyrimidine core while maintaining a free amino group at position-7. The new compounds were tested for their affinity and potency at human (h) A1, A2A, A2B and A3 adenosine receptors expressed in CHO cells. The results reveal that the higher affinity of these new set of thiazolopyrimidines is toward the hA1 and hA2A adenosine receptors subtypes and is tuned by the substitution pattern at both the 2 and 5 positions of the thiazolopyrimidine nucleus. Functional studies evidenced that the compounds behaved as dual A1/A2A antagonists/inverse agonists. Compound 3, bearing a 5-((2-methoxyphenyl) methylamino) group and a phenyl moiety at position 2, displayed the highest affinity (hA1 Ki?=?10.2?nM; hA2A Ki?=?4.72?nM) and behaved as a potent A1/A2A antagonist/inverse agonist (hA1 IC50?=?13.4?nM; hA2A IC50?=?5.34?nM).  相似文献   

5.

Background

Among adenosine receptors (ARs) the A2B subtype exhibits low affinity for the endogenous agonist compared with the A1, A2A, and A3 subtypes and is therefore activated when concentrations of adenosine increase to a large extent following tissue damages (e.g. ischemia, inflammation). For this reason, A2B AR represents an important pharmacological target.

Methods

We evaluated seven 1-benzyl-3-ketoindole derivatives (79) for their ability to act as positive or negative allosteric modulators of human A2B AR through binding and functional assays using CHO cells expressing human A1, A2A, A2B, and A3 ARs.

Results

The investigated compounds behaved as specific positive or negative allosteric modulators of human A2B AR depending on small differences in their structures. The positive allosteric modulators 7a,b and 8a increased agonist efficacy without any effect on agonist potency. The negative allosteric modulators 8b,c and 9a,b reduced agonist potency and efficacy.

Conclusions

A number of 1-benzyl-3-ketoindole derivatives were pharmacologically characterized as selective positive (7a,b) or negative (8c, 9a,b) allosteric modulators of human A2B AR.

General significance

The 1-benzyl-3-ketoindole derivatives 79 acting as positive or negative allosteric modulators of human A2B AR represent new pharmacological tools useful for the development of therapeutic agents to treat pathological conditions related to an altered functionality of A2B AR.  相似文献   

6.
This paper describes the synthesis of novel 7-amino-thiazolo[5,4-d]pyrimidines bearing different substituents at positions 2, 5 and 7 of the thiazolopyrimidine scaffold. The synthesized compounds 227 were evaluated in radioligand binding (A1, A2A and A3) and adenylyl cyclase activity (A2B and A2A) assays, in order to evaluate their affinity and potency at human adenosine receptor subtypes. The current study allowed us to support that affinity and selectivity of 7-amino-thiazolo[5,4-d]pyrimidine derivatives towards the adenosine receptor subtypes can be modulated by the nature of the groups attached at positions 2, 5 and 7 of the bicyclic scaffold. To rationalize the hypothetical binding mode of the newly synthesized compounds, we also performed docking calculations in human A2A, A1 and A3 structures.  相似文献   

7.
Four bis-N-n-propyl analogues (36) in the uracil ring of two hybrid molecules (1 and 2) of caffeine and eudistomin D, a β-carboline alkaloid from a marine tunicate, were synthesized, and their affinity and selectivity for adenosine receptors A1, A2A, and A3 were examined. All the compounds (36) showed better potency as adenosine receptor ligands than caffeine. Bis-N-n-propylation (3 and 4, respectively) of the uracil ring in 1 and 2 resulted in higher affinity for A1 and A2A adenosine receptors. Furthermore, it was found that a compound (5) possessing a n-propyloxy group at C-7 in compound 3 with a nitrogen at the β-position of the pyridine ring (β-N type) enhanced remarkably affinity for adenosine receptor A3 subtype, while n-propyloxy substitution (compound 6) at C-5 in compound 4 with a nitrogen at the δ-position of the pyridine ring (δ-N type) reduced affinity for all the adenosine receptor, A1, A2A, and A3. Among all the compounds (16) examined, compound 5 showed the most potent affinity for adenosine receptor A3 subtype (Ki value, 0.00382 μM).  相似文献   

8.
A series of 2-phenylethynyladenosine (PEAdo) derivatives substituted in the N6- and 4′-position was synthesised and the new derivatives were tested at the four human adenosine receptors stably transfected into Chinese hamster ovary (CHO) cells, using radioligand binding studies (A1, A2A, A3) or adenylyl cyclase activity assay (A2B). Binding studies showed that the presence of a phenyl ethynyl group in the 2 position of adenosine favoured the interaction with A3 receptors, resulting in compounds endowed with high affinity and selectivity for the A3 subtype. Additional substitution of the N6- and 4′-position increases both A3 affinity and selectivity. The results showed that the new compounds have a good affinity for the A3 receptor and in particular, the N6-methoxy-2-phenylethynyl-5′-N-methylcarboxamidoadenosine, with a Ki at A3 of 1.9 nM and a selectivity A1/A3 and A2A/A3 of 4,800- and 8,600-fold, respectively. Therefore, it is one of the most potent and selective agonists at the human A3 adenosine receptor subtype reported so far. Furthermore, functional assays of inhibition of 10 μM forskolin-stimulated cAMP production via the adenosine A3 receptor revealed that the new trisubstituted adenosine derivatives behave as full agonist of this receptor subtype. Docking analysis of these compounds was performed at a homology model of the human A3 receptor based on the bovine rhodopsin crystal structure as template, and the results are in accordance with the biological data.An erratum to this article can be found at  相似文献   

9.
From a collection containing more than 1500 academic compounds, in silico screening identified a hit for the human A1 adenosine receptor containing a new purine scaffold. To study the structure activity relationships of this new chemical series for adenosine receptors, a library of 24 purines was synthesized and tested in radioligand binding assays at human A1, A2A, A2B and A3 adenosine receptor subtypes. Fourteen molecules showed potent antagonism at A1, A3 or dual A1/A3 adenosine receptors. This purine scaffold is an important source for novel biochemical tools and/or therapeutic drugs.  相似文献   

10.
The expression levels and the subcellular localization of adenosine receptors (ARs) are affected in several pathological conditions as a consequence of changes in adenosine release and metabolism. In this respect, labelled probes able to monitor the AR expression could be a useful tool to investigate different pathological conditions. Herein, novel ligands for ARs, bearing the fluorescent 7-nitrobenzofurazan (NBD) group linked to the N1 (1,2) or N10 (3,4) nitrogen of a triazinobenzimidazole scaffold, were synthesized. The compounds were biologically evaluated as fluorescent probes for labelling A1 and A2B AR subtypes in bone marrow-derived mesenchymal stem cells (BM-MSCs) that express both receptor subtypes. The binding affinity of the synthetized compounds towards the different AR subtypes was determined. The probe 3 revealed a higher affinity to A1 and A2B ARs, showing interesting spectroscopic properties, and it was selected as the most suitable candidate to label both AR subtypes in undifferentiated MSCs.Fluorescence confocal microscopy showed that compound 3 significantly labelled ARs on cell membranes and the fluorescence signal was decreased by the cell pre-incubation with the A1 AR and A2B AR selective agonists, R-PIA and BAY 60-6583, respectively, thus confirming the specificity of the obtained signal. In conclusion, compound 3 could represent a useful tool to investigate the expression pattern of both A1 and A2B ARs in different pathological and physiological processes. Furthermore, these results provide an important basis for the design of new and more selective derivatives able to monitor the expression and localization of each different ARs in several tissues and living cells.  相似文献   

11.
With the aim of finding new adenosine receptor (AR) ligands presenting the 3-amidocoumarin scaffold, a study focusing on the discovery of new chemical entities was carried out. The synthesized compounds 18 were evaluated in radioligand binding (A1, A2A and A3) and adenylyl cyclase activity (A2B) assays in order to determine their affinity for human AR subtypes. The 3-benzamide derivative 4 showed the highest affinity of the whole series and was more than 30-fold selective for the A3 AR (Ki = 3.24 μM). The current study supported that small structural changes in this scaffold allowed modulating the affinity resulting in novel promising classes of A1, A2A, and/or A3 AR ligands. We also performed docking calculations in hA2A and hA3 to identify the hypothetical binding mode for the most active compounds. In addition, some ADME properties were calculated in order to better understand the potential of these compounds as drug candidates.  相似文献   

12.
Adenosine A2B receptors of native human and rodent cell lines were investigated using [3H]PSB-298 [(8-{4-[2-(2-hydroxyethylamino)-2-oxoethoxy]phenyl}-1-propylxanthine] in radioligand binding studies. [3H]PSB-298 showed saturable and reversible binding. It exhibited a KD value of 60 ± 1 nM and limited capacity (Bmax = 3.511 fmol per milligram protein) at recombinant human adenosine A2B receptors expressed in human embryonic kidney cells (HEK-293). The addition of sodium chloride (100 mM) led to a threefold increase in the number of binding sites recognized by the radioligand. The curve of the agonist 5′-N-ethylcarboxamidoadenosine (NECA) was shifted to the right in the presence of NaCl, while the curve of the antagonist PSB-298 was shifted to the left, indicating that PSB-298 may be an inverse agonist at A2B receptors. Adenosine A2B receptors were shown to be the major adenosine A2 receptor subtype on the mouse neuroblastoma x rat glioma hybrid cell line NG108-15 cells. Binding studies at rat INS-1 cells (insulin secreting cell line) demonstrated that [3H]PSB-298 is a selective radioligand for adenosine A2B binding sites in this cell line.  相似文献   

13.
Adenosine A1 and A2A receptors are attracting great interest as drug targets for their role in cognitive and motor deficits, respectively. Antagonism of both these adenosine receptors may offer therapeutic benefits in complex neurological diseases, such as Alzheimer’s and Parkinson’s disease. The aim of this study was to explore the affinity and selectivity of 2-benzylidene-1-tetralone derivatives as adenosine A1 and A2A receptor antagonists. Several 5-hydroxy substituted 2-benzylidene-1-tetralone analogues with substituents on ring B were synthesized and assessed as antagonists of the adenosine A1 and A2A receptors via radioligand binding assays. The results indicated that hydroxy substitution in the meta and para position of phenyl ring B, displayed the highest selectivity and affinity for the adenosine A1 receptor with Ki values in the low micromolar range. Replacement of ring B with a 2-amino-pyrimidine moiety led to compound 12 with an increase of affinity and selectivity for the adenosine A2A receptor. These substitution patterns led to enhanced adenosine A1 and A2A receptor binding affinity. The para-substituted 5-hydroxy analogue 3 behaved as an adenosine A1 receptor antagonists in a GTP shift assay performed with rat whole brain membranes expressing adenosine A1 receptors. In conclusion, compounds 3 and 12, showed the best adenosine A1 and A2A receptor affinity respectively, and therefore represent novel adenosine receptor antagonists that may have potential with further structural modifications as drug candidates for neurological disorders.  相似文献   

14.
A new series of 2,6,9-trisubstituted adenines (5–14) have been prepared and evaluated in radioligand binding studies for their affinity at the human A1, A2A and A3 adenosine receptors and in adenylyl cyclase experiments for their potency at the human A2B subtype. From this preliminary study the conclusion can be drawn that introduction of bulky chains at the N 6 position of 9-propyladenine significantly increased binding affinity at the human A1 and A3 adenosine receptors, while the presence of a chlorine atom at the 2 position resulted in a not univocal effect, depending on the receptor subtype and/or on the substituent present in the N 6 position. However, in all cases, the presence in the 2 position of a chlorine atom favoured the interaction with the A2A subtype. These results demonstrated that, although the synthesized compounds were found to be quite inactive at the human A2B subtype, adenine is a useful template for further development of simplified adenosine receptor antagonists with distinct receptor selectivity profiles.  相似文献   

15.
A novel series of 1H-indole-3-carboxylic acid pyridine-3-ylamides were synthesized and identified to show high affinity and selectivity for 5-HT2C receptor. Among them, 1H-indole-3-carboxylic acid[6-(2-chloro-pyridin-3-yloxy)-pyridin-3-yl]-amide (15k) exhibits the highest affinity (IC50 = 0.5 nM) with an excellent selectivity (>2000 times) over other serotonin (5-HT1A, 5-HT2A, and 5-HT6) and dopamine (D2–D4) receptors.  相似文献   

16.
A number of 1,3-dialkyl-9-deazaxanthines (9-dAXs), bearing a variety of N-substituted benzyloxycarbonylamino substituents at position 8, were prepared and evaluated for their binding affinity to the recombinant human adenosine receptors (hARs), chiefly to the hA2B and hA2A AR subtypes. Several ligands endowed with excellent binding affinity to the hA2B receptors, but low selectivity versus hA2A and hA1 were identified. Among these, 1,3-dimethyl-N-3′-thienyl carbamate 15 resulted as the most potent ligand at hA2B (Ki = 0.8 nM), with a low selectivity versus hA2A (hA2A/hA2B = 12.6) and hA1 (hA1/hA2B = 12.5) and a higher selectivity versus hA3 (hA3/hA2B = 454). When tested in functional assays in vitro, compound 15 exhibited high antagonist activities and efficacies versus both the A2A and A2B receptor subtypes, with pA2 values close to the corresponding pKis. A comparative analysis of structure–affinity and structure–selectivity relationships of the similar analogues 8-N-substituted benzyloxycarbonylamino- and 8-N-substituted phenoxyacetamido-9-dAXs suggested that their binding modes at the hA2B and hA2A ARs may strongly differ. Computational studies help to clarify this striking difference arising from a simple, albeit crucial, structural change, from CH2OCON to OCH2CON, in the para-position of the 8-phenyl ring.  相似文献   

17.
With the aim of finding new adenosine receptor (AR) ligands, a preliminary investigation focusing on the thieno[2,3-d]pyridazin-5(4H)-one scaffold was undertaken. The synthesized compounds 111 were evaluated for their binding at hA1, hA2A and hA3 ARs and efficacy at hA2B subtype in order to determine the affinity at the human adenosine receptor subtypes. Small structural changes on this scaffold highly influenced affinity; compound 5 (5-ethyl-7-(thiazol-2-yl)thieno[2,3-d]pyridazin-4(5H)-one) emerged as the best of this series. The simplicity of the synthetic process, the capability of the scaffold to be easily decorated, together with the predicted ADME properties confirm the role of these compounds as promising hits. A molecular docking investigation at the hA1AR crystal structure was performed to rationalize the SARs of the herein reported thienopyridazinones.  相似文献   

18.
Previous research has shown that bicyclic 6:5-fused heteroaromatic compounds with two N-atoms have variable degrees of adenosine A1 receptor antagonistic activity. Prompted by this imidazo[1,2-α]pyridine analogues were synthesized and evaluated for their adenosine A1 and A2A receptor affinity via radioligand binding studies and subjected to a GTP shift assay to determine its adenosine A1 receptor agonistic or antagonistic functionality. Imidazo[1,2-α]pyridine, the parent scaffold, was found devoid of affinity for the adenosine A1 and A2A receptors. The influence of substitution on position C2 showed no improvement for either adenosine A1 or A2A receptor affinity. The addition of an amino or a cyclohexylamino group to position C3 also showed no improvement of adenosine A1 or A2A receptor affinity. Surprisingly para-substitution on the phenyl ring at position C2 in combination with a cyclohexylamino group at position C3 led to adenosine A1 receptor affinity in the low micromolar range with compound 4d showing: (1) the highest affinity for the adenosine A1 receptor with a Ki value of 2.06 µM and (2) adenosine A1 receptor antagonistic properties. This pilot study concludes that para-substituted 3-cyclohexylamino-2-phenyl-imidazo[1,2-α]pyridine analogues represent an interesting scaffold to investigate further structure-activity relationships in the design of novel imidazo[1,2-α]pyridine-based adenosine A1 receptor antagonists for the treatment of neurodegenerative disorders.  相似文献   

19.
A new series of pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (PTP) derivatives has been developed in order to explore their affinity and selectivity profile at the four adenosine receptor subtypes. In particular, the PTP scaffold was conjugated at the C2 position with the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole, a group believed to confer potency and selectivity toward the human (h) A2B adenosine receptor (AR) to the xanthine ligand 8-(1-(3-(trifluoromethyl)benzyl)-1H-pyrazol-4-yl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (CVT 6975). Interestingly, the synthesized compounds turned out to be inactive at the hA2B AR but they displayed affinity at the hA3 AR in the nanomolar range. The best compound of the series (6) shows both high affinity (hA3 AR Ki = 11 nM) and selectivity (A1/A3 and A2A/A3 > 9090; A2B/A3 > 909) at the hA3 AR. To better rationalize these results, a molecular docking study on the four AR subtypes was performed for all the synthesized compounds. In addition, CTV 6975 and two close analogues have been subjected to the same molecular docking protocol to investigate the role of the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole on the binding at the four ARs.  相似文献   

20.
On the basis of a pyrazine core structure, three new adenosine A2B receptor ligands (7ac) were synthesized containing a 2-fluoropyridine moiety suitable for 18F-labeling. Compound 7a was docked into a homology model of the A2B receptor based on X-ray structures of the related A2A receptor, and its interactions with the adenosine binding site were rationalized. Binding affinity data were determined at the four human adenosine receptor subtypes. Despite a rather low selectivity regarding the A1 receptor, 7a was radiolabeled as the most suitable candidate (Ki(A2B)?=?4.24?nM) in order to perform in vivo studies in mice with the aim to estimate fundamental pharmacokinetic characteristics of the compound class. Organ distribution studies and a single PET study demonstrated brain uptake of [18F]7a with a standardized uptake value (SUV) of ≈1 at 5?min post injection followed by a fast wash out. Metabolism studies of [18F]7a in mice revealed the formation of a blood–brain barrier penetrable radiometabolite, which could be structurally identified. The results of this study provide an important basis for the design of new derivatives with improved binding properties and metabolic stability in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号