首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure-based drug design coupled with polymer-assisted solution-phase library synthesis was utilized to develop a series of pyrazinone inhibitors of the tissue factor/Factor VIIa complex. The crystal structure of a tri-peptide ketothiazole complexed with TF/VIIa was utilized in a docking experiment that identified a benzyl-substituted pyrazinone as a P(2) surrogate for the tri-peptide. A 5-step PASP library synthesis of these aryl-substituted pyrazinones was developed. The sequence allows for attachment of a variety of P(1) and P(3) moieties, which led to synthesis pyrazinone 23. Compound 23 exhibited 16 nM IC(50) against TF/VIIa with >6250x selectivity versus Factor Xa and thrombin. This potent and highly selective inhibitor of TF/VIIa was chosen for pre-clinical intravenous proof-of-concept studies to demonstrate the separation between antithrombotic efficacy and bleeding side effects in a primate model of thrombosis.  相似文献   

2.
We found the novel selective and orally available non-amidine TF/FVIIa complex inhibitor 21e, 4-({[(1S)-(aminocarbonyl)-3-methylbutyl]amino}carbonyl)-2'-({[4- (aminomethyl)phenyl]amino}carbonyl)-4'-(methylamino)biphenyl-2- carboxylic acid. The derivatives were synthesized by conversions of the isobutyl moiety and the introduction of alkylamino groups to 4'-position of the central phenyl ring of compounds 2a and 2b reported previously. Some compounds show increased in vitro anti-TF/FVIIa and PT prolongation activities. Among them, compound 21e reached and sustained micromolar plasma concentration levels of up to 2h after oral administration in mice. Moreover, compound 21e did not prolong the bleeding time even at the highest dose level in cynomolgus monkeys, while PT was prolonged 3.7-fold increases at this dose.  相似文献   

3.
A series of Nalpha-acyl-alpha-amino acid-(arylaminoethyl)amides were found to be potent and noncovalent cathepsin S inhibitors. Compound 20 possessed high cathepsin S affinity (Ki=3.3 nM) and showed excellent selectivity over cathepsin K, L, F, and V. Molecular modeling, design, synthesis, and in vitro activity are described.  相似文献   

4.
In order to obtain PDHc-E1 inhibitors with high selectivity and efficacy, four series (7, 12, 15, and 19) of 35 novel 4-aminopyrimidine derivatives were rationally designed and synthesized based on the binding site of ThDP in E. coli PDHc-E1. 12, 15, and 19 were confirmed to be potent inhibitors against E. coli PDHc-E1. Selected compounds 12g, 12i, 15f, and 19a showed negligible inhibition against porcine PDHc-E1. To understand their selectivity, the interaction of inhibitor and E. coli PDHc-E1 or porcine PDHc-E1 was studied by molecular docking. The newly introduced acylhydrazone and N-phenylbenzamide moieties could form stronger interaction by hydrogen bond at the active site of E. coli PDHc-E1 compared with that of porcine PDHc-E1. A part of title compounds as potent PDHc-E1 inhibitors also exhibited notable antibacterial activity. In particular, 12e, 12f, 12g, 12o, and 19a exhibited 72–92% inhibition against Xanthomonas oryzae pv. Oryzae and Ralstonia solanacearum at 100?μg/mL, which was better than thiodiazole-copper (34 and 29%, respectively) and bismerthiazol (56 and 55%, respectively). The results proved that we could obtain effective bactericidal compounds as highly selective PDHc inhibitors by rational molecular design utilizing the binding model of active site of E. coli PDHc-E1.  相似文献   

5.
We here report the design and synthesis of selective human lysosomal sialidase (NEU1) inhibitors. A series of amide-linked C9 modified DANA (2-deoxy-2,3-dehydro-N-acetylneuraminic acid) analogues were synthesized and their inhibitory activities against all four human sialidases (NEU1-NEU4) were determined. Structure-based approach was used to investigate the basis of selectivity of the compounds with experimentally observed activity. Results from the present study are found to be informative in a qualitative manner for the further design of isoform selective human sialidase inhibitors for therapeutic value.  相似文献   

6.
We report the discovery and characterization of a series of benzoisothiazolone inhibitors of PHOSPHO1, a newly identified soluble phosphatase implicated in skeletal mineralization and soft tissue ossification abnormalities. High-throughput screening (HTS) of a small molecule library led to the identification of benzoisothiazolones as potent and selective inhibitors of PHOSPHO1. Critical structural requirements for activity were determined, and the compounds were subsequently derivatized and measured for in vitro activity and ADME parameters including metabolic stability and permeability. On the basis of its overall profile the benzoisothiazolone analogue 2q was selected as MLPCN probe ML086.  相似文献   

7.
A series of novel sulfone substituted 4,5-diarylthiazoles have been synthesized and evaluated for their inhibition of the two isoforms of human cyclooxygenase (COX-1 and COX-2). This series displays exceptionally selective COX-2 inhibition.  相似文献   

8.
Two series of derivatives have been prepared and assayed as inhibitors of two physiologically relevant serine proteases, human thrombin and human trypsin. The first series includes alkyl-/ aralkyl-/aryl- and hetarylsulfonyl-aminoguanidines. It was thus observed that sulfanilyl-aminoguanidine possesses moderate but intrinsically selective thrombin inhibitory properties, with KI values around 90 and 1400 nM against thrombin and trypsin respectively. Further elaboration of this molecule afforded compounds that inhibited thrombin with KI values in the range 10-50 nM, whereas affinity for trypsin remained relatively low. Such compounds were obtained either by attaching benzyloxycarbonyl- or 4-toluenesulfonylureido-protected amino acids (such as D-Phe, L-Pro) or dipeptides (such as Phe-Pro, Gly His, beta-Ala-His or Pro-Gly) to the N-4 atom of the lead molecule, sulfanilyl-aminoguanidine, or by attaching substituted-pyridinium propylcarboxamido moieties to this lead. Thus, this study brings novel insights regarding a novel non-basic S1 anchoring moiety (i.e., SO2NHNHC(=NH)NH2), and new types of peptidomimetic scaffolds obtained by incorporating tosylureido-amino acids/pyridinium-substituted-GABA moieties in the hydrophobic binding site(s). Structure-activity correlations of the new serine protease inhibitors are also discussed based on a QSAR model described previously for a large series of structurally-related derivatives (Supuran et al. (1999) J. Med. Chem., in press).  相似文献   

9.
Using N,N-dialkylated benzamidines as the novel P4 motifs, we have designed and synthesized a class of 1-(2-naphthyl)-1H-pyrazole-5-carboxylamides as highly potent and selective fXa inhibitors with significantly improved hydrophilicity and in vitro anticoagulant activity. These benzamidine-P4 fXa inhibitors have displayed excellent oral bioavailability and long half-life.  相似文献   

10.
A series of heterocycle-containing oxindoles was synthesized and their HIV antiviral activities were assessed. Some of these analogs exhibited potent inhibitory activities against both wild-type virus and a number of drug-resistant mutant viruses. In addition, oxindole 9z also showed promising pharmacokinetics.  相似文献   

11.
We report the discovery of the pyrimido-diazepine scaffolds as novel adenine mimics. Structure-based design led to the discovery of analogs with potent inhibitory activity against receptor tyrosine kinases, such as KDR, Flt3 and c-Kit. Compound 14 exhibited low nanomolar KDR enzymatic and cellular potencies (IC(50)=9 and 52 nM, respectively).  相似文献   

12.
Multistep syntheses of substituted benzenes and benzoquinone inhibitors of tissue Factor VIIa are reported. The benzene analogues were designed such that their substitution pattern would occupy and interact with the S(1), S(2), and S(3) pockets of the tissue Factor VIIa (TF/VIIa) enzyme. The compounds exhibited modest potency on TF/VIIa with selectivity over Factor Xa and thrombin. The X-ray crystal structures of the targeted fluorobenzene 12a and benzoquinone 14 inhibitors bound to TF/VIIa were obtained and will be described.  相似文献   

13.
We report the synthesis of kinase targeted libraries based on the thienopyrazole scaffold. Several thienopyrazole analogs have been identified as submicromolar inhibitors of KDR.  相似文献   

14.
As our ongoing work on research of gelatinase inhibitors, an array of hydrazide-containing peptidomimetic derivatives bearing quinoxalinone as well as spiro-heterocyclic backbones were designed, synthesized, and assayed for their in vitro enzymatic inhibitory effects. The results demonstrated that both the quinoxalinone (series I and II) and 1,4-dithia-7-azaspiro[4,4]nonane-based hydrazide peptidomimetics (series III) displayed remarkably selectivity towards gelatinase A as compared to APN, with IC50 values in the micromole range. Structure–activity relationships were herein briefly discussed. Given evidences have validated that gelatinase inhibition may be contributable to the therapy of HIV-1 infection, all the target compounds were also submitted to the preliminary in vitro anti-HIV-1 evaluation. It resulted that gelatinase inhibition really has positive correlation with anti-HIV-1 activity, especially compounds 4m and 7h, which gave enhanced gelatinase inhibition in comparison with the positive control LY52, and also decent anti-HIV-1 potencies. The FlexX docking results provided a straightforward insight into the binding pattern between inhibitors and gelatinase, as well as the selective inhibition towards gelatinase over APN. Collectively, our research encouraged potent gelatinase inhibitors might be used in the development of anti-HIV-1 agents. And else, compounds 4m and 7h might be promising candidates to be considered for further chemical optimization.  相似文献   

15.
The synthesis and SAR studies of spiroquinazolinones as novel PDE7 inhibitors are discussed. The best compounds from the series displayed nanomolar inhibitory affinity and were selective versus other PDE isoenzymes.  相似文献   

16.
Three novel series of diarylpyrazole 10b-d and triarylpyrazole derivatives 11a-d &12a-d were synthesized through Vilsmier-Haack condition. The structures of prepared compounds were determined through IR, 1H NMR, 13C NMR, Mass spectral and elemental analysis. Docking of the synthesized compounds over COX-2 active site ensure their selectivity. Moreover, the target compounds were evaluated for both in vitro and in vivo inhibitory activity. All compounds were more selective for COX-2 isozyme than COX-1 isozyme and with excellent anti-inflammatory activity. Compounds 11b, 11d and 12b showed the highest anti-inflammatory activity (67.4%, 62.7%, 61.4% respectively), lower ulcerogenic liability (UI = 2.00, 2.75, 3.25 respectively) than indomethacin (UI = 14) and comparable to celecoxib (UI = 1.75) which were confirmed from the histopatholgical study.  相似文献   

17.
A solution-phase synthesis of an alpha-ketothiazole library of the general form D-Phe-L-AA-L-Arg-alpha-ketothiazole is described. The five-step synthesis is accomplished using a combination of polymeric reagents and polymer-assisted solution-phase purification protocols, including reactant-sequestering resins, reagent-sequestering resins, and tagged reagents. The multi-step synthesis affords the desired alpha-ketothiazole products in excellent purities and yields. A variety of L-amino acid inputs were used to probe the S2 pocket of the tissue factor (TF) VIIa enzyme to influence both potency and selectivity. An X-ray crystal structure of compound 10e bound to the TF/VIIa complex was obtained that explains the observed selectivity. The alpha-ketothiazoles were found to be potent, reversible-covalent inhibitors of tissue factor VIIa, with some analogues demonstrating selectivity versus thrombin.  相似文献   

18.
A series of beta-sulfonyl hydroxamate TACE inhibitors, bearing a butynylamino or a butynyloxy P1' group, was designed and synthesized. Of the compounds investigated, 22 has excellent potency against isolated TACE enzyme, shows good selectivity over MMP-2 and MMP-13, and oral activity in an in vivo mouse model of TNF-alpha production.  相似文献   

19.
Anthranilamides 4 and 5 were designed and synthesized as selective and orally bioavailable factor Xa inhibitors. Structural modifications aimed at lowering their lipophilicity were performed at the central phenyl ring and at the S4 binding biphenyl region by incorporating water solublizing substituents. The resulting compounds (e.g., 7, 8, 14, 30a, and 32b) are highly potent in vitro, and show improved activity in human plasma-based thrombin generation assay.  相似文献   

20.
A new type of 1-aryl-5-(4-methylsulfonylphenyl)imidazoles, possessing C-2 alkylthio (SMe or SEt) substituents, were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo anti-inflammatory activity. The compound, 1-(4-bromophenyl)-5-(4-methylsulfonylphenyl)-2-methylthioimidazole (11g), was the most potent and selective COX-2 inhibitor (COX-2 IC50=0.43 microM with no inhibition of COX-1 up to 25 microM) relative to the reference drug celecoxib (COX-2 IC50=0.21 microM with no inhibition of COX-1 up to 25 microM) and also showed very good anti-inflammatory activity compared to celecoxib in carrageenan-induced rat paw edema assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号