首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of the selective 5-HT1A receptor agonist R(+)-8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT) to bind with 5-HT receptor(s) on cultured, identified neurones in Lymnaea stagnalis was examined. The identified neurones studied were from the buccal ganglia and the serotonin-containing cerebral giant cells (CGCs). 5-HT and its agonists were applied from puffer pipettes, whilst 5-HT antagonists were applied in the bathing medium. At 10−3 M, the 5-HT1A agonist, always produced paroxysmal depolarizing shifts (PDS) while at a lower concentration (10−4 M), it always mimicked the effects of 10−3 M 5-HT. 8-OH-DPAT (10−4 M) and 5-HT 10−3 M produced dose-dependent increases in the responses they evoked. At 10−4 M, the 5-HT3 receptor agonist 1-(m-chlorophenyl)-biguanide hydrochloride (m-CPBG), failed to hyperpolarize most of the neurones hyperpolarized by 5-HT. At 10−4 M, the antagonists ketanserin (5-HT2), MDL 72222 (5-HT3), and pindobind-5-HT1A (5-HT1A) consistently abolished spike generation ii spontaneously active neurones. Both ketanserin and MDL 72222 failed to block the actions of 8-OH-DPAT and only partially blocked those of 5-HT, but pindobind-5-HT1A completely, but reversibly,blocked the 8-OH-DPAT effects while greatly reducing those of 5-HT. These results suggest that 5-HT1A receptor subtypes might be involved in the hyperpolarizing responses of the CGCs and their follower motor neurones in the buccal ganglia of Lymnaea stagnalis to 5-HT. The presence of 5-HT1A receptors on these neurones can be considered to correspond with those found in mammals because their pharmacological responses resemble those of mammalian 5-HT1A receptors.  相似文献   

2.
Abstract

To study the regulation of 5-HT1A receptors in the brainstem, the region most relevant to the serotonin syndrome and to serotonin-responsive human myoclonic disorders, we chronically treated rats with various 5-HT1A agonists and labeled 5-HT1A sites with [3H]8-OH-DPAT. Daily injection for 30 consecutive days of 10 mg/kg ip 8-OH-DPAT (pre- and post-synaptic 5-HT1A agonist) significantly decreased 8-OH-DPAT-evoked flat body posture, forelimb myoclonus, and hypothermia compared to chronic vehicle injection. There was no cross tolerance to 8-OH-DPAT in rats chronically injected with ipsapirone or buspirone (presynaptic 5-HT1A agonists). However, none of the 5HT1A agonists significantly altered Bmax of brainstem 5-HT1A binding sites. Chronic injection with other drugs such as 1-propranolol, (±) pindolol and spiperone (5-HT1A and 5-HT2 antagonists), methysergide (5-HT1 and 5-HT2 antagonist), and agonists and antagonists at various other 5-HT receptors also had no effect on binding parameters. These data demonstrate lack of cross-tolerance between pre- and post-synaptically acting 5-HT1A agonists and absence of down-regulation of presynaptic 5-HT1A sites at doses which induced tolerance of 5-HT1A-mediated behaviors of the serotonin syndrome. They suggest changes in the post-synaptic cell rather than the receptor recognition site as the mechanism of tolerance.  相似文献   

3.
Purpose: Why do anesthetics not activate excitatory ligand-gated ion channels such as 5-HT3 receptors in contrast to inhibitory ligand-gated ion channels? This study examines the actions of structural closely-related 5-HT derivatives and 5-HT constituent parts on 5-HT3A receptors with the aim of finding simpler if not minimal agonists and thus determining requirements for successful agonist action. Experimental approach: Responses to 5-HT derivatives of human 5-HT3A receptors stably expressed in HEK 293 cells have been examined with the patch-clamp technique in the outside-out configuration combined with a fast solution exchange system. Results: Phenol, pyrrole and alkyl amines, constituents of 5-HT, even at high concentrations, cannot activate 5-HT3A receptors but they can inhibit them. To date, tyramines are the smallest known agonists. However, an aromatic ring is not required for activation as acetylcholine is also an agonist of similar strength. Conclusion: Simultaneous interactions of adequate strength at two separate subsites within the 5-HT binding domain appear to be essential for successful agonist function. Anesthetics either fail to achieve this or the activation they produce is so weak that it is masked by a comparatively very strong inhibition.  相似文献   

4.
5.
A three-dimensional molecular model of the transmembrane domain of the 5-HT1A receptor (5-HT1AR) is presented in the context of a general strategy for modeling the macromolecular structure of a guanine nucleotide binding, regulatory protein coupled receptor (GPCR). The model of the 5-HT1AR rests on the definition of the putative residues of the ligand-binding site guided by criteria based on specific models proposed from structure-activity studies and on published results of modifications of GPCRs using methods of molecular biology. The resulting requirements for matching recognition sites in the agonist-binding pocket define the molecular details of the interaction between the agonist 5-HT and the human 5-HT1AR that includes: (1) the interaction between the protonated amine moiety and the conserved negative Asp-116, located in TMH 3; (2) the hydrogen bond between the hydroxyl group and Thr-199, located in TMH 5; and (3) the interaction complex between the aromatic ring portion of the ligand and the neutral form of His-192, located in TMH 5. Results from quantum mechanical calculations of the interaction between an agonist and the proposed recognition pocket of the 5-HT1AR model suggest a trigger of the receptor activation mechanism resulting from ligand binding. The antagonist-binding pocket of the human 5-HT1AR is inferred from the interaction sites of pindolol with the receptor model: (1) the ionic interaction between the protonated amine of the ligand and the side chain of the conserved Asp-116, located in TMH 3; and (2) the hydrogen bonds between the ether oxygen and the hydroxyl group of the ligand and Asn-385, located in TMH 7. Use of the model is proposed to facilitate the identification of the structural elements of agonists and antagonists that are key for their specific functions, in order to achieve the design of new compounds with predetermined pharmacological properties.  相似文献   

6.
5-HT7 receptor (5-HT7R) is a promising target for the treatment of depression and neuropathic pain. 5-HT7R antagonists exhibited antidepressant effects, while the agonists produced strong anti-hyperalgesic effects. In our efforts to discover selective 5-HT7R antagonists or agonists, N-biphenylylmethyl 2-methoxyphenylpiperazinylalkanamides 1 were designed, synthesized, and biologically evaluated against 5-HT7R. Among the synthesized compounds, N-2′-chlorobiphenylylmethyl 2-methoxyphenylpiperazinylpentanamide 18 showed the best binding affinity with a Ki value of 8.69 nM and it was verified as a novel antagonist according to functional assays. The compound 18 was very selective over 5-HT1DR, 5-HT2AR, 5-HT3R, 5-HT5AR and 5-HT6R and moderately selective over 5-HT1AR, 5-HT1BR and 5-HT2CR. The novel 5-HT7R antagonist 18 exhibited an antidepressant effect at a dose of 25 mg/kg in the forced swimming test in mice and showed a U-shaped dose–response curve which typically appears in 5-HT7R antagonists such as SB-269970 and lurasidone.  相似文献   

7.
Bacopa monniera is a well-known medhya-rasayana (memory enhancing and rejuvenating) plant in Indian traditional medical system of Ayurveda. The effect of a standardized extract of Bacopa monniera (BESEB CDRI-08) on serotonergic receptors and its influence on other neurotransmitters during hippocampal-dependent learning was evaluated in the present study. Wistar rat pups received a single dose of BESEB CDRI-08 during postnatal days 15–29 showed higher latency during hippocampal-dependent learning accompanied with enhanced 5HT3A receptor expression, serotonin and acetylcholine levels in hippocampus. Furthermore, 5HT3A receptor agonist 1-(m-chlorophenyl)-biguanide (mCPBG) impaired learning in the passive avoidance task followed by reduction of 5HT3A receptor expression, 5HT and ACh levels. Administration of BESEB CDRI-08 along with mCPBG attenuated mCPBG induced behavioral, molecular and neurochemical alterations. Our results suggest that BESEB CDRI-08 possibly acts on serotonergic system, which in turn influences the cholinergic system through 5-HT3 receptor to improve the hippocampal-dependent task.  相似文献   

8.
To study the early effects of neonatal 5,7-dihydroxytryptamine lesions on 5-hydroxytryptamine1A (5-HT1A) receptors, we measured regional [3H]8-OH-DPAT-labeled 5-HT1A sites in binding assays and compared them to our previous studies of [3H]paroxetine-labeled 5-HT transporter sites during the first month in the same rats. While there were significant time- and dose-dependent effects of 5,7-DHT on 5-HT transporter sites, there were no significant changes in 5-HT1A sites in cortex, hippocampus, diencephalon, brainstem, cerebellum, or spinal cord. 5,7-DHT lesions also did not alter the Ki of Gpp(NH)p at brainstem 5-HT1A sites or the Ki of 5-HT in cortex or brainstem in the presence or absence of GTPS or Gpp(NH)p. There were significant regional differences between the density of 5-HT1A sites and 5-HT transporter sites. The ontogeny of brainstem 5-HT1A sites was a pattern of increases until three weeks postnatal, and 5,7-DHT lesions did not alter the ontogeny of 5-HT1A sites. These data suggest differential plasticity of 5-HT1A and 5-HT transporter binding sites during the first month after neonatal 5,7-DHT lesions.  相似文献   

9.
Serotonin (5-hydroxytryptamine, 5-HT) plays a key role in modulating diverse physiological processes and behaviors in both protostomes and deuterostomes. These functions are mediated through the binding of serotonin to its receptors, which are recognized as potential insecticide targets. We investigated the sequence, pharmacology and tissue distribution of three 5-HT receptors (Piera5-HT1A, Piera5-HT1B, Piera5-HT7) from the small white butterfly Pieris rapae, an important pest of cultivated cabbages and other mustard family crops. Activation of Piera5-HT1A or Piera5-HT1B by 5-HT inhibited the production of cAMP in a dose-dependent manner. Stimulation of Piera5-HT7 with 5-HT increased cAMP level significantly. Surprisingly, with the exception of 5-methoxytryptamine, agonists including α-methylserotonin, 8-Hydroxy-DPAT and 5-carboxamidotryptamine activated these receptors poorly. The results are consistent with previous findings in Manduca sexta. All three receptors were blocked by methiothepin, but ketanserin and yohimbine were not effective. The selective mammalian 5-HT receptor antagonists SB 216641 and SB 269970 displayed potent inhibition effects on Piera5-HT1B and Piera5-HT7 respectively. The results we achieved here indicate that the pharmacological properties of Lepidoptera 5-HT receptors are quite different from those in other insects and vertebrates and may contribute to development of new selective pesticides. This study offers important information on three 5-HT receptors from P. rapae that will facilitate further analysis of the functions of 5-HT receptors in insects.  相似文献   

10.
Abstract

Serotonin (5-HT) is a potent bioactive substance known to function through a number of different receptor types and subtypes. In our attempt to develop new agents that would interact selectively at certain 5-HT receptors, especially the 5-HT1A subtype, 8-hydroxy-2-di-n-propylamino tetralin (8-OH-DPAT) served as a template for the design of novel agents sharing aspects of the pharmacophore of 8-OH-DPAT and 5-HT. 5-HT contains no center of asymmetry, and 8-OH-DPAT shows only very modest stereospecificity for 5-HT1A receptors. To develop agents having enhanced potency and selectivity for the 5-HT1A site, several ring systems offering enhanced conformational rigidity which approximate the oxygen to nitrogen interatomic distances of 8-OH-DPAT and (to a lesser extent) 5-HT were synthesized. Exemplary ring systems include the 8-alkoxy-hexahydroindeno[1,2-c]pyrrole, 5-alkoxy-hexahydro-1H-indeno-[2,1-c]pyridine, and 9-alkoxy-hexahydro-1H-benz[e]isoindole systems. These couformationally restricted molecules demonstrated moderate stereospecificity in their interaction with the 5-HT1A binding site, which was enhanced in compounds with larger nitrogen substituents. Appropriate choice of such derivatives led to highly potent compounds selective for 5-HT1A sites compared with their activity at other 5-HT and/or adrenergic receptors. The pharmacological profile of compounds which appear to act as agonists at 5-HT1A receptors in the central nervous system to lower blood pressure in animal models of hypertension is presented  相似文献   

11.
The 5-HT3 receptor is a member of the Cys-loop family of transmitter receptors. It can function as a homopentamer (5-HT3A-only subunits) or as a heteropentamer. The 5-HT3AB receptor is the best characterized heteropentamer. This receptor differs from a homopentamer in its kinetics, voltage dependence, and single-channel conductance, but its pharmacology is similar. To understand the contribution of the 5-HT3B subunit to the binding site, we created homology models of 5-HT3AB receptors and docked 5-HT and granisetron into AB, BA, and BB interfaces. To test whether ligands bind in any or all of these interfaces, we mutated amino acids that are important for agonist and antagonist binding in the 5-HT3A subunit to their corresponding residues in the 5-HT3B subunit and vice versa. Changes in [3H]granisetron binding affinity (Kd) and 5-HT EC50 were determined using receptors expressed in HEK-293 cells and Xenopus oocytes, respectively. For all A-to-B mutant receptors, except T181N, antagonist binding was altered or eliminated. Functional studies revealed that either the receptors were nonfunctional or the EC50 values were increased. In B-to-A mutant receptors there were no changes in Kd, although EC50 values and Hill slopes, except for N170T mutant receptors, were similar to those for 5-HT3A receptors. Thus, the experimental data do not support a contribution of the 5-HT3B subunit to the binding pocket, and we conclude that both 5-HT and granisetron bind to an AA binding site in the heteromeric 5-HT3AB receptor.  相似文献   

12.
1. The serotonin1A(5-HT1A) receptors are members of a superfamily of seven transmembrane domain receptors that couple to G-proteins. They appear to be involved in various behavioral and cognitive functions. Although specific 5-HT1Aagonists have been discovered more than a decade back, the development of selective 5-HT1Aantagonists has been achieved only recently.2. We have examined the modulation of the specific antagonist [3H]p-MPPF binding to 5-HT1Areceptors from bovine hippocampal membranes by monovalent and divalent metal ions. Our results show that the antagonist binding to 5-HT1Areceptors is inhibited by both monovalent and divalent cations in a concentration-dependent manner. This is accompanied by a concomitant reduction in binding affinity.3. Our results also show that the specific antagonist p-MPPF binds to all available receptors in the bovine hippocampal membrane irrespective of their state of G-protein coupling and other serotonergic ligands such as 5-HT and OH-DPAT effectively compete with the specific antagonist [3H]p-MPPF.4. These results are relevant to ongoing analyses of the overall modulation of ligand binding in G-protein-coupled seven transmembrane domain receptors.  相似文献   

13.
Pharmacological approaches and optical recordings have shown that Schwann cells of a myelinating phenotype are activated by 5-HT upon its interaction with the 5-HT2A receptor (5-HT2AR). In order to further characterize the expression and distribution of this receptor in Schwann cells, we examined rat sciatic nerve and cultured rat Schwann cells using probes specific to 5-HT2AR protein mRNA. We also examined the endogenous sources of 5-HT in rat sciatic nerve by employing both histochemical stains and an antibody that specifically recognizes 5-HT. Rat Schwann cells of a myelinating phenotype contained both 5-HT2AR protein and mRNA. In the healthy adult rat sciatic nerve, 5-HT2ARs were evenly distributed along the outermost portion of the Schwann cell plasma membrane and within the cytoplasm. The most prominent source of 5-HT was within granules of the endoneurial mast cells, closely juxtaposed to Schwann cells within myelinating sciatic nerves. These results support the hypothesis that the 5-HT receptors expressed by rat Schwann cells in vivo are activated by the release of 5-HT from neighboring mast cells.  相似文献   

14.
5-HT1AR agonist or partial agonists are established drug candidates for psychiatric and neurological disorders. We have reported the synthesis and evaluation of a series of high affinity 5-HT1AR partial agonist PET imaging agents with greater selectivity over α-1AR. The characteristic of these molecules are 3,5-dioxo-(2H,4H)-1,2,4-triazine skeleton tethered to an arylpiperazine unit through an alkyl side chain. The most potent 5-HT1AR agonistic properties were found to be associated with the molecules bearing C-4 alkyl group as the linker. Therefore development of 3,5-dioxo-(2H,4H)-1,2,4-triazine bearing arylpiperazine derivatives may provide high affinity selective 5-HT1AR ligands. Herein we describe the synthesis and evaluation of the binding properties of a series of arylpiperazine analogues of 3,5-dioxo-(2H,4H)-1,2,4-triazine.  相似文献   

15.
A series of arylalkanol and aralkyl piperazine derivatives have been synthesized and evaluated for 5-HT reuptake inhibitory abilities and binding affinities at the 5-HT1A/5-HT7 receptors. Antidepressant activities of the compounds in vivo were screened using the forced swimming test (FST). The results indicated that the compound 8j exhibited high affinities for the 5-HT1A/5-HT7 receptors (5-HT1A, ki?=?0.84?nM; 5-HT7, ki?=?12?nM) coupling with moderate 5-HT reuptake inhibitory activity (RUI, IC50?=?100?nM) and showed a marked antidepressant-like activity in the FST model.  相似文献   

16.
The underlying mechanisms of urocanic acid (UA) to induce immune suppression remain elusive until the recent finding that cis-UA acts via the serotonin, 5-hydroxytryptamine (5-HT) receptor subtype 5-HT2A. In the present study, the interactions of cis-UA to 5-HT2A receptor were explored and compared with those of 5-HT to the same receptor using computational docking. Similar binding modes were observed for cis-UA and 5-HT with 5-HT2A receptor and the former possessed relatively higher binding affinity, which may account for cis-UA being a serotonin receptor agonist. Moreover, the molecular basis for the distinct binding affinities between the trans- and cis-UA with 5-HT2A receptor was also provided.  相似文献   

17.
Abstract: The selective serotonin (5-HT) agonist 8-hydroxydipropylaminotetralin (8-OH-DPAT) has been extensively used to characterize the physiological, biochemical, and behavioral features of the 5-HT1A receptor. A further characterization of this receptor subtype was conducted with membrane preparations from rat cerebral cortex and hippocampus. The saturation binding isotherms of [3H]8- OH-DPAT (free ligand from 200 pM to 160 nM) revealed high-affinity 5-HT1A receptors (KH= 0.7–0.8 nM) and lowaffinity (KL= 22–36 nM) binding sites. The kinetics of [3H]8-OH-DPAT binding were examined at two ligand concentrations, i.e., 1 and 10 nM, and in each case revealed two dissociation rate constants supporting the existence of high- and low-affinity binding sites. When the high-affinity sites were labeled with a 1 nM concentration of [3H]8- OH-DPAT, the competition curves of agonist and antagonist drugs were best fit to a two-site model, indicating the presence of two different 5-HT1A binding sites or, alternatively, two affinity states, tentatively designated as 5-HT1AHIGH and 5-HT1ALOW. However, the low correlation between the affinities of various drugs for these sites indicates the existence of different and independent binding sites. To determine whether 5-HT1A sites are modulated by 5′-guanylylimidodiphosphate, inhibition experiments with 5-HT were performed in the presence or in the absence of 100 μM 5′-guanylylimidodiphosphate. The binding of 1 nM [3H]8-OH-DPAT to the 5-HT1AHIGH site was dramatically (80%) reduced by 5′-guanylylimidodiphosphate; in contrast, the low-affinity site, or 5-HT1ALOW, was seemingly insensitive to the guanine nucleotide. The findings suggest that the high-affinity 5-HT1AHIGH site corresponds to the classic 5-HT1A receptor, whereas the novel 5-HT1ALOW binding site, labeled by 1 nM [3H]8-OH-DPAT and having a micromolar affinity for 5-HT, may not belong to the G protein family of receptors. To further investigate the relationship of 5-HT1A sites and the 5-HT innervation, rats were treated with p-chlorophenylalanine or with the neurotoxin p-chloroamphetamine. The inhibition of 5-HT synthesis by p-chlorophenylalanine did not alter either of the two 5-HT1A sites, but deafferentation by p-chloroamphetamine caused a loss of the low-affinity [3H]8-OH- DPAT binding sites, indicating-that these novel binding sites may be located presynaptically on 5-HT fibers and/or nerve terminals.  相似文献   

18.
Understanding serotonergic (5-HT) signaling is critical for understanding human physiology, behavior, and neuropsychiatric disease. 5-HT mediates its actions via ionotropic and metabotropic 5-HT receptors. The 5-HT1A receptor is a metabotropic G protein-coupled receptor linked to the Gi/o signaling pathway and has been specifically implicated in the pathogenesis of depression and anxiety. To understand and precisely control 5-HT1A signaling, we created a light-activated G protein-coupled receptor that targets into 5-HT1A receptor domains and substitutes for endogenous 5-HT1A receptors. To induce 5-HT1A-like targeting, vertebrate rhodopsin was tagged with the C-terminal domain (CT) of 5-HT1A (Rh-CT5-HT1A). Rh-CT5-HT1A activates G protein-coupled inward rectifying K+ channels in response to light and causes membrane hyperpolarization in hippocampal neurons, similar to the agonist-induced responses of the 5-HT1A receptor. The intracellular distribution of Rh-CT5-HT1A resembles that of the 5-HT1A receptor; Rh-CT5-HT1A localizes to somatodendritic sites and is efficiently trafficked to distal dendritic processes. Additionally, neuronal expression of Rh-CT5-HT1A, but not Rh, decreases 5-HT1A agonist sensitivity, suggesting that Rh-CT5-HT1A and 5-HT1A receptors compete to interact with the same trafficking machinery. Finally, Rh-CT5-HT1A is able to rescue 5-HT1A signaling of 5-HT1A KO mice in cultured neurons and in slices of the dorsal raphe showing that Rh-CT5-HT1A is able to functionally compensate for native 5-HT1A. Thus, as an optogenetic tool, Rh-CT5-HT1A has the potential to directly correlate in vivo 5-HT1A signaling with 5-HT neuron activity and behavior in both normal animals and animal models of neuropsychiatric disease.  相似文献   

19.
The serotonin 5-HT7 G protein-coupled receptor (GPCR) is a proposed pharmacotherapeutic target for a variety of central and peripheral indications, albeit, there are no approved drugs selective for binding 5-HT7. We previously reported that a lead analog based on the 5-substituted-N,N-disubstituted-1,2,3,4-tetrahydronaphthalen-2-amine (5-substituted-2-aminotetralin, 5-SAT) scaffold binds with high affinity at the 5-HT7 GPCR, and can treat symptoms of autism in mouse models; subsequently, the lead was found to have high affinity at the 5-HT1A GPCR. Herein, we report the synthesis of novel 5-SAT analogs to develop a 3-dimensional quantitative structure—affinity relationship (3D-QSAR) at the human 5-HT7 receptor for comparison with similar studies at the highly homologous 5-HT1A receptor. We report 35 new 5-SAT ligands, some with very high affinity (Ki ≤ 1 nM) and stereoselectivity at 5-HT7 + or 5-HT1A receptors, several with modest selectivity (up to 12-fold) for binding at 5-HT7, and, several ligands with high selectivity (up to 40-fold) at the 5-HT1A receptor. 3D-QSAR results indicate that steric extensions at the C(5)-position improve selectivity for the 5-HT7 over 5-HT1A receptor, while steric and hydrophobic extensions at the chiral C(2)-amino position impart 5-HT1A selectivity. In silico receptor homology modeling studies, supplemented with molecular dynamics simulations and binding free energy calculations, were used to rationalize experimentally-determined receptor selectivity and stereoselective affinity results. The data from these studies indicate that the 5-SAT chemotype, previously shown to be safe and efficacious in rodent paradigms of neurodevelopmental and neuropsychiatric disorders, is amenable to structural modification to optimize affinity at serotonin 5-HT7 vs. 5-HT1A GPCRs, as may be required for successful clinical translation.  相似文献   

20.
A previous study observed bell-shaped concentration-response isotherms for activation of Gαi3 G-protein subunits by high efficacy 5-HT1A receptor agonists in a Chinese hamster ovary (CHO) cell line expressing high levels of these receptors. This suggested that a signaling switch took place in that cell line (from Gαi3 to activation of other G-proteins) but it was unclear if such effects are observed for 5-HT1A receptors in other cellular environments.Here, using an antibody capture-based [35S]GTPγS binding assay for Gαi3 activation, we investigated whether efficacious 5-HT1A receptor agonists (5-HT, F13714, befiradol, NLX-101), prototypical agonists ((+) and (−)8-OH-DPAT), and partial agonist, antagonists, inverse agonists (pindolol, WAY100635, spiperone) produced similar effects on 5 cell lines expressing different levels of human 5-HT1A receptors.In membranes from cell lines (HeLa, C6-glia and CHO-low) expressing moderate receptor levels (between 1 and 4 pmol/mg of protein), 5-HT, F13714, befiradol and NLX-101 elicited classical sigmoid concentration-response isotherms. In contrast, in cell lines (CHO-high, HEK-293F) expressing high receptor levels (>9 pmol/mg) these agonists elicited bell-shaped concentration-response isotherms that peaked at nanomolar-range concentrations and then returned to baseline or below. Spiperone elicited inverse agonist inhibitory sigmoid isotherms in all membrane preparations while WAY100635 was mostly ‘silent’ for Gαi3 activation. The other compounds elicited diverse responses in the different cell lines suggesting that other factors, in addition to receptor expression levels, could be influencing Gαi3 activation.These data indicate that Gαi3 G-protein activation by 5-HT1A receptor ligands is highly dependent on receptor expression levels and on cellular background. Moreover, the induction of bell-shape concentration-response isotherms by 5-HT and other high-efficacy agonists is consistent with a switch in signaling to other G-protein-mediated signaling cascades, possibly elicited by receptor conformational changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号