首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feeding sodium butyrate (0.25–1 mg/ml) to cultures of Salinispora tropica NPS21184 enhanced the production of salinosporamide B (NPI-0047) by 319% while inhibiting the production of salinosporamide A (NPI-0052) by 26%. Liquid chromatography mass spectrometry analysis of the crude extract from the strain NPS21184 fed with 0.5 mg/ml sodium [U-13C4]butyrate indicated that butyrate was incorporated as a contiguous four-carbon unit into NPI-0047 but not into NPI-0052. Nuclear magnetic resonance analysis of NPI-0047 and NPI-0052 purified from the sodium [U-13C4]butyrate-supplemented culture extract confirmed this incorporation pattern. The above finding is the first direct evidence to demonstrate that the biosynthesis of NPI-0047 is different from NPI-0052, and NPI-0047 is not a precursor of NPI-0052.  相似文献   

2.
In this paper, we described the development of a potassium-chloride-based-salt formulation containing low sodium concentrations (5.0 to 11 mM) to support the growth of Salinispora tropica strain NPS21184 and its production of salinosporamide A (NPI-0052). The sodium present in the media was essentially derived from the complex nitrogen sources Hy Soy, yeast extract, and peptone used in the media. We demonstrated that good growth rate and yield of S. tropica strain NPS21184 were detected in both agar and liquid media containing the potassium-chloride-based-salt formulation with sodium concentration as low as 5.0 mM, significantly less than the critical seawater-growth requirement concentration of 50 mM sodium for a marine microorganism. We also observed good production of NPI-0052 (176 to 243 mg/l) by S. tropica strain NPS21184 grown in production media containing the potassium chloride-based-salt formulation. The production of deschloro analog, salinosporamide B (NPI-0047), was significantly lower in the low-sodium-salt-formulation medium than in the high-sodium-salt-formulation media. We demonstrated that while S. tropica strain NPS21184 is a novel marine actinomycete that requires high salt content for growth, it does not require sodium-chloride-based seawater-type media for growth and production of NPI-0052.  相似文献   

3.
Proteasome inhibitors are emerging as a new class of cancer therapeutics, and bortezomib has shown promise in the treatment of multiple myeloma and mantle cell lymphoma. However, bortezomib has failed to have an effect in preclinical models of glioma. NPI-0052 is a new generation of proteasome inhibitors with increased potency and strong inhibition of all three catalytic activities of the 26S proteasome. In this article, we test the antitumor efficacy of NPI-0052 against glioma, as a single agent and in combination with temozolomide and radiation using five different glioma lines. The intrinsic radiation sensitivities differed for all the lines and correlated with their PTEN expression status. In vitro, NPI-0052 showed a dose-dependent toxicity, and its combination with temozolomide resulted in radiosensitization of only the cell lines with a mutated p53. The effect of NPI-0052 as a single agent on glioma xenografts in vivo was only modest in controlling tumor growth, and it failed to radiosensitize the glioma xenografts to fractionated radiation. We conclude that NPI-0052 is not a suitable drug for the treatment of malignant gliomas despite its efficacy in other cancer types.  相似文献   

4.
5.
Salinosporamide A (NPI-0052) is currently produced by a marine actinomycete, Salinispora tropica, via a saline fermentation process using a non-defined, commercially available synthetic sea salt, Instant Ocean. In order to control the consistency of the production of NPI-0052 and related analogs, two chemically defined salt formulations were developed to replace Instant Ocean. A chemically defined sodium-chloride-based salt formulation with similar sodium and chloride contents as in Instant Ocean was found to support higher production of NPI-0052 and a better metabolite production profile for downstream processing than Instant Ocean. A chemically defined sodium-sulfate-based salt formulation with low chloride concentration at 17 mM was found to support a similar NPI-0052 and metabolite production profile as Instant Ocean. The sodium-sulfate-based formulation is a robust formulation for large-scale production process due to its reduced corrosiveness in fermentation as compared with the saline fermentation utilizing Instant Ocean or the sodium-chloride-based salt formulation. The production of NPI-0052 in both chemically defined salt formulations was successfully scaled-up to a 42-l fermentor, indicating that these salt formulations can be used for large-scale manufacturing process.  相似文献   

6.
Marizomib (NPI-0052) is a naturally derived irreversible proteasome inhibitor that potently induces apoptosis via a caspase-8 and ROS-dependent mechanism in leukemia cells. We aim to understand the relationship between the irreversible inhibition of the proteasome and induction of cell death in leukemia cells by using analogs of marizomib that display reversible and irreversible properties. We highlight the importance of sustained inhibition of at least two proteasome activities as being key permissive events for the induction of the apoptotic process in leukemia cells. These data provide the basis for the development of new approaches to generate more effective anti-proteasome therapies.  相似文献   

7.
In our efforts to identify agents that would specifically inhibit ALDH3A1, we had previously studied extensively the effect of an N(1)-alkyl, an N(1)-methoxy, and several N(1)-hydroxy-substituted ester derivatives of chlorpropamide on the catalytic activities of ALDH3A1s derived from human normal stomach mucosa (nALDH3A1) and human tumor cells (tALDH3A1), and of two recombinant aldehyde dehydrogenases, viz. human rALDH1A1 and rALDH2. The N(1)-methoxy analogue of chlorpropamide, viz. 4-chloro-N-methoxy-N-[(propylamino)carbonyl]benzenesulfonamide (API-2), was found to be a relatively selective and potent inhibitor of tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A-catalyzed oxidation, but even more potently inhibited ALDH2-catalyzed oxidation, whereas an ester analogue, viz. (acetyloxy)[(4-chlorophenyl)sulfonyl]carbamic acid 1,1-dimethylethyl ester (NPI-2), selectively inhibited tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A1-, ALDH1A1- and ALDH2-catalyzed oxidations, and this inhibition was apparently irreversible. Three additional chlorpropamide analogues, viz. 4-chloro-N,O-bis(ethoxycarbonyl)-N-hydroxybenzenesulfonamide (NPI-4), N,O-bis(carbomethoxy)methanesulfohydroxamic acid (NPI-5), and 2-[(ethoxycarbonyl)oxy]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (NPI-6), were evaluated in the present investigation. Quantified were NAD-linked oxidation of benzaldehyde catalyzed by nALDH3A1 and tALDH3A1, and NAD-linked oxidation of acetaldehyde catalyzed by rALDH1A1 and rALDH2, all at 37 degrees C and pH 8.1, and in the presence and absence of inhibitor. NPI-4, NPI-5 and NPI-6 were not substrates for the oxidative reactions catalyzed by any of the ALDHs studied. Oxidative reactions catalyzed by the ALDH3A1s, rALDH1A1 and rALDH2 were each inhibited by NPI-4 and NPI-5. NPI-6 was a poor inhibitor of nALDH3A1- and tALDH3A1-catalyzed oxidations, but was a relatively potent inhibitor of rALDH1A1- and rALDH2-catalyzed oxidations. In all cases, inhibition of ALDH-catalyzed oxidation was directly related to the product of inhibitor concentration and preincubation (enzyme+inhibitor) time. As judged by the product values (microMxmin) required to effect 50% inhibition (IC(50)): (1) nALDH3A1 and tALDH3A1 were essentially equisensitive to inhibition by NPI-4 and NPI-5, and both enzymes were poorly inhibited by NPI-6; (2) rALDH1A1 was, relative to the ALDH3A1s, slightly more sensitive to inhibition by NPI-4 and NPI-5, and far more sensitive to inhibition by NPI-6; and (3) rALDH1A1 was, relative to rALDH2, essentially equisensitive to inhibition by NPI-5, whereas, it was slightly more sensitive to inhibition by NPI-4 and NPI-6.  相似文献   

8.
In our efforts to identify agents that would specifically inhibit ALDH3A1, we had previously studied extensively the effect of an N(1)-alkyl, an N(1)-methoxy, and several N(1)-hydroxy-substituted ester derivatives of chlorpropamide on the catalytic activities of ALDH3A1s derived from human normal stomach mucosa (nALDH3A1) and human tumor cells (tALDH3A1), and of two recombinant aldehyde dehydrogenases, viz. human rALDH1A1 and rALDH2. The N(1)-methoxy analogue of chlorpropamide, viz. 4-chloro-N-methoxy-N-[(propylamino)carbonyl]benzenesulfonamide (API-2), was found to be a relatively selective and potent inhibitor of tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A-catalyzed oxidation, but even more potently inhibited ALDH2-catalyzed oxidation, whereas an ester analogue, viz. (acetyloxy)[(4-chlorophenyl)sulfonyl]carbamic acid 1,1-dimethylethyl ester (NPI-2), selectively inhibited tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A1-, ALDH1A1- and ALDH2-catalyzed oxidations, and this inhibition was apparently irreversible. Three additional chlorpropamide analogues, viz. 4-chloro-N,O-bis(ethoxycarbonyl)-N-hydroxybenzenesulfonamide (NPI-4), N,O-bis(carbomethoxy)methanesulfohydroxamic acid (NPI-5), and 2-[(ethoxycarbonyl)oxy]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (NPI-6), were evaluated in the present investigation. Quantified were NAD-linked oxidation of benzaldehyde catalyzed by nALDH3A1 and tALDH3A1, and NAD-linked oxidation of acetaldehyde catalyzed by rALDH1A1 and rALDH2, all at 37 degrees C and pH 8.1, and in the presence and absence of inhibitor. NPI-4, NPI-5 and NPI-6 were not substrates for the oxidative reactions catalyzed by any of the ALDHs studied. Oxidative reactions catalyzed by the ALDH3A1s, rALDH1A1 and rALDH2 were each inhibited by NPI-4 and NPI-5. NPI-6 was a poor inhibitor of nALDH3A1- and tALDH3A1-catalyzed oxidations, but was a relatively potent inhibitor of rALDH1A1- and rALDH2-catalyzed oxidations. In all cases, inhibition of ALDH-catalyzed oxidation was directly related to the product of inhibitor concentration and preincubation (enzyme+inhibitor) time. As judged by the product values (microM x min) required to effect 50% inhibition (IC(50)): (1) nALDH3A1 and tALDH3A1 were essentially equisensitive to inhibition by NPI-4 and NPI-5, and both enzymes were poorly inhibited by NPI-6; (2) rALDH1A1 was, relative to the ALDH3A1s, slightly more sensitive to inhibition by NPI-4 and NPI-5, and far more sensitive to inhibition by NPI-6; and (3) rALDH1A1 was, relative to rALDH2, essentially equisensitive to inhibition by NPI-5, whereas, it was slightly more sensitive to inhibition by NPI-4 and NPI-6.  相似文献   

9.
The financial investment grows exponentially as a new chemical entity advances through each stage of discovery and development. The opportunity exists for the modern toxicologist to significantly impact expenditures by the early prediction of potential toxicity/side effect barriers to development by aggressive evaluation of development-limiting liabilities early in drug discovery. Improved efficiency in pharmaceutical research and development lies both in leveraging "best in class" technology and integration with pharmacologic activities during hit-to-lead and early lead optimization stages. To meet this challenge, a discovery assay by stage (DABS) paradigm should be adopted. The DABS clearly delineates to discovery project teams the timing and type of assay required for advancement of compounds to each subsequent level of discovery and development. An integrative core pathology function unifying Drug Safety Evaluation, Molecular Technologies and Clinical Research groups that effectively spans all phases of drug discovery and development is encouraged to drive the DABS. The ultimate goal of such improved efficiency being the accurate prediction of toxicity and side effects that would occur in development before commitment of the large prerequisite resource. Good justification of this approach is that every reduction of development attrition by 10% results in an estimated increase in net present value by $100 million.  相似文献   

10.
In our efforts to identify agents that would specifically inhibit ALDH3A1, we had previously studied extensively the effect of an N1-alkyl, an N1-methoxy, and several N1-hydroxy-substituted ester derivatives of chlorpropamide on the catalytic activities of ALDH3A1s derived from human normal stomach mucosa (nALDH3A1) and human tumor cells (tALDH3A1), and of two recombinant aldehyde dehydrogenases, viz. human rALDH1A1 and rALDH2. The N1-methoxy analogue of chlorpropamide, viz. 4-chloro-N-methoxy-N-[(propylamino)carbonyl]benzenesulfonamide (API-2), was found to be a relatively selective and potent inhibitor of tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A-catalyzed oxidation, but even more potently inhibited ALDH2-catalyzed oxidation, whereas an ester analogue, viz. (acetyloxy)[(4-chlorophenyl)sulfonyl]carbamic acid 1,1-dimethylethyl ester (NPI-2), selectively inhibited tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A1-, ALDH1A1- and ALDH2-catalyzed oxidations, and this inhibition was apparently irreversible. Three additional chlorpropamide analogues, viz. 4-chloro-N,O-bis(ethoxycarbonyl)-N-hydroxybenzenesulfonamide (NPI-4), N,O-bis(carbomethoxy)methanesulfohydroxamic acid (NPI-5), and 2-[(ethoxycarbonyl)oxy]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (NPI-6), were evaluated in the present investigation. Quantified were NAD-linked oxidation of benzaldehyde catalyzed by nALDH3A1 and tALDH3A1, and NAD-linked oxidation of acetaldehyde catalyzed by rALDH1A1 and rALDH2, all at 37°C and pH 8.1, and in the presence and absence of inhibitor. NPI-4, NPI-5 and NPI-6 were not substrates for the oxidative reactions catalyzed by any of the ALDHs studied. Oxidative reactions catalyzed by the ALDH3A1s, rALDH1A1 and rALDH2 were each inhibited by NPI-4 and NPI-5. NPI-6 was a poor inhibitor of nALDH3A1- and tALDH3A1-catalyzed oxidations, but was a relatively potent inhibitor of rALDH1A1- and rALDH2-catalyzed oxidations. In all cases, inhibition of ALDH-catalyzed oxidation was directly related to the product of inhibitor concentration and preincubation (enzyme+inhibitor) time. As judged by the product values (μM×min) required to effect 50% inhibition (IC50): (1) nALDH3A1 and tALDH3A1 were essentially equisensitive to inhibition by NPI-4 and NPI-5, and both enzymes were poorly inhibited by NPI-6; (2) rALDH1A1 was, relative to the ALDH3A1s, slightly more sensitive to inhibition by NPI-4 and NPI-5, and far more sensitive to inhibition by NPI-6; and (3) rALDH1A1 was, relative to rALDH2, essentially equisensitive to inhibition by NPI-5, whereas, it was slightly more sensitive to inhibition by NPI-4 and NPI-6.  相似文献   

11.
Drug discovery in academia   总被引:1,自引:0,他引:1  
Drug discovery and development is generally done in the commercial rather than the academic realm. Drug discovery involves target discovery and validation, lead identification by high-throughput screening, and lead optimization by medicinal chemistry. Follow-up preclinical evaluation includes analysis in animal models of compound efficacy and pharmacology (ADME: administration, distribution, metabolism, elimination) and studies of toxicology, specificity, and drug interactions. Notwithstanding the high-cost, labor-intensive, and non-hypothesis-driven aspects of drug discovery, the academic setting has a unique and expanding niche in this important area of investigation. For example, academic drug discovery can focus on targets of limited commercial value, such as third-world and rare diseases, and on the development of research reagents such as high-affinity inhibitors for pharmacological "gene knockout" in animal models ("chemical genetics"). This review describes the practical aspects of the preclinical drug discovery process for academic investigators. The discovery of small molecule inhibitors and activators of the cystic fibrosis transmembrane conductance regulator is presented as an example of an academic drug discovery program that has yielded new compounds for physiology research and clinical development. high-throughput screening; drug development; pharmacology; fluorescence; cystic fibrosis transmembrane conductance regulator  相似文献   

12.
The prevalence of resistance to known antimalarial drugs has resulted in the expansion of antimalarial drug discovery efforts. Academic and nonprofit institutions are partnering with the pharmaceutical industry to develop new antimalarial drugs. Several new antimalarial agents are undergoing clinical trials, mainly those resurrected from previous antimalarial drug discovery programs. Novel antimalarials are being advanced through the drug development process, of course, with the anticipated high failure rate typical of drug discovery. Many of these are summarized in this review. Mechanisms for funding antimalarial drug discovery and genomic information to aid drug target selection have never been better. It remains to be seen whether ongoing efforts will be sufficient for reducing malaria burden in the developing world.  相似文献   

13.
14.
The search for new pharmacologically active compounds in drug discovery programmes often neglects biopharmaceutical properties as drug absorption. As a result, poor biopharmaceutical characteristics constitute a major reason for the low success rate for candidates in clinical development. Since the cost of drug development is many times larger than the cost of drug discovery, predictive methodologies aiding the selection of bioavailable drug candidates are of profound significance. This paper has been focussed on recent developments and applications of chromatographic systems, particularly those systems based on amphiphilic structures, in the frame of alternative approaches for estimating the transport properties of new drugs. The aim of this review is to take a critical look at the separations methods proposed for describing and predicting drug passive permeability across gastrointestinal tract and the skin.  相似文献   

15.
药物靶标的发现和验证是新药研发的关键环节,对新药创制具有源头创新意义。天然产物是新药创制的重要来源,识别其作用靶点不仅为临床预防治疗提供可能新策略,也为进一步阐释中草药及其复方的作用特点及分子机制提供参考依据。随着生命科学和信息学的发展,药物靶点的识别及确证方法不断涌现,生物信息学、网络药理学、蛋白质组学、亲和色谱、药物亲和稳定性、芯片技术、基因敲除技术、RNA干扰等技术的广泛应用,越来越多的天然活性成分的靶点得以识别和验证。因此,本文对近五年来天然活性成分作用靶点识别及确证方法做一简要综述,以供参考。  相似文献   

16.
Efficacy and tolerability are the key criteria for a successful medication in the clinic. Therefore, a new test method to obtain selective and active lead molecules has been developed. Recently, this novel screening strategy enabled a breakthrough in drug discovery in the field of herpes viruses. Here the authors report that this assay is a generally applicable screening test, which allows not only for identifying tolerable and potent antimicrobial agents in compound libraries, but also covers all potential in vitro targets of both the pathogen and the host simultaneously. The test system mimics the smallest unit of a natural infection. Host cells are incubated in the presence of the test sample and are infected with microbes, such as viruses, bacteria, or fungi. Analogous to (lethal challenge) animal models, cell survival is determined. This assay maximizes the chances of success of anti-infective drug discovery, is sensitive, robust, time- and cost-efficient, and especially effective in optimizing screening hits to lead structures and development candidates. In addition to the minimal inhibitory concentration or dose, this test system simultaneously provides the selectivity index, a measure of tolerability in vitro. The authors propose the activity selectivity assay format as a new standard in anti-infective drug discovery and clinical development.  相似文献   

17.
Protein–protein interactions (PPIs) have important roles in various cellular processes, but are commonly described as ‘undruggable’ therapeutic targets due to their large, flat, featureless interfaces. Fragment-based drug discovery (FBDD) has achieved great success in modulating PPIs, with more than ten compounds in clinical trials. Here, we highlight the progress of FBDD in modulating PPIs for therapeutic development. Targeting hot spots that have essential roles in both fragment binding and PPIs provides a shortcut for the development of PPI modulators via FBDD. We highlight successful cases of cracking the ‘undruggable’ problems of PPIs using fragment-based approaches. We also introduce new technologies and future trends. Thus, we hope that this review will provide useful guidance for drug discovery targeting PPIs.  相似文献   

18.
Drugs, hERG and sudden death   总被引:3,自引:0,他引:3  
Brown AM 《Cell calcium》2004,35(6):543-547
Early recognition of potential QT/TdP liability is now an essential component of the drug discovery/drug development program. The hERG assay is an indispensable step and a high-quality assay must accompany any investigational new drug (IND) application. While it is the gold standard at present, the hERG assay is too labor-intensive and too low throughput to be used as a screen early in the discovery/development process. A variety of indirect high throughput screens have been used.  相似文献   

19.
20.
Cancer drug development is leading the way in exploiting molecular biological and genetic information to develop "personalized" medicine. The new paradigm is to develop agents that target the precise molecular pathology driving the progression of individual cancers. Drug developers have benefited from decades of academic cancer research and from investment in genomics, genetics and automation; their success is exemplified by high-profile drugs such as Herceptin (trastuzumab), Gleevec (imatinib), Tarceva (erlotinib) and Avastin (bevacizumab). However, only 5% of cancer drugs entering clinical trials reach marketing approval. Cancer remains a high unmet medical need, and many potential cancer targets remain undrugged. In this review we assess the status of the discovery and development of small-molecule cancer therapeutics. We show how chemical biology approaches offer techniques for interconnecting elements of the traditional linear progression from gene to drug, thereby providing a basis for increasing speed and success in cancer drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号