共查询到20条相似文献,搜索用时 0 毫秒
1.
RNA interference induced by siRNAs modified with 4'-thioribonucleosides in cultured mammalian cells 总被引:2,自引:0,他引:2
Short interfering RNAs (siRNAs) variously modified with 4'-thioribonucleosides against the Photinus luciferase gene were tested for their induction of the RNA interference (RNAi) activity in cultured NIH/3T3 cells. Results indicated that modifications at the sense-strand were well tolerated for RNAi activity except for full modification with 4'-thioribonucleosides. However, the activity of siRNAs modified at the antisense-strand was dependent on the position and the number of modifications with 4'-thioribonucleosides. Since modifications of siRNAs with 4'-thioribonucleosides were well tolerated in RNAi activity compared with that of 2'-O-methyl nucleosides, 4'-thioribonucleosides might be potentially useful in the development of novel and effective chemically modified siRNAs. 相似文献
2.
RNA interference in mammalian cells by chemically-modified RNA 总被引:24,自引:0,他引:24
RNA interference (RNAi) is proving to be a robust and versatile technique for controlling gene expression in mammalian cells. To fully realize its potential in vivo, however, it may be necessary to introduce chemical modifications to optimize potency, stability, and pharmacokinetic properties. Here, we test the effects of chemical modifications on RNA stability and inhibition of gene expression. We find that RNA duplexes containing either phosphodiester or varying numbers of phosphorothioate linkages are remarkably stable during prolonged incubations in serum. Treatment of cells with RNA duplexes containing phosphorothioate linkages leads to selective inhibition of gene expression. RNAi also tolerates the introduction of 2'-deoxy-2'-fluorouridine or locked nucleic acid (LNA) nucleotides. Introduction of LNA nucleotides also substantially increases the thermal stability of modified RNA duplexes without compromising the efficiency of RNAi. These results suggest that inhibition of gene expression by RNAi is compatible with a broad spectrum of chemical modifications to the duplex, affording a wide range of useful options for probing the mechanism of RNAi and for improving RNA interference in vivo. 相似文献
3.
The osmotic lysis of pinosomes procedure has been adapted to deliver small interfering RNAs (siRNAs) into cells in culture. Under hypertonic conditions, siRNAs were internalized into pinosomes. A subsequent osmotic shock in hypotonic buffer disrupted the pinosomes and caused the release of siRNAs into the cell cytoplasm. Both steps could be demonstrated directly using fluorescein-labeled siRNAs and confocal laser-scanning microscopy. Uptake by the pinocytosis/osmotic lysis procedure is concentration- and time-dependent. At an siRNA concentration of 0.4 microM, treatment for 40 or 80 min results in silencing efficiencies of 60% and 90%, respectively, after 44 h. A double treatment resulted in approximately equal silencing efficiencies but in reduced viability. This method has been used on a variety of human and murine cell lines including HEK293, HeLa SS6, and SW3T3 cells. Targets such as lamin A/C and Eg5 were effectively silenced. Novel silencing data are provided for Ki67, one of the few reliable prognostic markers for tumor patients. The new procedure avoids certain technical problems encountered with commercial transfection reagents while yielding silencing efficiencies that are comparable to those obtained with liposome-mediated siRNA transfection. 相似文献
4.
5.
Light-dependent RNA interference with nucleobase-caged siRNAs 总被引:1,自引:0,他引:1
6.
7.
Jeane M. Govan Douglas D. Young Hrvoje Lusic Qingyang Liu Mark O. Lively Alexander Deiters 《Nucleic acids research》2013,41(22):10518-10528
Short interfering RNAs (siRNAs) and microRNAs (miRNAs) have been widely used in mammalian tissue culture and model organisms to selectively silence genes of interest. One limitation of this technology is the lack of precise external control over the gene-silencing event. The use of photocleavable protecting groups installed on nucleobases is a promising strategy to circumvent this limitation, providing high spatial and temporal control over siRNA or miRNA activation. Here, we have designed, synthesized and site-specifically incorporated new photocaged guanosine and uridine RNA phosphoramidites into short RNA duplexes. We demonstrated the applicability of these photocaged siRNAs in the light-regulation of the expression of an exogenous green fluorescent protein reporter gene and an endogenous target gene, the mitosis motor protein, Eg5. Two different approaches were investigated with the caged RNA molecules: the light-regulation of catalytic RNA cleavage by RISC and the light-regulation of seed region recognition. The ability to regulate both functions with light enables the application of this optochemical methodology to a wide range of small regulatory RNA molecules. 相似文献
8.
RNA interference by mixtures of siRNAs prepared using custom oligonucleotide arrays 总被引:1,自引:0,他引:1
下载免费PDF全文

RNA interference (RNAi) is a process in which double-strand RNA (dsRNA) directs the specific degradation of a corresponding target mRNA. The mediators of this process are small dsRNAs, of ~21 bp in length, called small interfering RNAs (siRNAs). siRNAs, which can be prepared in vitro in a number of ways and then transfected into cells, can direct the degradation of corresponding mRNAs inside these cells. Hence, siRNAs represent a powerful tool for studying gene functions, as well as having the potential of being highly specific pharmaceutical agents. Some limitations in using this technology exist because the preparation of siRNA in vitro and screening for siRNAs efficient in RNAi can be expensive and time-consuming processes. Here, we demonstrate that custom oligonucleotide arrays can be efficiently used for the preparation of defined mixtures of siRNAs for the silencing of exogenous and endogenous genes. The method is fast, inexpensive, does not require siRNA optimization and has a number of advantages over methods utilizing enzymatic preparation of siRNAs by digestion of longer dsRNAs, as well as methods based on chemical synthesis of individual siRNAs or their DNA templates. 相似文献
9.
Nodamura virus (NoV) is a small RNA virus that is infectious for insect and mammalian hosts. We have developed a highly sensitive assay of RNA interference (RNAi) in mammalian cells that shows that the NoV B2 protein functions as an inhibitor of RNAi triggered by either short hairpin RNAs or small interfering RNAs. In the cell, NoV B2 binds to pre-Dicer substrate RNA and RNA-induced silencing complex (RISC)-processed RNAs and inhibits the Dicer cleavage reaction and, potentially, one or more post-Dicer activities. In vitro, NoV B2 inhibits Dicer-mediated RNA cleavage in the absence of any other host factors and specifically binds double-stranded RNAs corresponding in structure to Dicer substrates and products. Its abilities to bind to Dicer precursor and post-Dicer RISC-processed RNAs suggest a mechanism of inhibition that is unique among known viral inhibitors of RNAi. 相似文献
10.
The Piwi-interacting RNA interference pathway plays an important role in suppressing transposable elements in the Drosophila germline. Now, deep sequencing of short RNAs from somatic tissue and cell culture has identified a novel class of endogenous siRNAs that may have a similar role in the soma. 相似文献
11.
RNAi and Dicer-dependent siRNAs are required for constitutive heterochromatin formation in fission yeast and for establishing DNA methylation at repetitive elements in plants. In the mammalian male germ line, DICER1-independent piRNAs are required for the full establishment of DNA methylation of dispersed repetitive transposable elements. However, in other mammalian cell types, no clear picture has yet emerged of the role of RNAi in establishing heterochromatin and DNA methylation. In mouse embryonic stem cells, which remain viable on loss of DICER1 and ablation of RNAi, while no firm evidence has been obtained for defective heterochromatin formation, there are indications of defective DNA methylation. The latter has been attributed to an indirect effect of reduced DNA methyltransferase (DNMT) activity due to a loss of miRNA-mediated gene regulation. However, it is unclear whether the reductions in DNMT activity were sufficient to affect DNA methylation. We consider it equally likely that the defects in DNA methylation that can be observed in DICER1-deficient embryonic stem cells are the result of nonspecific effects related to RNAi loss aside from reduced DNMT activity. 相似文献
12.
Dash PK Tiwari M Santhosh SR Parida M Lakshmana Rao PV 《Biochemical and biophysical research communications》2008,376(4):718-722
Chikungunya has emerged as one of the most important arboviral infection of public health significance. Recently several parts of Indian Ocean islands and India witnessed explosive, unprecedented epidemic. So far, there is no effective antiviral or licensed vaccine available against Chikungunya infection. RNA interference mediated inhibition of viral replication has emerged as a promising antiviral strategy. In this study, we examined the effectiveness of small interfering RNAs (siRNAs) against the inhibition of Chikungunya virus replication in Vero cells. Two siRNAs against the conserved regions of nsP3 and E1 genes of Chikungunya virus were designed. The siRNA activity was assessed by detecting both the infectious virus and its genome. The results indicated a reduction of virus titer up to 99.6% in siRNA transfected cells compared to control. The viral inhibition was most significant at 24 h (99%), followed by 48 h (65%) post infection. These results were also supported by the quantitative RT-PCR assay revealing similar reduction in Chikungunya viral genomic RNA. The siRNAs used had no effect on the expression of house keeping gene indicating non-interference in cellular mechanism. The specific and marked reduction in viral replication against rapidly replicating Chikungunya virus achieved in this study offers a potential new therapeutic approach. This is the first report demonstrating the effectiveness of siRNA against in vitro replication of Chikungunya virus. 相似文献
13.
Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency 总被引:9,自引:0,他引:9
Patzel V Rutz S Dietrich I Köberle C Scheffold A Kaufmann SH 《Nature biotechnology》2005,23(11):1440-1444
In RNA interference (RNAi), guide RNAs direct RNA-induced silencing complexes (RISC) to their mRNA targets, thus enabling the cleavage that leads to gene silencing. We describe a strong inverse correlation between the degree of guide-RNA secondary structure formation and gene silencing by small interfering (si)RNA. Unstructured guide strands mediate the strongest silencing whereas structures with base-paired ends are inactive. Thus, the availability of terminal nucleotides within guide structures determines the strength of silencing. A to G and C to U base exchanges, which involve wobble base-pairing with the target but preserve complementarity, turned inactive into active guide structures, thereby expanding the space of functional siRNAs. Previously observed base degenerations among mature micro (mi)RNAs together with the data presented here suggest a crucial role of the guide-RNA structures in miRNA action. The analysis of the effect of the secondary structures of guide-RNA sequences on RNAi efficiency provides a basis for better understanding RNA silencing pathways and improving the design of siRNAs. 相似文献
14.
15.
16.
17.
Chan R Gilbert M Thompson KM Marsh HN Epstein DM Pendergrast PS 《Nucleic acids research》2006,34(5):e36
The specific down-regulation of gene expression in cells is a powerful method for elucidating a gene's function. A common method for suppressing gene expression is the elimination of mRNA by RNAi or antisense. Alternatively, oligonucleotide-derived aptamers have been used as protein-directed agents for the specific knock-down of both intracellular and extracellular protein activity. Protein-directed methods offer the advantage of more closely mimicking small molecule therapeutics' mechanism of activity. Furthermore, protein-directed methods may synergize with RNA-directed methods since the two methods attack gene expression at different levels. Here we have knocked down a well-characterized intracellular protein's activity, NFkappaB, by expressing either aptamers or small interfering RNAs (siRNAs). Both methods can diminish NFkappaB's activity to similar levels (from 29 to 64%). Interestingly, expression of both aptamers and siRNAs simultaneously, suppressed NFkappaB activity better than either method alone (up to 90%). These results demonstrate that the expression of intracellular aptamers is a viable alternative to siRNA knock-down. Furthermore, for the first time, we show that the use of aptamers and siRNA together can be the most effective way to achieve maximal knock-down of protein activity. 相似文献
18.
Xu Y Linde A Larsson O Thormeyer D Elmen J Wahlestedt C Liang Z 《Biochemical and biophysical research communications》2004,316(3):680-687
The concept of small interfering RNA (siRNA) has been extended to include not only short double-stranded RNA of 19-25bp, but also single-stranded antisense RNA of the same length, since such single-stranded antisense siRNAs were recently found to be able to inhibit gene expression as well. We made comprehensive comparison of double- and single-stranded siRNA functions in RNA interference (RNAi), targeting multiple sites and different mRNAs, measuring RNAi effects at different time-points and in different cell lines, and examining response curves. Duplex siRNAs were found to be more potent than single-stranded antisense siRNAs. This was verified by the observation that single-stranded antisense siRNAs, which were inefficient in some cases when used alone, could be rescued from inefficiency by sequentially transfecting with the sense siRNAs. This result suggests that the structural character of siRNA molecules might be a more important determinant of siRNA efficiency than the cellular persistence of them. 相似文献
19.
Inhibition of synapse assembly in mammalian muscle in vivo by RNA interference 总被引:1,自引:0,他引:1
下载免费PDF全文

The formation of the vertebrate neuromuscular junction (NMJ) requires the receptor tyrosine kinase MuSK and the adaptor molecule rapsyn. Here, we report that the phenotypes of mice deficient in these two molecules can be reproduced by RNA interference (RNAi) in rat muscle in vivo. Specifically, double-stranded RNA (dsRNA) targeting MuSK and rapsyn inhibited the formation of the NMJ in rat muscle fibres in vivo, while dsRNA targeting nonessential proteins did not have any effect. Moreover, plasmids that trigger RNAi to MuSK induced the disassembly of existing NMJs. These results thus demonstrate for the first time the functionality of dsRNA in silencing endogenous genes in adult mammalian muscle in vivo. Moreover, they show that MuSK is also required for the maintenance of the NMJ, offering a mechanistic explanation for the myasthenia gravis caused by auto-antibodies to MuSK. 相似文献
20.
Fourteen methylated nucleosides (N-2-dimethylGuo, N-2-methylGuo, N-1-methylGuo, N-5-methylUrd, N-3-methylUrd, N-1-methylAdo, N-3-methylCyd, N-5-methylCyd, N-1-methyllno, 2′-0methyl-Cyd, 2′-0-methylUrd, 2′-0-methylGuo, 2′-0-methyllno, and thymidine) and one methylated base (m7Gua) have been identified as normal excretion products of cultured hamster embryo cells. The methylated nucleosides are excreted in the culture media subsequent to RNA turnover. The excretion pattern of the base-methylated nucleosides was determined by continuous labeling of serum-stimulated quiescent hamster embryo cells with [3H-CH3]methionine and measurement of radioactivity in the excreted nucleosides between 23 and 811/2 hours after the label was added. These nucleosides accumulate exponentially until a maximum level is reached after 60 hours. These maximum levels were maintained for at least an additional 20 hours. 相似文献