首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

In this paper, a high-resolution refractive index sensor is proposed based on a novel metal–insulator–metal plasmonic topology. The structure is based on a Si nano-ring located inside a circular cavity. It acts as an optical notch filter with a quality factor equal to 269. The proposed filter topology is numerically simulated using the finite difference time domain method. It is shown that the proposed filter can also act as a refractive index sensor with a sensitivity of 636 nm/RIU and a fairly high figure of merit (FoM) equal to 211.3 RIU−1. It is shown that the sensor can easily detect a refractive index change of ± 0.001 for dielectrics whose refractive index is between 1 and 1.2. For the refractive index range of 1.33 to 1.52, the maximum FoM of the sensor is 191 RIU−1. The simplicity of the design and its high resolution are the two main features of the proposed sensor which make it a good candidate for biomedical applications.

  相似文献   

2.
Du  Bobo  Yang  Yuan  Zhang  Yang  Yang  Dexing 《Plasmonics (Norwell, Mass.)》2019,14(2):457-463

In this article, a surface plasmon resonance (SPR) biosensor based on D-typed optical fiber coated by Al2O3/Ag/Al2O3 film is investigated numerically. Resonance in near infrared with an optimized architecture is achieved. Refractive index sensitivity of 6558 nm/RIU (refractive index unit) and detection limit of 1.5 × 10−6 RIU, corresponding to 0.4357 nm/μM and detection limit of 23 nM in BSA (bovine serum albumin) concentration sensing, are obtained. The analysis of the performance of the sensor in gaseous sensing indicates that this proposed SPR sensor is much suitable for label-free biosensing in aqueous media.

  相似文献   

3.
A surface plasmon resonance (SPR) sensor based on D-shaped photonic crystal fiber (PCF) coated with indium tin oxide (ITO) film is proposed and numerically investigated. Thanks to the adjustable complex refractive index of ITO, the sensor can be operated in the near-infrared (NIR) region. The wavelength sensitivity, amplitude sensitivity, and phase sensitivity are investigated with different fiber structure parameters. Simulation results show that ~6000 nm/refractive index unit (RIU), ~148/RIU, and ~1.2?×?106 deg/RIU/cm sensitivity can be achieved for wavelength interrogation, amplitude interrogation, and phase interrogation, respectively, when the environment refractive index varies between 1.30 and 1.31. It is noted that the wavelength sensitivity and phase sensitivity are more pronounced with larger refractive index. The proposed SPR sensor can be used in various applications, including medicine, environment, and large-scale targets detection.  相似文献   

4.
We propose a highly sensitive novel diamond ring fiber (DRF)-based surface plasmon resonance (SPR) sensor for refractive index sensing. Chemically active plasmonic material (gold) layer is coated inside the large cavity of DRF, and the analyte is infiltrated directly through the fiber instead of selective infiltration. The light guiding properties and sensing performances are numerically investigated using the finite element method (FEM). The proposed sensor shows a maximum wavelength and amplitude interrogation sensitivity of 6000 nm/RIU and 508 RIU?1, respectively, over the refractive index range of 1.33–1.39. Additionally, it also shows a sensor resolution of 1.67 × 10?5 and 1.97 × 10?5 RIU by following the wavelength and amplitude interrogation methods, respectively. The proposed diamond ring fiber has been fabricated following the standard stack-and-draw method to show the feasibility of the proposed sensor. Due to fabrication feasibility and promising results, the proposed DRF SPR sensor can be an effective tool in biochemical and biological analyte detection.  相似文献   

5.
In this article, a D-shaped photonic crystal fiber based surface plasmon resonance sensor is proposed for refractive index sensing. Surface plasmon resonance effect between surface plasmon polariton modes and fiber core modes of the designed D-shaped photonic crystal fiber is used to measure the refractive index of the analyte. By using finite element method, the sensing properties of the proposed sensor are investigated, and a very high average sensitivity of 7700 nm/RIU with the resolution of 1.30 × 10?5 RIU is obtained for the analyte of different refractive indices varies from 1.43 to 1.46. In the proposed sensor, the analyte and coating of gold are placed on the plane surface of the photonic crystal fiber, hence there is no necessity of the filling of voids, thus it is gentle to apply and easy to use.  相似文献   

6.

In this report, a novel D-shaped long-range surface plasmon resonance (LRSPR) fiber base sensor has been introduced. The demonstration of proposed sensor involves two D-shaped silver-coated models to study the sensitivity responses. The entire study with the constructed models is based on a single-mode fiber. The models are multilayered consisting of metal, dielectric, and analyte as separate layers. Silver (Ag) and magnesium fluoride (MgF2) strips are used as metal and dielectric layers respectively. The constituency of analyte as an interface excellently standardized the models for sensitivity detection. In this report, a large range of analyte refractive indices (RI) which varies from 1.33 to 1.38 is appraised for the proposed models to characterize the sensitivity. The entire context is encompassed by the wavelength region from 450 to 850 nm with an interval of 20 nm. Sensitivities in this report are measured based on the analyte position from the core and metal for both models. For each of the two models, the analyte is placed as the top layer. RIs of the applied metal (Ag) are measured using the Drude-Lorentz formula. The simulated sensitivities for model-1 and model-2 vary from 6.3?×?103 nm/RIU to 8.7?×?103 nm/RIU.

  相似文献   

7.
Gu  Sanfeng  Sun  Wei  Li  Meng  Zhang  Tianheng  Deng  Ming 《Plasmonics (Norwell, Mass.)》2022,17(3):1129-1137

A dual-core and dual D-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor with silver and aluminum nitride (AlN) films is designed. The distribution characteristics of the electromagnetic fields of core and plasmon modes, as well as the sensing properties, are numerically studied by finite element method (FEM). The structure parameters of the designed sensor are optimized by the optical loss spectrum. The results show the resonance wavelength variation of 489 nm for the refractive index (RI) range of 1.36?~?1.42. In addition, a maximum wavelength sensitivity of 13,400 nm/RIU with the corresponding RI resolution of 7.46?×?10?6 RIU is obtained in the RI range of 1.41?~?1.42. The proposed sensor with the merits of high sensitivity, low cost, and simple structure has a wide application in the fields of RI sensing, such as hazardous gas detection, environmental monitoring, and biochemical analysis.

  相似文献   

8.
A photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) probe with gold nanowires as the plasmonic material is proposed in this work. The coupling characteristics and sensing properties of the probe are numerically investigated by the finite element method. The probe is designed to detect low refractive indices between 1.27 and 1.36. The maximum spectral sensitivity and amplitude sensitivity are 6 × 103 nm/RIU and 600 RIU?1, respectively, corresponding to a resolution of 2.8 × 10?5 RIU for the overall refractive index range. Our analysis shows that the PCF-SPR probe can be used for lower refractive index detection.  相似文献   

9.

In this paper, a plasmonic perfect absorber (PPA) based on metal-insulator-metal-insulator-metal (MIMIM) structure has been designed for refractive index sensing of glucose solutions (analyte) and then a new method has been proposed for fast, low-cost, and easy measurement of sensor’s sensitivity. Simulation results show that the absorption spectrum of the proposed sensor has two resonance peaks that with an increase in analyte refractive index, both of them are red-shifted. In our proposed measurement technique, two conventional single-wavelength lasers (with wavelengths of 1050 nm and 1750 nm) are used for vertical plane wave light illumination on the structure. Then, the absorbed powers at 1750 nm (A2) and 1050 nm (A1) wavelengths are calculated and variation of the absorption ratio (A2/A1) due to change of analyte refractive index would be introduced as the sensitivity of sensor (S = Δ(A2/A1)/Δn). Obtained results show that the increase of analyte refractive index from n = 1.312 to n = 1.384 will result in an increase of sensor’s sensitivity from 9.3/RIU to 33.475/RIU.

  相似文献   

10.

Platinum diselenide (PtSe2), an emerging two-dimensional transition metal dichalcogenide, exhibits thickness-dependent refractive index, and hence, intriguing optical properties. Here, we employ it as a plasmonic sensing substrate to achieve significant enhancement in Goos-Hänchen shift sensitivity. Through systematic optimization of all parameters, four optimum sensing configurations have been achieved at different wavelengths ranging from visible to near-infrared region, where the Goos-Hänchen shift sensitivity receives four times enhancement in comparison with the conventional bare gold sensing substrate. There is a linear range of Goos-Hänchen shift with the tiny change of refractive index for each optimal configuration. The detection limit of the refractive index change can be as low as 5 × 10−7 RIU which is estimated to be lower by 2 orders of magnitude, and the corresponding sensitivity of biomolecules has a 1000-fold increment compared with that of bare gold-based sensors.

  相似文献   

11.
In this paper, a high-sensitivity refractive index sensor based on a hybrid plasma waveguide and metal–insulator–metal waveguide combined third-order runway series mosaic microring resonator is proposed. In this structure, a GaAs waveguide ring surrounds a gold waveguide ring in the middle, and the innermost layer is a disk made of gold material. The outer groove waveguide is composed of GaAs-air-alloy, and the inner groove waveguide is made of the Gold-Air-Gold material disc. By filling different substances in the groove, the change of refractive index will affect the optical signal strength of the output spectrum. The finite element method simulates the transmission spectrum and electric field distribution of the sensor structure. The amplitude coupling coefficient and attenuation factor affecting the resonator's performance are analyzed, and the structural parameters of the slot waveguide are optimized. The numerical simulation results show that the sensor quality factor of this structure is 1.54 × 104, the sensitivity is 1.2 × 103 nm/RIU which is about 1.5 times higher than that of the Si ring with the same structure, the detection limit can reach 8.1892 × 10−7 RIU, and the free spectral range can reach 109 nm. Compared with the traditional microring structure, this microring has higher design freedom and free spectral range and is more suitable for producing biosensors with high sensitivity, low detection limit, and multi-parameter measurement.  相似文献   

12.
Wang  Jianshuai  Pei  Li  Wu  Liangying  Wang  Ji  Ruan  Zuliang  Zheng  Jingjing 《Plasmonics (Norwell, Mass.)》2020,15(2):327-333

A surface plasmon resonance (SPR) sensor based on a photonic crystal fiber (PCF) is proposed for low refractive index (RI) detection. The core of PCF is formed by two-layer air walls and either layer is composed of six identical sector rings with negative curvature. Plasmonic material gold (Au) is coated on the external cladding surface. Finite element method (FEM) is applied to investigate the performance of the SPR sensor. Results show that the sensor is independent of polarization due to the coincident coupling properties of the two polarized modes. Additionally, in low RI ranging from 1.20 to 1.33, the sensor keeps a high spectral sensitivity with an average value of 7738 nm/RIU. When RI varies from 1.32 to 1.33, the resolution reaches to its maximum of 8.3 × 10−6. The proposed sensor shows much significance in low RI detection, which is promising in real-time measurement for medical, water pollution, and humidity.

  相似文献   

13.
Zhang  RuXin  Du  ChaoLing  Sun  Lu  Rong  WangXu  Li  Xiang  Lei  MingXin  Shi  DaNing 《Plasmonics (Norwell, Mass.)》2022,17(3):965-971

In this paper, individual split Au square nanorings were numerically proposed as novel substrates for surface-enhanced Raman and hyper-Raman scattering (SERS and SEHRS) simultaneously. The peak wavelengths of their localized surface plasmon resonance (LSPR) fall in the near-infrared and visible light regions, respectively, which are able to be finely tuned to match well with the wavelengths of the incident laser and hyper-Raman scattered light beams. Their SEHRS and SERS performances along with electromagnetic (EM) field distributions are numerically investigated by finite element method. With the enhancement of near electric-fields generated by LSPRs, the maximum SEHRS and SERS enhancement factors are demonstrated to reach 1.22?×?1012 and 108, respectively. Meanwhile, the corresponding SERS-based refractive index (RI) sensitivity factor reaches as high as 258 nm/RIU and 893 nm/RIU, at visible and near-infrared wavelengths, respectively. The proposed structure holds great promise both for developing SEHRS- and SERS-based RI sensing substrates, which shows strong potential applications in nanosensing and enhanced Raman scattering.

  相似文献   

14.

In this study, we demonstrate the design of a photonic crystal fiber (PCF)-based plasmonic sensor to measure the glucose level of urine. The sensor is designed by placing a small segment of PCF between a lead-in and a lead-out single-mode fiber. We utilize the finite element method to simulate the proposed plasmonic sensor for the measurement of glucose level in urine. To offer external sensing, the cladding layer of the PCF was coated by a thin layer of gold where the gold-coated PCF was immersed in the urine sample. As a result, the urine can easily interact with the plasmonic layer of the sensor. In the outermost laser of the PCF, we considered a perfectly matched layer as a boundary condition. The simulation results confirm excellent wavelength and amplitude sensitivities where the maximum wavelength sensitivity was 2500 nm/RIU and amplitude sensitivity was 152 RIU?1 with a sensing resolution of 4?×?10?6. For optimization of the plasmonic sensor, we varied the physical parameters of the cladding air holes and the thickness of the gold layer during the simulation. We strongly believe that the proposed plasmonic sensor will play a significant role to pave the way for achieving a simple but effective PCF-based glucose sensor.

  相似文献   

15.
We investigate the optical spectrum of a multilayer metallic slab using multiple-scattering formalism. A thin silver film is attached to a periodic array of heterodimers consisting of two vertically spaced silver nanoparticles of different radii. Depending on the radius of nanoparticles, heterodimer array presents a simple nanoscale geometry which gives rise to remarkable plasmonic properties of multipolar resonances. Due to the coherent interference of the localized nanoparticle plasmons (discrete mode) and surface plasmon polaritons of metallic film (continuous mode), the reflection spectrum represents a sharp asymmetric Fano resonance dip, which is strongly sensitive to the refractive index of the surrounding embedded dielectric host. The physical features contribute to a highly efficient plasmonic sensor for refractive index sensing with sensitivity of ~1.5?×?10?3 RIU/nm.  相似文献   

16.
A coupled plasmonic system based on double-layered metal nano-strips for sensing applications is investigated by means of mode analysis and two-dimensional finite-difference time-domain simulations. The nano-strips act as optical antennas through constructive interference of short-range surface plasmon polaritons, thus increasing their scattering cross-section and optical field enhancement. Near-field modulation by optical trapped metal nanoparticles (NPs) is also demonstrated. Our results reveal that the device exhibits a refractive index sensitivity of ~200 nm/RIU, and a maximum surface-enhanced Raman scattering (SERS) factor of 109–1010 from metal NPs trapped in the near-field region. The proposed device shows reasonable figure-of-merit and is ready for integration with common optofluidic biosensors.  相似文献   

17.
Zeng  Youjun  Zhou  Jie  Xiao  Xiaoping  Wang  Lei  Qu  Junle  Li  Xuejin  Gao  Bruce Zhi  Shao  Yonghong 《Plasmonics (Norwell, Mass.)》2019,14(6):1497-1504

A speckle-free fast angular interrogation surface plasmon resonance imaging (SPRi) sensor based on a diode-pumped all-solid-state laser and galvanometer is reported in this work. A bidirectional scan using a galvanometer realizes the fast scanning of the incidence angle. The experimental results showed that the time needed for completing an SPR dip measurement was decreased to 0.5 s. And through cascading an immovable diffuser and two diffusers rotating in opposite directions, laser speckle was eliminated. The dynamic detection range and the sensitivity reached 4.6 × 10−2 and 1.52 × 10−6 refractive index unit (RIU), respectively, in a 2D array sensor when the angle scanning range was set as 7.5°. More importantly, the results demonstrated that the angular interrogation SPR imaging sensor scheme had the capability to perform fast and high-throughput detection of biomolecular interactions at 2D sensor arrays.

  相似文献   

18.

We theoretically propose a surface plasmon resonance (SPR)-based fiber optic refractive index (RI) sensor. A surface plasmon exciting metallic grating formed with the alternation of indium tin oxide (ITO) and silver (Ag) stripes is considered on the core of the fiber. A thin film of silicon is used as an overlay. Silicon film not only protects the metallic grating from oxidation but also enhances the field to improve the device sensitivity. The sensor is characterized in terms of sensitivity, detection accuracy (DA), figure of merit (FoM), and quality factor (QF). The maximum sensitivity in the RI range 1.33 to 1.38 refractive index unit (RIU) is reported to be?~25 µm/RIU in infra-red region of investigation.

  相似文献   

19.
We propose a highly sensitive side-polished birefringent photonic crystal fiber (PCF) sensor based on surface plasmon resonance (SPR). The polished surface of the proposed structure is coated with indium tin oxide (ITO) to excite plasmon and the analytes can be placed on the flat surface easily instead of filling the voids. The birefringent nature of the structure helps in coupling more fields to the ITO-dielectric interface. With the optimum thickness of 110 nm of ITO, the structure shows a maximum wavelength sensitivity of 17000 nm/RIU with a resolution of 5.8?×?10?6 RIU. Further this also showed an amplitude sensitivity of 74 RIU?1 along with a resolution of 1.35?×?10?5 RIU. Moreover, the effect of bending on this low loss structure is also analyzed.  相似文献   

20.

A self-referencing plasmonic platform is proposed and analyzed. By introducing a thin gold layer below a periodic two-dimensional nano-grating, the structure supports multiple modes including localized surface plasmon resonance (LSPR), surface plasmon resonance (SPR), and Fabry-Perot resonances. These modes get coupled to each other creating multiple Fano resonances. A coupled mode between the LSPR and SPR responses is spatially separated from the sensor surface and is not sensitive to refractive index changes in the surrounding materials or surface attachments. This mode can be used for self-referencing the measurements. In contrast, the LSPR dominant mode shifts in wavelength when the refractive index of the surrounding medium is changed. The proposed structure is easy to fabricate using conventional lithography and electron beam deposition methods. A bulk sensitivity of 429 nm/RIU is achieved. The sensor also has the ability to detect nanometer thick surface attachments on the top of the grating.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号