首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Metal-dielectric-graphene hybrid heterostructures based on oxides Al2O3, HfO2, and ZrO2 as well as on complementary metal–oxide–semiconductor compatible dielectric Si3N4 covering plasmonic metals Cu and Ag have been fabricated and studied. We show that the characteristics of these heterostructures are important for surface plasmon resonance biosensing (such as minimum reflectivity, sharp phase changes, resonance full width at half minimum and resonance sensitivity to refractive index unit (RIU) changes) can be significantly improved by adding dielectric/graphene layers. We demonstrate maximum plasmon resonance spectral sensitivity of more than 30,000 nm/RIU for Cu/Al2O3 (ZrO2, Si3N4), Ag/Si3N4 bilayers and Cu/dielectric/graphene three-layers for near-infrared wavelengths. The sensitivities of the fabricated heterostructures were?~?5–8 times higher than those of bare Cu or Ag thin films. We also found that the width of the plasmon resonance reflectivity curves can be reduced by adding dielectric/graphene layers. An unexpected blueshift of the plasmon resonance spectral position was observed after covering noble metals with high-index dielectric/graphene heterostructures. We suggest that the observed blueshift and a large enhancement of surface plasmon resonance sensitivity in metal-dielectric-graphene hybrid heterostructures are produced by stationary surface dipoles which generate a strong electric field concentrated at the very thin top dielectric/graphene layer.

  相似文献   

2.
Zhu  Bofeng  Ren  Guobin  Cryan  Martin J.  Gao  Yixiao  Lian  Yudong  Wang  Jing  Wan  Chenglong  Jian  Shuisheng 《Plasmonics (Norwell, Mass.)》2016,11(3):903-907

In this paper, we propose that two-dimensional analogies to frequency-selective surfaces (FSS) can be achieved on graphene surfaces based on transformation optics. The analogies to representative FSS structures, including the anti-reflecting coating (ARC) and the high-reflecting coating (Bragg reflector), have been investigated through both analytical effective-index method (EIM)/transfer-matrix method (TMM) and numerical simulations. Both analytical and numerical solutions have shown that the propagation of plasmons on graphene surface with periodic chemical potentials can be an analogy to the interaction of incident light with traditional FSS multilayer dielectric media in which the transmission or reflection can be obtained by EIM/TMM. Combined with the tunability of graphene, the transmission or reflection of plasmons can be tuned by adjusting the bias voltage. The proposed structures and theoretical methods may provide new visions for achieving two-dimensional analogies to traditional structures on graphene.

  相似文献   

3.
Following photoreceptor degeneration, ON and OFF retinal ganglion cells (RGCs) in the rd-1/rd-1 mouse receive rhythmic synaptic input that elicits bursts of action potentials at ∼10 Hz. To characterize the properties of this activity, RGCs were targeted for paired recording and morphological classification as either ON alpha, OFF alpha or non-alpha RGCs using two-photon imaging. Identified cell types exhibited rhythmic spike activity. Cross-correlation of spike trains recorded simultaneously from pairs of RGCs revealed that activity was correlated more strongly between alpha RGCs than between alpha and non-alpha cell pairs. Bursts of action potentials in alpha RGC pairs of the same type, i.e. two ON or two OFF cells, were in phase, while bursts in dissimilar alpha cell types, i.e. an ON and an OFF RGC, were 180 degrees out of phase. This result is consistent with RGC activity being driven by an input that provides correlated excitation to ON cells and inhibition to OFF cells. A2 amacrine cells were investigated as a candidate cellular mechanism and found to display 10 Hz oscillations in membrane voltage and current that persisted in the presence of antagonists of fast synaptic transmission and were eliminated by tetrodotoxin. Results support the conclusion that the rhythmic RGC activity originates in a presynaptic network of electrically coupled cells including A2s via a Na+-channel dependent mechanism. Network activity drives out of phase oscillations in ON and OFF cone bipolar cells, entraining similar frequency fluctuations in RGC spike activity over an area of retina that migrates with changes in the spatial locus of the cellular oscillator.  相似文献   

4.
5.
ON and OFF retinal ganglion cells (RGCs) display differences in their intrinsic electrophysiology: OFF cells maintain spontaneous activity in the absence of any input, exhibit subthreshold membrane potential oscillations, rebound excitation and burst firing; ON cells require excitatory input to drive their activity and display none of the aforementioned phenomena. The goal of this study was to identify and characterize ionic currents that explain these intrinsic electrophysiological differences between ON and OFF RGCs. A mathematical model of the electrophysiological properties of ON and OFF RGCs was constructed and validated using published patch-clamp data from isolated intact mouse retina. The model incorporates three ionic currents hypothesized to play a role in generating behaviors that are different between ON and OFF RGCs. These currents are persistent Na + , I NaP, hyperpolarization-activated, I h, and low voltage activated Ca2 + , I T, currents. Using computer simulations of Hodgkin-Huxley type neuron with a single compartment model we found two distinct sets of I NaP, I h, I T conductances that correspond to ON and OFF RGCs populations. Simulations indicated that special properties of I T explain the differences in intrinsic electrophysiology between ON and OFF RGCs examined here. The modelling shows that the maximum conductance of I T is higher in OFF than in ON cells, in agreement with recent experimental data.  相似文献   

6.
Phase changes in Bacteroides fragilis, a member of the human colonic microbiota, mediate variations in a vast array of cell surface molecules, such as capsular polysaccharides and outer membrane proteins through DNA inversion. The results of the present study show that outer membrane vesicle (OMV) formation in this anaerobe is also controlled by DNA inversions at two distantly localized promoters, IVp-I and IVp-II that are associated with extracellular polysaccharide biosynthesis and the expression of outer membrane proteins. These promoter inversions are mediated by a single tyrosine recombinase encoded by BF2766 (orthologous to tsr19 in strain NCTC9343) in B. fragilis YCH46, which is located near IVp-I. A series of BF2766 mutants were constructed in which the two promoters were locked in different configurations (IVp-I/IVp-II = ON/ON, OFF/OFF, ON/OFF or OFF/ON). ON/ON B. fragilis mutants exhibited hypervesiculating, whereas the other mutants formed only a trace amount of OMVs. The hypervesiculating ON/ON mutants showed higher resistance to treatment with bile, LL-37, and human β-defensin 2. Incubation of wild-type cells with 5% bile increased the population of cells with the ON/ON genotype. These results indicate that B. fragilis regulates the formation of OMVs through DNA inversions at two distantly related promoter regions in response to membrane stress, although the mechanism underlying the interplay between the two regions controlled by the invertible promoters remains unknown.  相似文献   

7.
Inflammatory cytokines such as IFN-gamma and TNF produced by Ag-stimulated CD4(+) and CD8(+) T cells are important in defense against microbial infection. However, production of these cytokines must be tightly regulated to prevent immunopathology. Previous studies, conducted with BALB/c mice, have suggested that 1) CD8(+) T cells maintain IFN-gamma production but transiently produce TNF in the continued presence of Ag and 2) lymphocytic choriomeningitis virus-specific and in vitro-propagated effector CD8(+) T cells could rapidly cycle IFN-gamma production ON/OFF/ON in response to Ag exposure, removal, and re-exposure. In contrast with CD8(+) T cells, our results show that Listeria monocytogenes-specific CD4(+) T cells from C57BL/6 mice rapidly initiate (ON cycling) and maintain production of both IFN-gamma and TNF in the continued presence of Ag. Upon Ag removal, production of both cytokines rapidly ceases (OFF cycling). However, if the initial stimulation was maximal, Ag-specific CD4(+) T cells were unable to reinitiate cytokine production after a second Ag exposure. Furthermore, L. monocytogenes-specific CD8(+) T cells in the same mice and lymphocytic choriomeningitis virus-specific CD8(+) T cells in BALB/c mice also underwent ON/OFF cycling, but if the initial Ag stimulus was maximal, they could not produce IFN-gamma after Ag re-exposure. As the initial Ag dose was reduced, the number of cells producing cytokine in response to the second Ag exposure exhibited a corresponding increase. However, T cells that were marked for IFN-gamma secretion during the first stimulation did not contribute cytokine production during the second stimulation. Thus, T cells are not able to undergo rapid ON/OFF/ON cytokine cycling in vitro in response to Ag.  相似文献   

8.
In this paper, a novel riboregulator Switch System of Gene Expression including an OFF-TO-ON switch and an ON-TO-OFF switch was designed to regulate the expression state of target genes between “ON” and “OFF” by switching the identifiability of ribosome recognition site (RBS) based on the thermodynamic stability of different RNA–RNA hybridizations between RBS and small noncoding RNAs. The proposed riboregulator switch system was employed for the fermentative production of succinic acid using an engineered strain of E. coli JW1021, during which the expression of mgtC gene was controlled at “ON” state and that of pepc and ecaA genes were controlled at the “OFF” state in the lag phase and switched to the “OFF” and “ON” state once the strain enters the logarithmic phase. The results showed that using the strain of JW1021, the yield and productivity of succinic acid can reach 0.91 g g?1 and 3.25 g L?1 h?1, respectively, much higher than those using the strains without harboring the riboregulator switch system.  相似文献   

9.

An all-optical switch based on plasmonic metal–insulator–metal (MIM) waveguides and the Mach–Zehnder (MZ) interferometer is designed. In order to realize an all-optical and active switch, a nonlinear material with intensity-dependent refractive index is introduced in one arm. Other than studying a typical MZ structure, we also investigate the asymmetric case where unequal thicknesses and distances for MZ arms are proposed. The finite element method (FEM) with a refined triangle mesh is employed for simulations. Results for ON and OFF states are provided with or without employing the pump field. Investigation of the geometrical dispersion reveals tunability of the structure for specific frequencies in the terahertz region. Finally, we show that introducing asymmetric arms provides better tunability in the designed ultrafast nano-scale switch and suggests its potential applications in integrated optical circuits.

  相似文献   

10.
F165(1) and the pyelonephritis-associated pili (Pap) are two members of the type P family of adhesive factors that play a key role in the establishment of disease caused by extraintestinal Escherichia coli (ExPEC) strains. They are both under the control of an epigenetic and reversible switch that defines the number of fimbriated (ON) and afimbriated (OFF) cells within a clonal population. Our present study demonstrates that the high level of ON cells found during F165(1) phase variation is due to altered stability of the DNA complex formed by the leucine-responsive regulatory protein (Lrp) at its repressor binding sites 1-3; after each cell cycle, complex formation is also modulated by the local regulator FooI (homologue to PapI) which promotes the transit of Lrp towards its activator binding sites 4-6. Furthermore, we identified two nucleotides (T490, G508) surrounding the Lrp binding site 1 that are critical to maintaining a high OFF to ON switch rate during F165(1) phase variation, as well as switching Pap fimbriae towards the OFF state.  相似文献   

11.
The delayed component of intramembranous charge movement (hump, I gamma) was studied around the contraction threshold in cut skeletal muscle fibers of the frog (Rana esculenta) in a single Vaseline-gap voltage clamp. Charges (Q) were computed as 50-ms integrals of the ON (QON) and OFF (QOFF) of the asymmetric currents after subtracting a baseline. The hump appeared in parallel with an excess of QON over QOFF by approximately 2.5 nC/mu F. Caffeine (0.75 mM) not only shifted the contraction threshold but moved both the hump and the difference between the ON and OFF charges to more negative membrane potentials. When using 10-mV voltage steps on top of different prepulse levels, the delayed component, if present, was more readily observable. The voltage dependences of the ON and OFF charges measured with these pulses were clearly different: QON had a maximum at or slightly above the contraction threshold, while QOFF increased monotonically in the voltage range examined. Caffeine (0.75 mM) shifted this voltage dependence of QON toward more negative membrane potentials, while that of QOFF was hardly influenced. These results show that the delayed component of intramembranous charge movement either is much slower during the OFF than during the ON, or returns to the OFF position during the pulse. Tetracaine (25 microM) had similar effects on the charge movement currents, shifting the voltage dependence on the ON charge in parallel with the contraction threshold, but to more positive membrane potentials, and leaving QOFF essentially unchanged. The direct difference between the charge movement measured in the presence of caffeine and in control solution was either biphasic or resembled the component isolated by tetracaine, suggesting a common site of caffeine and tetracaine action. The results can be understood if the released Ca plays a direct role in the generation of the hump, as proposed in the first paper of this series (Csernoch et al. 1991. J. Gen. Physiol. 97:845-884).  相似文献   

12.
《Journal of Physiology》1996,90(3-4):185-188
Whole cell patch recordings have been realized in the primary visual cortex of the anesthetized and paralyzed cat, in order to better characterize input resistance and time constant of visual cortical cells in vivo. Measurements of conductance changes evoked by visual stimulation were derived from voltage clamp recordings achieved in continuous mode at two or more different subtreshold holding potentials. They show that the magnitude of the conductance increase can reach up to 300% of the mean conductance at rest. The observation of similar changes for the preferred and antagonist responses, when flashing ON and OFF, a test stimulus in pure ON and OFF subfields supports the hypothesis of a role for shunting inhibition in the spatial organization of simple receptive fields.  相似文献   

13.
In this paper, we propose a method to tailor the nanofocusing of plasmons on graphene plasmonic lens, which is composed of graphene and circular dielectric gratings of magneto-optical material beneath it. With an external magnetic field parallel to graphene surface, the magneto-optical effect of substrate leads to the difference in modal indices of graphene plasmons, which also introduces an additional relative phase difference between these two plasmons during excitation and propagation. Together, these two effects enable us to tailor the position of focal points through external magnetic field, which has been described by an analytical approach based on phase matching and verified by numerical simulations. With an operation wavelength of 8500 nm and an external magnetic field from B = ?1 T to B = 1 T, a shift distance over one and a half times of plasmons wavelength for focal points or donut-shaped field profiles can be obtained under linearly or circularly polarized light. The proposed scheme has potentials in diverse applications, such as the tunable nanofocusing and particle manipulation.  相似文献   

14.

Continuous monitoring of air quality and rapid detection of pollutants are highly desirable in urban planning and development of smart cities. One of the primary greenhouse gases responsible for environmental degradation and respiratory diseases is nitrogen dioxide (NO2). Existing gas sensors for measuring NO2 concentration suffer from drawbacks such as cross-sensitivity, limited range, and short life span. On the other hand, optical sensors, in particular, surface plasmon resonance (SPR) sensors, have emerged as a preferred alternative owing to advantages like high selectivity, immunity to electromagnetic interference, and low response time. In this work, we design and simulate a NO2 sensor based on a glass waveguide coated with a gold film. Surface plasmons are excited at the interface by a 400–500-nm light source, incident at an angle of 43.16°. To enhance the sensitivity, we further coat the waveguide with three layers of carbon-silver (C–Ag) nanodots, which increases the surface plasmon field amplitude by nearly 7 times, in the absence of NO2. When NO2 concentration is varied in the range of 0–200 ppm, a corresponding change is observed in the reflected amplitude. In the absence of the C–Ag nanodots layer, the sensitivity is only 0.00042%/ppm, and on addition of C–Ag nanodots, the sensitivity increases significantly to 0.14235%/ppm which is nearly 343 times higher. These results demonstrate the efficiency of implementing nanodots in SPR sensor to detect and trace concentrations of contaminants in the gas phase.

  相似文献   

15.

We present a theory for the calculation of the low energy intraband plasmon frequencies and the electron energy loss (EEL) spectra of single layer and multilayer graphene sheets. Our calculation shows that the number of plasmons that can be excited is equal to the number of graphene layers in the sample. One of these is the dominant in-phase plasmon having a square root dependence on the wave number at low wave vectors, whereas the others are out-of-phase plasmons having near linear dependences on the wave number. The EEL spectra of a single layer graphene shows a single peak at the plasmon frequency, which has been observed experimentally. The EEL spectra of all multilayer graphenes have two peaks, one corresponding to the dominant in-phase plasmon and the other due to the out of phase plasmons. We predict that careful measurement of the EEL of multilayer graphene will show both peaks due to the low energy intraband plasmons.

  相似文献   

16.
To examine the influence of the spectral characteristics of underwater light on spectral sensitivity of the ON and OFF visual pathways, compound action potential recordings were made from retinal ganglion cells of threespine stickleback from different photic regimes. In fish from a red-shifted photic regime (P50 680 nm for downwelling light at 1m), peak sensitivity of both the ON and OFF pathways was limited to long wavelength light (max 600–620). In contrast, the ON pathway of fish from a comparatively blue-shifted (P50 566 nm) photic regime exhibited sensitivity to medium (max 540–560) and long (max 600 nm) wavelengths, while the OFF pathway exhibited peak sensitivity to only medium (max 540 nm) wavelength light. In a third population, where the the ambient light is moderately red-shifted (P50 629 nm), the ON pathway once again exhibited only a long wavelength sensitivity peak at 620 nm, while the OFF pathway exhibited sensitivity to both medium (max 560 nm) and long (max 600–620 nm) wavelength light. These findings suggest that the photic environment plays an integral role in shaping spectral sensitivity of the ON and OFF pathways.  相似文献   

17.
Abstract

Cholecystokinin (CCK) is one of the most studied neuropeptides in the brain. In this study, we investigated the effects of CCK-8s and LY225910 (CCK2 receptor antagonist) on properties of neuronal response to natural stimuli (whisker deflection) in deep layers of rat barrel cortex. This study was done on 20 male Wistar rats, weighing 230–260?g. CCK-8s (300?nmol/rat) and LY225910 (1?µmol/rat) were administered intracerebroventricularly (ICV). Neuronal responses to deflection of principal (PW) and adjacent (AW) whiskers were recorded in the barrel cortex using tungsten microelectrodes. Computer controlled mechanical displacement was used to deflect whiskers individually or in combination at 30?ms inter-stimulus intervals. ON and OFF responses for PW and AW deflections were measured. A condition-test ratio (CTR) was computed to quantify neuronal responses to whisker interaction. ICV administration of CCK-8s and LY225910 had heterogeneous effects on neuronal spontaneous activity, ON and OFF responses to PW and/or AW deflections, and CTR for both ON and OFF responses. The results of this study demonstrated that CCK-8s can modulate neuronal response properties in deep layers of rat barrel cortex probably via CCK2 receptors.  相似文献   

18.
19.
Kenyon cells, the intrinsic neurons of the insect mushroom body, have the intriguing property of responding in a sparse way to odorants. Sparse neuronal codes are often invariant to changes in stimulus intensity and duration, and sparse coding often depends on global inhibition. We tested if this is the case for honeybees’ Kenyon cells, too, and used in vivo Ca2+ imaging to record their responses to different odorant concentrations. Kenyon cells responded not only to the onset of odorant stimuli (ON responses), but also to their termination (OFF responses). Both, ON and OFF responses increased with increasing odorant concentration. ON responses were phasic and invariant to the duration of odorant stimuli, while OFF responses increased with increasing odorant duration. Pharmacological blocking of GABA receptors in the brain revealed that ionotropic GABAA and metabotropic GABAB receptors attenuate Kenyon cells’ ON responses without changing their OFF responses. Ionotropic GABAA receptors attenuated Kenyon cell ON responses more strongly than metabotropic GABAB receptors. However, the response dynamic, temporal resolution and paired-pulse depression did not depend on GABAA transmission. These data are discussed in the context of mechanisms leading to sparse coding in Kenyon cells.  相似文献   

20.
We propose a metal-dielectric-metal super absorber based on propagating and localized surface plasmons which exhibits a near perfect absorption in the visible and near-infrared spectrum. The absorber consists of Ag/Al2O3/Al triple layers in which the top Al layer is a periodic nano disk array. The absorption spectrum can be easily controlled by adjusting the structure parameters including the period and radius of the nano disk and the maximal absorption can reach 99.62 %. We completely analyze the PSPs and LSPs modes supported by the MDM structure and their relationship with the ultrahigh absorption. Moreover, we propose a novel idea to further enhance the absorption by exciting the PSPs and high-order LSPs modes simultaneously, which is different from the previous works. This kind of absorber using stable inexpensive Al instead of noble metal Au or Ag is an appropriate candidate for photovoltaics, spectroscopy, photodetectors, sensing, and surface-enhanced Raman spectroscopy (SERS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号