首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
黄河三角洲滨海湿地地下水位浅,淡咸水交互作用明显,其土壤水盐状况成为影响该地区生态系统关键过程的主要因子。另外,随着气候变暖,黄河三角洲在过去50年(1961—2010年)进入显著升温阶段,温度升高直接或间接影响着植物的光合作用和光响应特征,从而影响黄河三角洲滨海湿地的演变。采用红外辐射加热器模拟增温,分析了增温对黄河三角洲滨海湿地生长季(2015年5月初—2015年10月底)芦苇光响应特征的影响。根据土壤含水量波动情况生长季可分为3个时期,即干旱期、淹水期和湿润期。结果表明,干旱期,10 cm土壤温度升高3.3℃,土壤水分含量升高了9.4%,土壤盐分含量升高了16.7%;盐分增加使芦苇叶片在强光下发生光抑制,并且显著降低最大光合速率(Pnmax)、暗呼吸速率(Rd)、光补偿点(LCP)和光饱和点(LSP)。淹水期,增温对10 cm土壤温度、湿度和盐分均无显著影响,过饱和的水分状况限制叶片光合速率,使得Pnmax达到最低。湿润期,10 cm土壤温度显著升高3.0℃,土壤含水量升高了2.9%,土壤盐分无显著差异;这一阶段,温度升高促进中强光下芦苇叶片的光合速率;同时叶片Pnmax、Rd和LSP分别增加27.7%、14.9%和23.3%。从整个生长季来看,增温使土壤温度显著升高2.9℃,土壤盐分含量升高7.0%,而对光合参数无显著影响。由此可见,在滨海湿地生态系统中,增温对光合作用的影响受土壤水盐状况的控制。  相似文献   

2.
北京山区不同植被类型的土壤呼吸特征及其温度敏感性   总被引:1,自引:0,他引:1  
土壤呼吸作为陆地生态系统碳循环的重要组成部分,是生态系统碳循环研究中的热点问题.土壤呼吸温度敏感性(Q10)是估算土壤呼吸对全球变暖的反馈参数,研究不同植被类型的Q10对评估森林生态系统碳收支具有重要意义.本研究以北京山区典型植被类型侧柏、油松和栓皮栎为研究对象,通过测定生长季内3种植被类型的土壤理化性质、土壤水热因素以及土壤呼吸速率(Rs)的变化,探究不同植被类型下的土壤呼吸特征及温度敏感性.结果表明:3种主要植被类型的Rs在生长季内与土壤温度、湿度的变化趋势相似,均呈现先升高后降低的单峰变化,Rs在4月初最低(0.45 μmol·m-2·s-1),随后逐渐增大,在7月初达到峰值(3.95 μmol·m-2·s-1),然后逐渐降低,3种植被类型的RsQ10值均存在显著差异.土壤温度和湿度是土壤呼吸的重要影响因素,两者与Rs拟合的回归模型可以解析土壤呼吸速率48.1%~56.7%的变化.北京山区的Q10值在2.05~3.19,在同一植被类型下,Q10值与土壤有机碳含量呈显著负相关(R2>0.9),植被类型、海拔和土壤有机碳含量是造成不同植被类型Q10值差异的重要原因.  相似文献   

3.
采用Li-8150多通道土壤呼吸自动测量系统对黄河三角洲滨海湿地土壤呼吸进行全年连续测定,同步测量了温度、土壤含水量、地上生物量以及叶面积指数等环境因子和生物因子.结果表明: 土壤呼吸日动态在全年尺度上多呈单峰型,但在受到土壤封冻和地表积水干扰时,土壤呼吸日动态呈多峰型.土壤呼吸具有明显的季节动态特征,总体呈单峰型,年平均土壤呼吸速率为0.85 μmol CO2·m-2·s-1,生长季平均土壤呼吸速率为1.22 μmol CO2·m-2·s-1.在全年尺度上,土壤温度是滨海湿地土壤呼吸的主要控制因子,可解释全年土壤呼吸87.5%的变化.在生长季尺度上,土壤含水量和叶面积指数对土壤呼吸的协同影响达到85%.  相似文献   

4.
长白山红松针阔混交林与开垦农田土壤呼吸作用比较   总被引:16,自引:0,他引:16       下载免费PDF全文
利用静态箱式法测定长白山红松(Pinus koraiensis)针阔混交林及其开垦农田的土壤呼吸作用。结果表明,两者土壤呼吸作用的日动态和季节动态均主要受温度影响,农田土壤呼吸作用的日变化极值出现时间较林地提前,最大值出现在12∶00左右,比林地提前6 h左右,最小值在凌晨5∶00左右,早于林地2~3 h;在生长季,土壤呼吸速率与10 cm土壤含水量关系不显著,而与土壤5 cm温度呈显著的指数关系;农田土壤温度高于林地,但在整个生长季(5~9月)林地土壤释放CO2量(2 674.4 g·m-2)约为农田(1 285.3 g·m-2)的2倍;观测期间,农田土壤呼吸速率占林地的比例范围在23.4%~76.3%之间,说明土壤呼吸作用还受不同土地利用方式下植被类型等的影响。农田和红松针阔混交林土壤呼吸作用的Q10值分别为3.07和2.92,农田土壤呼吸作用的Q10 值估计可能偏大。森林转变为农田后,环境、生物因子以及土壤养分含量和物理性质发生改变,共同影响土壤呼吸作用的强度和动态特征。  相似文献   

5.
土壤呼吸是生态系统碳循环的重要组成部分, 同时也是评价生态系统健康状况的重要指标, 对于评估退化草地恢复过程中生态系统功能具有重要意义。该研究在内蒙古四子王旗短花针茅(Stipa breviflora)荒漠草原长期放牧实验平台上进行, 该平台设置对照(CK)、轻度(LG)、中度(MG)和重度(HG) 4个放牧强度。通过在4个放牧处理区设置氮、水添加实验处理, 探讨不同放牧强度背景下, 氮、水补充对荒漠草原土壤呼吸过程的影响。结果表明: (1)历史放牧强度除2015年对土壤呼吸无显著影响, 2016和2017年都有显著影响, 放牧区3年平均土壤呼吸速率基本都高于对照区。此外, 氮和水分添加显著增加了MG区土壤呼吸速率, HG区氮、水同时添加对土壤呼吸速率有显著增加作用; (2)无论是历史放牧强度, 还是氮、水添加处理, 都没有改变荒漠草原生长季土壤呼吸速率的季节动态变化趋势, 土壤呼吸速率基本表现为单峰曲线模式, 峰值出现在水热同期的7月份; (3)不同年份生长季土壤呼吸速率对氮、水处理的响应并不相同, 氮添加至第3年产生显著影响。水分添加在平水年份(2015和2017年)对土壤呼吸产生显著影响, 但在丰水年份(2016年)无显著影响。氮、水共同添加分别在CK、LG和HG区3年平均土壤呼吸速率显著高于单独加水处理, 说明氮添加的有效性依赖于水分条件, 两者表现为协同作用; (4)不同处理下荒漠草原土壤呼吸的温度敏感性(Q10)值介于1.13-2.41之间, 平均值为1.71。在无氮、水添加时, 放牧区的Q10值都小于CK区, 总体表现为CK 大于 MG 大于 LG 大于 HG; 加水和氮水共同添加处理后, Q10值都有明显增加, 其中NW处理下Q10值都增加到2.0以上。上述结果说明在过去受不同放牧强度影响的荒漠草原在停止放牧后的恢复过程中, 土壤水分仍是影响土壤呼吸的主导环境因子, 外源氮添加只有在满足一定水分供给的基础上才起作用, 尤其是过去的重度放牧区土壤呼吸速率对氮、水补充的响应最为强烈。该研究结果可以为评估荒漠草原恢复过程中土壤呼吸速率受养分和水分影响提供基础资料和依据。  相似文献   

6.
量化森林土壤呼吸及其组分对温度的响应对准确评估未来气候变化背景下陆地生态系统的碳平衡极其重要。该文通过对神农架海拔梯度上常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶林以及亚高山针叶林4种典型森林土壤呼吸的研究发现: 4种森林类型的年平均土壤呼吸速率和年平均异养呼吸速率分别为1.63、1.79、1.74、1.35 μmol CO2·m-2·s-1和1.13、1.12、1.12、0.80 μmol CO2·m-2·s-1。该地区的土壤呼吸及其组分呈现出明显的季节动态, 夏季最高, 冬季最低。4种森林类型中, 阔叶林的土壤呼吸显著高于针叶林, 但阔叶林之间的土壤呼吸差异不显著。土壤温度是影响土壤呼吸及其组分的主要因素, 二者呈显著的指数关系; 土壤含水量与土壤呼吸之间没有显著的相关关系。4种典型森林土壤呼吸的Q10值分别为2.38、2.68、2.99和4.24, 随海拔的升高土壤呼吸对温度的敏感性增强, Q10值随海拔的升高而增加。  相似文献   

7.
温度系数(Q10,温度每变化10 ℃,呼吸速率的相对变化)不仅可以用来描述不同森林非同化器官(根系和树干)和土壤对温度升高的敏感性,并由此断定它们在全球变暖进程中的不同表现,而且是其呼吸总量定量估计中必不可少的参数。虽然目前已经进行了大量的研究,但不同研究者结论并不一致,影响我们对问题的整体把握。因此,有必要综合以往文献进行统计分析。该文综合大量文献,评述了林木非同化器官和土壤的Q10值频率分布、不同研究方法对Q10值的可能影响并探讨了它们对温度升高的敏感性。结果表明,不同非同化器官和土壤的Q10值差异较大,但具有相对稳定的分布中心范围。其中,土壤呼吸Q10值中,频率分布最集中的区域是2.0~2.5,占23%,其中超过80%的测定结果在1.0~4.0之间,中位数为2.74。 根系呼吸的Q10值,频率分布最集中的区域2.5~3.0,占33%,而大部分(>80%)的研究结果在1.5~3.0之间,中位数为2.40。树干呼吸的Q10值中,频率分布最集中的区域是1.5~2.0,占42%,而90%以上的测定结果在1.0~3.0之间,中位数为1.91。通过对比,发现不同非同化器官Q10值不同(树干<根系<根系与土壤共同体<去除根系土壤)。其中树干和根系的Q10值显著低于去除根系土壤的Q10值(p<0.05),表明土壤微生物活动对于未来全球变暖的反应要比木质化器官更敏感。此外,常绿植物的根系和树干呼吸的Q10值与落叶树木对应值差异不显著,说明同化器官叶片的着生时间长短对非同化器官Q10的影响不大。不同的CO2分析方法(碱吸收法,红外线测定技术和气相色谱方法)对土壤呼吸Q10值测定结果的影响不显著(p>0.10),根系分离方法(断根测定和壕沟隔断测定)也对根系呼吸的Q10值影响也不显著(p>0.10)。但是,与活体测定相比,离体测定树干呼吸显著提高了其Q10值。总体来看,不同林分相同非同化器官以及不同非同化器官呼吸的Q10值相对稳定但仍具有较大的差异性,研究方法也对结果产生一定影响,在进行呼吸总量的定量估计中应该注意这一点。今后研究的重点是进一步把影响森林非同化器官呼吸的外在因素和内在因素综合考虑于Q10值相关模型中,以便准确定量估计其呼吸总量,而研究难点是深入研究Q10值具有较大变异性的原因(如温度适应性)和内在机理以便更好的表征不同器官和生态系统组分对全球变暖的敏感性。  相似文献   

8.
滨海湿地地下水位浅,淡咸水垂直交互作用明显,全球气候变化背景下降水变异改变其土壤表层水盐状况,从而影响植物光合作用与土壤呼吸.为探究降雨量变化对黄河三角洲滨海湿地土壤呼吸和光合特性的影响,采用固定式遮雨顶棚和雨水输送管道相结合的方法设置增减雨处理小区,于2015年生长季测定土壤呼吸和光合作用光响应曲线,同时连续测定土壤温度、土壤含水量、土壤含盐量等土壤环境因子.结果表明: 根据土壤含水量波动情况可将生长季分为3个阶段:干旱期、湿润期、淹水期. 不同土壤水分阶段,土壤呼吸和芦苇光合特性对降雨量增减的响应不同. 在干旱期,增雨处理下土壤呼吸速率显著提高了31.8%,同时芦苇叶片气孔导度和光合能力显著增强;减雨处理下土壤呼吸速率降低41.1%,芦苇叶片气孔阻塞,光合能力降低. 在湿润期,增雨和减雨处理使土壤呼吸速率及其温度敏感性指数(Q10)均出现下降,但二者未对芦苇各光合参数和净光合速率产生显著影响. 在淹水期,增减雨处理未对土壤呼吸产生显著影响,但芦苇对淹水胁迫较为敏感,增减雨分别加重和降低了淹水对芦苇植株的伤害,光合速率由高到低为减雨>对照>增雨.  相似文献   

9.
温带荒漠中温度和土壤水分对土壤呼吸的影响   总被引:9,自引:1,他引:8       下载免费PDF全文
荒漠对气候变化具有高度敏感性, 深刻认识和量化非生物因子对荒漠生态系统土壤呼吸的影响具有重要意义。采用自动CO2通量系统(Li-8100)监测了梭梭(Haloxylon ammodendron)、假木贼(Anabasis aphylla)和盐穗木(Halostachys caspica)群落生长季土壤呼吸及温度、土壤含水量等, 深入分析了水热因子对土壤呼吸的影响。土壤呼吸具有不对称的日格局, 最小值出现在8:00, 最大值在12:00~14:00。土壤呼吸的季节格局与气温变化基本同步, 最小值在生长季末期(10月), 最大值在生长季中期(6~7月)。梭梭、假木贼和盐穗木群落生长季平均土壤呼吸速率分别为0.76、0.52和0.46 μmol CO2·m-2·s-1。气温对假木贼(51%)和盐穗木群落(65%)土壤呼吸季节变化的解释率高于梭梭(35%)。梭梭、假木贼和盐穗木群落土壤呼吸温度敏感性(Q10)逐渐增大, 基础呼吸速率(R10)逐渐减小。剔除温度影响后, 梭梭、假木贼群落土壤呼吸与土壤含水量呈显著的幂二次方函数关系, 盐穗木群落两者关系却明显减弱, 未达到显著水平。气温、土壤含水量的二元方程均能解释群落土壤呼吸大部分的时间变异: 梭梭群落71%~93%、假木贼群落79%~82%、盐穗木群落70%~80%。人工模拟降水后土壤呼吸速率表现出降水后10 min减小、180 min时明显增加、达到最大值后再次衰减的现象。5和2.5 mm降水处理下的土壤呼吸速率最大值和其后的递减值高于对照处理, 土壤呼吸增加、达到峰值和其后递减过程与5 cm土壤温度变化基本同步。  相似文献   

10.
通过涡度相关和微气象观测技术,对黄河三角洲滨海湿地净生态系统CO2交换(NEE)以及环境、生物因子进行了观测,探究湿地NEE变化规律及环境和生物因子对NEE的影响. 结果表明: 在日尺度上,生长季NEE呈明显“U”型曲线,非生长季变幅较小;在季节尺度上,NEE生长季波动较大,表现为碳汇,非生长季波动较小,表现为碳源;在年尺度上,滨海湿地生态系统表现为碳汇,总净固碳量为-247 g C·m-2. 白天NEE主要受控于光合有效辐射(PAR),且生态系统表观量子产量(α)与白天生态系统呼吸(Reco,d)均于8月达到最大值,最大光合速率(Amax)于7月达到最大值;夜间NEE随气温(Ta)呈指数增加趋势,生态系统的温度敏感系数(Q10)为2.5,且土壤含水量(SWC)越高,Q10值越大.非生长季NEE只与净辐射(Rn)呈显著的线性负相关,与其他环境因子无显著相关关系.生长季NEE与RnTa、土壤10 cm温度(Ts 10)等环境因子以及叶面积指数(LAI)呈显著的线性负相关,但与地上生物量(AGB)无显著相关关系.多元回归分析表明,Rn和LAI对生长季NEE的协同影响达到52%.  相似文献   

11.
《植物生态学报》2016,40(11):1111
Aims Winter soil respiration plays a crucial role in terrestrial carbon cycle, which could lose carbon gained in the growing season. With global warming, the average near-surface air temperatures will rise by 0.3 to 4.8 °C. Winter is expected to be warmer obviously than other seasons. Thus, the elevated temperature can significantly affect soil respiration. The coastal wetland has shallow underground water level and is affected by the fresh water and salt water. Elevated temperature can cause the increase of soil salinity, and as a result high salinity can limit soil respiration. Our objectives were to determine the diurnal and seasonal dynamics of soil respiration in a coastal wetland during the non-growing season, and to explore the responses of soil respiration to environmental factors, especially soil temperature and salinity.
Methods A manipulative warming experiment was conducted in a costal wetland in the Yellow River Delta using the infrared heaters. A complete random block design with two treatments, including control and warming, and each treatment was replicated each treatment four times. Soil respiration was measured twice a month during the non-growing season by a LI-8100 soil CO2 efflux system. The measurements were taken every 2 h for 24 h at clear days. During each soil respiration measurement, soil environmental parameters were determined simultaneously, including soil temperature, moisture and salinity.
Important findings The diurnal variation of soil respiration in the warming plots was closely coupled with that in the control plots, and both exhibited single-peak curves. The daily soil respiration in the warming was higher than that in the control from November 2014 to January 2015. Contrarily, from March to April 2015. During the non-growing seasons, there were no significant differences in the daily mean soil respiration between the two treatments. However, soil temperature and soil salt content in the warming plots were significantly higher than those in the control plots. The non-growing season was divided into the no salt restriction period (November 2014 to middle February 2015) and salt restriction period (middle February 2015 to April 2015). During non-growing season, soil respiration in the warming had no significant difference compared with that in control. During the no salt restriction period, soil respiration in the warming was 22.9% (p < 0.01) greater than the control when soil temperature at 10 cm depth in warming was elevated by 4.0 °C compared with that in control. However, experimental warming decreased temperature sensitivity of soil respiration (Q10). During salt restriction period, soil warming decreased soil respiration by 20.7% compared with the control although with higher temperature (3.3 °C), which may be attributed to the increased soil salt content (Soil electric conductivity increased from 4.4 ds·m-1 to 5.3 ds·m-1). The high water content can limit soil respiration in some extent. In addition, the Q10 value in the warming had no significant difference compared with that in control during this period. Therefore, soil warming can not only increase soil respiration by elevating soil temperature, but also decrease soil respiration by increasing soil salt content due to evaporation, which consequently regulating the soil carbon balance of coastal wetlands.  相似文献   

12.
Aims As the second largest C flux between the atmosphere and terrestrial ecosystems, soil respiration plays a vital role in regulating atmosphere CO2 concentration. Therefore, understanding the response of soil respiration to the increasing nitrogen deposition is urgently needed for prediction of future climate change. However, it is still unclear how nitrogen deposition influences soil respiration of shrubland in subtropical China. Our objectives were to explore the effects of different levels of nitrogen fertilization on soil respiration, root biomass increment, and litter biomass, and to analyze the relationships between soil respiration and soil temperature and moisture.
Methods From January 2013 to September 2014, we conducted a short-term simulated nitrogen deposition experiment in the Rhododendron simsii shrubland of Dawei Mountain, located in Hunan Province, southern China. Four levels of nitrogen addition treatments (each level with three replicates) were established: control (CK, no nitrogen addition), low nitrogen addition (LN, 2 g·m-2·a-1), medium nitrogen addition (MN, 5 g·m-2·a-1) and high nitrogen addition (HN, 10 g·m-2·a-1). Soil respiration was measured by LI-8100 soil CO2 efflux system. At the same time, we measured root biomass increment and litter biomass in each plot.
Important findings Soil respiration exhibited a strong seasonal pattern, with the highest rates found in summer and the lowest rates in winter. Annual accumulative soil respiration rate in the CK, LN, MN and HN was (2.37 ± 0.39), (2.79 ± 0.42), (2.26 ± 0.38) and (2.30 ± 0.36) kg CO2·m-2, respectively. Annual mean soil respiration rate in the CK, LN, MN and HN was (1.71 ± 0.28), (2.01 ± 0.30), (1.63 ± 0.27) and (1.66 ± 0.26) μmol CO2·m-2·s-1, respectively, and it was 17.25% higher in the LN treatment compared with CK (p = 0.06). The root biomass increment was increased by LN, MN, and HN treatments by 18.36%, 36.49% and 61.63%, respectively, compared to CK. The litter biomass was increased by LN, MN, and HN treatments by 35.87%, 22.17% and 15.35%, respectively, compared with CK. Soil respiration exhibited a significant exponential relationship with soil temperature (p < 0.01, R2 is 0.77 to 0.82) and a significant linear relationship with soil moisture at the depth of 5 cm (p < 0.05, R2 is 0.10 to 0.15). The temperature sensitivity (Q10) value of CK, LN, MN and HN plots was 3.96, 3.60, 3.71 and 3.51, respectively. These results suggested that nitrogen addition promoted plant growth and decreased the temperature sensitivity of soil respiration. The increase of root biomass under N addition may be an important reason for the change of soil respiration in the study area.  相似文献   

13.
Aims Soil respiration from terrestrial ecosystems is an important component of terrestrial carbon budgets. Compared to forests, natural or semi-natural shrublands are mostly distributed in nutrient-poor sites, and usually considered to be relatively vulnerable to environmental changes. Increased nitrogen (N) input to ecosystems may remarkably influence soil respiration in shrublands. So far the effects of N deposition on shrubland soil respiration are poorly understood. The aim of this study is to investigate the soil respiration of Vitex negundo var. heterophylla and Spiraea salicifolia shrublands and their response to N deposition. Methods We carried out a N enrichment experiment in V. negundo var. heterophylla and S. salicifolia shrublands in Mt. Dongling, Beijing, with four N addition levels (N0, control, 0; N1, low N, 20 kg N·hm-2·a-1; N2, medium N, 50 kg N·hm-2·a-1 and N3, high N, 100 kg N·hm-2·a-1). Respiration was measured from 2012-2013 within all treatments.Important findings Under natural conditions, annual total and heterotrophic respiration were 5.91 and 4.23, 5.76 and 3.53 t C·hm-2·a-1 for the V. negundo var. heterophylla and S. salicifolia shrublands, respectively and both were not affected by short-term N addition. In both shrubland types, soil respiration rate exhibited significant exponential relationships with soil temperature. Temperature sensitivity (Q10) of total soil respiration in V. negundo var. heterophylla and S. salicifolia shrublands ranged from 1.44 to 1.58 and 1.43 to 1.98, and Q10 of heterotrophic soil respiration ranged from 1.38 to 2.11 and 1.49 to 1.88, respectively. Short-term N addition decreased only autotrophic respiration rate during the growing season, but had no significant effects on total and heterotrophic soil respiration in V. negundo var. heterophylla shrubland. In contrast, N addition enhanced the heterotrophic soil respiration rate and did not influence autotrophic and total soil respiration in S. salicifolia shrubland.  相似文献   

14.
短期施氮肥降低杉木幼林土壤的根系和微生物呼吸   总被引:1,自引:0,他引:1       下载免费PDF全文
土壤呼吸是陆地生态系统碳循环的重要过程。在人工林生态系统中, 施肥不仅能提高人工林的生产力和固碳能力, 而且还会对土壤呼吸产生影响。为阐明施氮肥对人工林土壤总呼吸、根系和微生物呼吸的影响, 在中亚热带地区的湖南会同, 以5年生杉木(Cunninghamia lanceolata)幼林为研究对象, 施氮肥1年后, 利用LI-8100对土壤呼吸进行为期12个月的野外原位定点观测。结果发现: 施氮肥使土壤总呼吸、根系呼吸和微生物呼吸分别降低了22.7%、19.6%和23.5%; 土壤呼吸的温度敏感性(Q10)为1.81-2.04, 施肥使土壤微生物呼吸的Q10值从对照的2.04降低为1.84, 但土壤总呼吸的Q10值没有发生显著变化; 施肥没有改变土壤呼吸的季节变化, 在双因素模型中, 土壤温度和含水量可以解释土壤呼吸季节变化的69.9%-79.7%。研究表明施氮肥能降低中亚热带地区杉木人工林土壤有机碳分解对温度升高的响应, 在全球变暖背景下有利于增加土壤有机碳储量。  相似文献   

15.

Background and Aims

The reclamation of natural salt marshes for agricultural use is expected to profoundly influence the effects of predicted global warming on the carbon balance of coastal areas globally. This study was undertaken to understand the potential for soil respiration changes in a disturbed coastal ecosystem under future atmospheric warming

Methods

An in situ simulated warming experiment was conducted in a reclaimed salt marsh on Chongming Island in the Yangtze Estuary, China. Open-top chambers (OTCs) were applied to simulate air-warming conditions.

Results

Based on the 2-year study, we found the following: (1) Averaged across the entire study period, the OTCs significantly increased the mean air temperature by 1.53?±?0.17 °C. (2) The air warming resulted in no significant stimulation of the mean soil respiration averaged across the entire study period. Warming had no significant effect on soil respiration in the growing season, but it markedly reduced soil respiration by 16 % in the non-growing season. (3) Air warming had no significant effect on the mean soil temperature or volumetric moisture at a 5 cm depth, but it increased the mean soil porewater salinity by 119 % averaged across the entire study period. (4) Air warming had no significant effect on total organic carbon, total nitrogen or the molar C/molar N ratio of the soil in the uppermost 10 cm layer during the 2 years of soil respiration measurement. The warming treatment also had no significant effect on aboveground biomass or fine root (<2 mm) density during the second year of soil respiration measurement. (5) Soil temperature accounted for 81.0 % and 79.0 % of the temporal variations of soil respiration in the control (CON) and elevated temperature (ET) plots, respectively. No significant correlation between soil volumetric moisture and soil respiration was observed in either CON or ET. Soil porewater salinity was positively correlated with soil respiration in CON, but such a positive correlation was not found in ET. No change of the temperature sensitivity of soil respiration (Q 10 value) was observed.

Conclusions

Based on above results, we speculate that soil porewater salinity was the key factor controlling the effects of air warming on soil respiration in the reclaimed salt marsh. Our results suggest that an air warming of approximately 1.5 °C over the next few decades may not lead to a higher soil respiration in reclaimed salt marshes.  相似文献   

16.
《植物生态学报》2017,41(2):186
Aims There have been a large number of studies on the independent separate responses of fine roots to warming and nitrogen deposition, but with contradictory reporting. Fine root production plays a critical role in ecosystem carbon, nutrient and water cycling, yet how it responds to the interactive warming and nitrogen addition is not well understood. In the present study, we aimed to examine the interactive effects of soil warming and nitrogen addition on fine root growth of 1-year-old Chinese fir (Cunninghamia lanceolata) seedlings in subtropical China.
Methods A mesocosm experiment, with a factorial design of soil warming (ambient, +5 °C) and nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1, ambient + 80 kg·hm-2·a-1), was carried out in the Chenda State-owned Forest Farm in Sanming City, Fujian Province, China. Fine root production (indexed by the number of fine roots emerged per tube of one year) was measured biweekly using minirhizotrons from March of 2014 to February of 2015.
Important findings (1) The two-way ANOVA showed that soil warming had a significant effect on fine root production, while nitrogen addition and soil warming × nitrogen addition had no effect. (2) The three-way ANOVA (soil warming, nitrogen addition and diameter class) showed that soil warming, diameter class and soil warming × diameter class had significant effects on fine root production, especially for the number of fine roots in 0-1 mm diameter class that had been significantly increased by soil warming. Compared with the 1-2 mm roots, the 0-1 mm roots seemed more flexible. (3) Repeated measures of ANOVA (soil warming, nitrogen addition and season) showed that soil warming, season, soil warming × season, and soil warming × nitrogen addition × season had significant effects on fine root production. In spring, the number of fine roots was significantly increased both by soil warming and soil warming × season, while soil warming, nitrogen addition, soil warming × nitrogen addition significantly decreased fine root production in the summer. (4) Soil warming, soil layer, soil warming × soil layer had significant effects on fine root production. The number of in-growth fine roots was significantly increased by soil warming at the 20-30 cm depth only. It seemed that warming forced fine roots to grow deeper in the soil. In conclusion, soil warming significantly increased fine root production, but they had different responses and were dependent of different diameter classes, seasons and soil layers. Nitrogen addition had no effect on fine root production. Only in spring and summer, soil warming and nitrogen addition had significant interactive effects.  相似文献   

17.
《植物生态学报》2017,41(9):964
Aims Seasonal snow cover is one of the most important factors that control winter soil respiration in the cold biomes. The warming-induced decreases in snowpack could affect winter soil respiration of subalpine forests. The aim of this study was to explore the effects of snow removal on winter soil respiration in a Picea asperata forest.Methods A snow removal experiment was conducted in a P. asperata forest stand in western Sichuan during the winter of 2015/2016. The snow removal treatment was implemented using wooden roof method. Soil temperatures, snow depth and soil respiration rate were simultaneously measured in plots of snow removal and controls during the experimental period.Important findings Compared to the control, snow removal increased the fluctuations of soil temperatures. The average daily temperature of the soil surface and that at 5 cm depth were 1.12 °C and 0.34 °C lower, respectively, and the numbers of freeze-thaw cycles of the soil surface and that at 5 cm depth were increased by 39 and 12, respectively, in plots of snow removal than in the controls. The average rate of winter soil respiration and CO2 efflux were 0.52 μmol·m-2·s-1 and 88.44 g·m-2, respectively. On average, snow removal reduced soil respiration rate by 21.02% and CO2 efflux by 25.99%, respectively. More importantly, the snow effect mainly occurred in the early winter. The winter soil respiration rate had a significant exponential relationship with soil temperature. However, snow removal significantly reduced temperature sensitivity of the winter soil respiration. Our results suggest that seasonal snow reduction associated with climate change could inhibit winter soil respiration in the subalpine forests of western Sichuan, with significant implications for the carbon dynamics of the subalpine forests.  相似文献   

18.
采用Li-8150多通道土壤碳通量自动观测系统,于2009年6月—2010年6月对呼伦贝尔地区贝加尔针茅草甸草原土壤呼吸进行连续野外观测,分析该地区土壤CO2通量排放特征.结果表明: 生长季内贝加尔针茅草甸草原土壤呼吸日动态呈单峰曲线,最高值出现在13:00—15:00,最低值出现在5:00—6:00,土壤呼吸呈明显的季节变化,与土壤温度和土壤含水量季节动态相吻合.土壤呼吸与各层土壤温度和土壤含水量关系可以用线性模型和指数-乘幂模型来表示;土壤呼吸与各层土壤温度呈显著的指数回归关系,Q10变化范围分别为1.68~2.14和3.03~3.60,非生长季土壤温度对土壤呼吸的影响更为显著;生长季内土壤呼吸与10 cm土壤含水量呈显著正相关.2009和2010年土壤CO2年排放量分别为488.47和507.20 g C·m-2·a-1,生长季排放量约占年排放量的90%.  相似文献   

19.
通过涡度相关和微气象观测技术,对黄河三角洲滨海湿地净生态系统CO2交换(NEE)以及环境、生物因子进行了观测,探究湿地NEE变化规律及环境和生物因子对NEE的影响. 结果表明: 在日尺度上,生长季NEE呈明显“U”型曲线,非生长季变幅较小;在季节尺度上,NEE生长季波动较大,表现为碳汇,非生长季波动较小,表现为碳源;在年尺度上,滨海湿地生态系统表现为碳汇,总净固碳量为-247 g C·m-2. 白天NEE主要受控于光合有效辐射(PAR),且生态系统表观量子产量(α)与白天生态系统呼吸(Reco,d)均于8月达到最大值,最大光合速率(Amax)于7月达到最大值;夜间NEE随气温(Ta)呈指数增加趋势,生态系统的温度敏感系数(Q10)为2.5,且土壤含水量(SWC)越高,Q10值越大.非生长季NEE只与净辐射(Rn)呈显著的线性负相关,与其他环境因子无显著相关关系.生长季NEE与RnTa、土壤10 cm温度(Ts 10)等环境因子以及叶面积指数(LAI)呈显著的线性负相关,但与地上生物量(AGB)无显著相关关系.多元回归分析表明,Rn和LAI对生长季NEE的协同影响达到52%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号