首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis C virus (HCV) NS5B polymerase is a key target for the development of therapeutic agents aimed at the treatment of HCV infections. Here we report on the identification of novel allosteric inhibitors of HCV NS5B through a combination of structure-based virtual screening, synthesis and structure–activity relationship (SAR) optimization approach. Virtual screening of 260,000 compounds from the ChemBridge database against the tetracyclic indole inhibitor binding pocket of NS5B (allosteric pocket-1, AP-1), sequentially down-sized the library by 4 orders of magnitude to yield 23 candidates. In vitro evaluation of the NS5B inhibitory activity of the in-silico selected compounds resulted in 17% hit rate, identifying two novel chemotypes. Of these, compound 3, bearing the rhodanine scaffold, proved amenable for productive SAR exploration and synthetic modification. As a result, 25 derivatives that exhibited IC50 values ranging from 7.7 to 68.0 μM were developed. Docking analysis of lead compound 28 within the tetracyclic indole- and benzylidene-binding allosteric pockets (AP-1 and AP-3, respectively) of NS5B revealed topological similarities between these two pockets. Compound 28, a novel rhodanine analog with NS5B inhibitory potency in the low micromolar level range may be a promising lead for future development of more potent NS5B inhibitors.  相似文献   

2.
We describe the structure-based design of a novel lead chemotype that binds to thumb pocket 2 of HCV NS5B polymerase and inhibits cell-based gt1 subgenomic reporter replicons at sub-micromolar concentrations (EC50 <200 nM). This new class of potent thumb pocket 2 inhibitors features a 1H-quinazolin-4-one scaffold derived from hybridization of a previously reported, low affinity thiazolone chemotype with our recently described anthranilic acid series. Guided by X-ray structural information, a key NS5B–ligand interaction involving the carboxylate group of anthranilic acid based inhibitors was replaced by a neutral two-point hydrogen bonding interaction between the quinazolinone scaffold and the protein backbone. The in vitro ADME and in vivo rat PK profile of representative analogs are also presented and provide areas for future optimization of this new class of HCV polymerase inhibitors.  相似文献   

3.
A novel class of non-nucleoside HCV NS5B polymerase inhibitors has been identified from screening. A co-crystal structure revealed an allosteric binding site in the protein that required a unique conformational change to accommodate inhibitor binding. Herein we report the structure-activity relationships (SARs) of this novel class of dihydropyrone-containing compounds that show potent inhibitory activities against the HCV RNA polymerase in biochemical assays.  相似文献   

4.
Cai Z  Yi M  Zhang C  Luo G 《Journal of virology》2005,79(18):11607-11617
Hepatitis C virus (HCV) nonstructural protein 5B (NS5B) is the virus-encoded RNA-dependent RNA polymerase (RdRp) essential for HCV RNA replication. An earlier crystallographic study identified a rGTP-specific binding site lying at the surface between the thumb domain and the fingertip about 30 A away from the active site of the HCV RdRp (S. Bressanelli, L. Tomei, F. A. Rey, and R. De Francesco, J. Virol 76:3482-3492, 2002). To determine its physiological importance, we performed a systematic mutagenesis analysis of the rGTP-specific binding pocket by amino acid substitutions. Effects of mutations of the rGTP-specific binding site on enzymatic activity were determined by an in vitro RdRp assay, while effects of mutations on HCV RNA replication were examined by cell colony formation, as well as by transient replication of subgenomic HCV RNAs. Results derived from these studies demonstrate that amino acid substitutions of the rGTP-specific binding pocket did not significantly affect the in vitro RdRp activity of purified recombinant NS5B proteins, as measured by their abilities to synthesize RNA on an RNA template containing the 3' untranslated region of HCV negative-strand RNA. However, most mutations of the rGTP-specific binding site either impaired or completely ablated the ability of subgenomic HCV RNAs to induce cell colony formation. Likewise, these mutations caused either reduction in or lethality to transient replication of the human immunodeficiency virus Tat-expressing HCV replicon RNAs in the cell. Collectively, these findings demonstrate that the rGTP-specific binding site of the HCV NS5B is not required for in vitro RdRp activity but is important for HCV RNA replication in vivo.  相似文献   

5.
Halosalicylamide derivatives were identified from high-throughput screening as potent inhibitors of HCV NS5B polymerase. The subsequent structure and activity relationship revealed the absolute requirement of the salicylamide moiety for optimum activity. Methylation of either the hydroxyl group or the amide group of the salicylamide moiety abolished the activity while the substitutions on both phenyl rings are acceptable. The halosalicylamide derivatives were shown to be non-competitive with respect to elongation nucleotide and demonstrated broad genotype activity against genotype 1-3 HCV NS5B polymerases. Inhibitor competition studies indicated an additive binding mode to the initiation pocket that is occupied by the thiadiazine class of compounds and an additive binding mode to the elongation pocket that is occupied by diketoacids, but a mutually exclusive binding mode with respect to the allosteric thumb pocket that is occupied by the benzimidazole class of inhibitors. Therefore, halosalicylamides represent a novel class of allosteric inhibitors of HCV NS5B polymerase.  相似文献   

6.
Aryl dihydrouracil derivatives were identified from high throughput screening as potent inhibitors of HCV NS5B polymerase. The aryl dihydrouracil derivatives were shown to be non-competitive with respect to template RNA and elongation nucleotide substrates. They demonstrated genotype 1 specific activity towards HCV NS5B polymerases. Structure activity relationships and genotype specific activities of aryl dihydrouracil derivatives suggested that they bind to the palm initiation nucleotide pocket, a hypothesis which was confirmed by studies with polymerases containing mutations in various inhibitor binding sites. Therefore, aryl dihydrouracil derivatives represent a novel class of palm initiation site inhibitors of HCV NS5B polymerase.  相似文献   

7.
Novel inhibitors of hepatitis C virus RNA-dependent RNA polymerases   总被引:1,自引:0,他引:1  
Hepatitis C virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma worldwide-and is the main cause of adult liver transplants in developed nations. We have identified a class of novel and specific inhibitors of HCV NS5B RNA-dependent RNA polymerase (RdRp) activity in vitro. Characterization of two such inhibitors, COMPOUND1 (5-(4-chlorophenylmethylene)-3-(benzenesulfonylamino)-4-oxxo-2-thionothiazolidine) and COMPOUND2 (5-(4-bromophenylmethylene)-3-(benzenesulfonylamino)-4-oxxo-2-thionothiazolidine), is reported here. With IC(50) values of 0.54muM and 0.44muM, respectively, they are reversible and non-competitive with nucleotides. Biochemical and structural studies have suggested that these compounds can inhibit the initiation of the RdRp reaction. Interestingly, these inhibitors appear to form a reversible covalent bond with the NS5B cysteine 366, a residue that is not only conserved among all HCV genotypes and a large family of viruses but also required for full NS5B RdRp activity. This may reduce the potential resistance of the viruses to this class of inhibitors.  相似文献   

8.
The discovery of 5,5′- and 6,6′-dialkyl-5,6-dihydro-1H-pyridin-2-ones as potent inhibitors of the HCV RNA-dependent RNA polymerase (NS5B) is described. Several of these agents also display potent antiviral activity in cell culture experiments (EC50 <0.10 μM). In vitro DMPK data for selected compounds as well as crystal structures of representative inhibitors complexed with the NS5B protein are also disclosed.  相似文献   

9.
10.
The interaction of the hepatitis C virus (HCV) RNA-dependent RNA polymerase with RNA substrate is incompletely defined. We have characterized the activities of the HCV NS5B polymerase, modified by different deletions and affinity tags, with a routinely used homopolymeric substrate, and established apparent affinities of the various NS5B constructs both for the NTP and the template/primer substrates. We identified a uniquely tagged HCV NS5B RNA polymerase construct with a lower affinity (higher K(m)) than mature HCV NS5B for template/ primer substrate and highlighted the use of such a polymerase for the identification of inhibitors of NS5B activity, particularly inhibitors of productive RNA binding. The characterization of specific benzimidazole-5-carboxamide-based inhibitors, identified in a screening campaign, revealed that this class of compounds was non-competitive with regard to NTP incorporation and had no effect on processive elongation, but inhibited an initiation phase of the HCV polymerase activity. The potency of these compounds versus a panel of different NS5B polymerase constructs was inversely proportional to the enzymes' affinities for template/primer substrate. The benzimidazole-5-carboxamide compounds also inhibited the full-length, untagged NS5B de novo initiation reaction using HCV 3'-UTR substrate RNA and expand the diversifying pool of potential HCV replication inhibitors.  相似文献   

11.
NS5 is the largest and most conserved protein among the four dengue virus (DENV) serotypes. It has been the target of interest for antiviral drug development due to its major role in replication. NS5 consists of two domains, the N-terminal methyltransferase domain and C-terminal catalytic RNA-dependent RNA polymerase (RdRp) domain. It is an unstable protein and is prone to inactivation upon prolonged incubation at room temperature, thus affecting the inhibitor screening assays. In the current study, we expressed and purified DENV RdRp alone in Esherichia coli (E. coli) cells. The N-terminally His-tagged construct of DENV RdRp was transformed into E. coli expression strain BL-21 (DE3) pLysS cells. Protein expression was induced with isopropyl-β-D-thiogalactopyranoside (IPTG) at a final concentration of 0.4 mM. The induced cultures were then grown for 20 h at 18 °C and cells were harvested by centrifugation at 6000 x g for 15 min at 4 °C. The recombinant protein was purified using HisTrap affinity column (Ni-NTA) and then the sample was subjected to size exclusion chromatography, which successfully removed the degradation product obtained during the previous purification step. The in vitro polymerase activity of RdRp was successfully demonstrated using homopolymeric polycytidylic acid (poly(rC)) RNA template. This study describes the high level production of enzymatically active DENV RdRp protein which can be used to develop assays for testing large number of compounds in a high-throughput manner. RdRp has the de novo initiation activity and the in vitro polymerase assays for the protein provide a platform for highly robust and efficient antiviral compound screening systems.  相似文献   

12.
Ten natural compounds are successfully identified as falcipain-2 (FP-2) inhibitors from our in-house natural products database using structure-based virtual screening, which show moderate inhibitory activities against FP-2 with IC50 values ranging from 3.18 to 68.19 μM. While one of the inhibitors (compound 5) also exhibits in vitro antiplasmodial activity against chloroquine sensitive strain (3D7) and chloroquine resistant strain (Dd2) of Plasmodium falciparum in the micromolar range (IC50s = 5.54 μM and 4.05 μM against 3D7 cells and Dd2 cells, respectively). Furthermore, the predicted binding poses are analyzed to explain the structure–activity relationships, which will be helpful for further structural modifications.  相似文献   

13.
Hepatitis C virus (HCV) infection is highly persistent and presents an unmet medical need requiring more effective treatment options. This has spurred intensive efforts to discover novel anti-HCV agents. The RNA-dependent RNA polymerase (RdRp), NS5B of HCV, constitutes a selective target for drug discovery due to its absence in human cells; also, it is the centerpiece for viral replication. Here, we synthesized novel pyrrole, pyrrolo[2,3-d]pyrimidine and pyrrolo[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine derivatives. The non-toxic doses of these compounds on Huh 7.5 cell line were determined and their antiviral activity against HCVcc genotype 4a was examined. Compounds 7j, 7f, 5c, 12i and 12f showed significant anti HCV activity. The percent of reduction for the non-toxic doses of 7j, 7f, 5c, 12i and 12f were 90%, 76.7 ± 5.8%, 73.3 ± 5.8%, 70% and 63.3 ± 5.8%, respectively. The activity of these compounds was interpreted by molecular docking against HCV NS5B polymerase enzyme.  相似文献   

14.
Control of NF-κB release through the inhibition of IKKβ has been identified as a potential target for the treatment of inflammatory and autoimmune diseases. We have employed structure based virtual screening scheme to identify lead like molecule from ChemDiv database. Homology models of IKKβ enzyme were developed based on the crystal structures of four kinases. The efficiency of the homology model has been validated at different levels. Docking of known inhibitors library revealed the possible binding mode of inhibitors. Besides, the docking sequence analyses results indicate the responsibility of Glu172 in selectivity. Structure based virtual screening of ChemDiv database has yielded 277 hits. Top scoring 75 compounds were selected and purchased for the IKKβ enzyme inhibition test. From the combined approach of virtual screening followed by biological screening, we have identified six novel compounds that can work against IKKβ, in which 1 compound had highest inhibition rate 82.09% at 10 μM and IC50 1.76 μM and 5 compounds had 25.35–48.80% inhibition.  相似文献   

15.
16.
SAR exploration from an initial hit, (S)-N-(2-cyclohexenylethyl)-2-fluoro-6-(2-(1-hydroxy-3-phenylpropan-2-ylamino)-2-oxoethoxy)benzamide (1), identified using our proprietary automated ligand identification system (ALIS),1 has led to a novel series of selective hepatitis C virus (HCV) NS5B polymerase inhibitors with improved in vitro potency as exemplified by (S)-2-fluoro-6-(2-(1-hydroxy-3-phenylpropan-2-ylamino)-2-oxoethoxy)-N-isopentyl-N-methylbenzamidecarboxamide (41) (IC50 = 0.5 μM). The crystal structure of an analogue (44) was solved and provided rationalization of the SAR of this series, which binds in a distinct manner in the palm domain of NS5B, consistent with biochemical analysis using enzyme mutant variants. These data warrant further lead optimization efforts on this novel series of non-nucleoside inhibitors targeting the HCV polymerase.  相似文献   

17.
18.
The discovery of lead compound 2e was described. Its covalent binding to HCV NS5B polymerase enzyme was investigated by X-ray analysis. The results of distribution, metabolism and pharmacokinetics were reported. Compound 2e was demonstrated to be potent (replicon GT-1b EC50 = 0.003 μM), highly selective, and safe in in vitro and in vivo assays.  相似文献   

19.
5,6-Dihydro-1H-pyridin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Among these, compound 4ad displayed potent inhibitory activities in biochemical and replicon assays (IC50 (1b) < 10 nM; IC50 (1a) < 25 nM, EC50 (1b) = 16 nM), good in vitro DMPK properties, as well as moderate oral bioavailability in monkeys (F = 24%).  相似文献   

20.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), encoded by nonstructural protein 5B (NS5B), is absolutely essential for the viral replication. Here we describe the development, characterization, and functional properties of the panel of monoclonal antibodies (mAbs) and specifically describe the mechanism of action of two mAbs inhibiting the NS5B RdRp activity. These mAbs recognize and bind to distinct linear epitopes in the fingers subdomain of NS5B. The mAb 8B2 binds the N-terminal epitope of the NS5B and inhibits both primer-dependent and de novo RNA synthesis. mAb 8B2 selectively inhibits elongation of RNA chains and enhances the RNA template binding by NS5B. In contrast, mAb 7G8 binds the epitope that contains motif G conserved in viral RdRps and inhibits only primer-dependent RNA synthesis by specifically targeting the initiation of RNA synthesis, while not interfering with the binding of template RNA by NS5B. To reveal the importance of the residues of mAb 7G8 epitope for the initiation of RNA synthesis, we performed site-directed mutagenesis and extensively characterized the functionality of the HCV RdRp motif G. Comparison of the mutation effects in both in vitro primer-dependent RdRp assay and cellular transient replication assay suggested that mAb 7G8 epitope amino acid residues are involved in the interaction of template-primer or template with HCV RdRp. The data presented here allowed us to describe the functionality of the epitopes of mAbs 8B2 and 7G8 in the HCV RdRp activity and suggest that the epitopes recognized by these mAbs may be useful targets for antiviral drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号