首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycogen synthase kinase 3β (GSK-3β) is a serine-threonine kinase belonging to the CMGC family that plays a key role in many biological processes, such as glucose metabolism, cell cycle regulation, and proliferation. Like most protein kinases, GSK-3β is regulated via multiple pathways and sites. We performed all-atom molecular dynamics simulations on the unphosphorylated and phosphorylated unbound GSK-3β and the phosphorylated GSK-3β bound to a peptide substrate, its product, and a derived inhibitor. We found that GSK-3β autophosphorylation at residue Tyr(216) results in widening of the catalytic groove, thereby facilitating substrate access. In addition, we studied the interactions of the phosphorylated GSK-3β with a substrate and peptide inhibitor located at the active site and observed higher affinity of the inhibitor to the kinase. Furthermore, we detected a potential remote binding site which was previously identified in other kinases. In agreement with experiments we observed that binding of specific peptides at this remote site leads to stabilization of the activation loop located in the active site. We speculate that this stabilization could enhance the catalytic activity of the kinase. We point to this remote site as being structurally conserved and suggest that the allosteric phenomenon observed here may occur in the protein kinase superfamily.  相似文献   

2.
Insulin-like growth factor I receptor (IGF-1R) signaling is essential for cell, organ, and animal growth. The C-terminal tail of the IGF-1R exhibits regulatory function, but the mechanism is unknown. Here, we show that mutation of Ser-1248 (S1248A) enhances IGF-1R in vitro kinase activity, autophosphorylation, Akt/mammalian target of rapamycin activity, and cell growth. Ser-1248 phosphorylation is mediated by GSK-3β in a mechanism that involves a priming phosphorylation on Ser-1252. GSK-3β knock-out cells exhibit reduced IGF-1R cell surface expression, enhanced IGF-1R kinase activity, and signaling. Examination of crystallographic structures of the IGF-1R kinase domain revealed that the (1248)SFYYS(1252) motif adopts a conformation tightly packed against the kinase C-lobe when Ser-1248 is in the unphosphorylated state that favors kinase activity. S1248A mutation is predicted to lock the motif in this position. In contrast, phosphorylation of Ser-1248 will drive profound structural transition of the sequence, critically affecting connection of the C terminus as well as exposing potential protein docking sites. Decreased kinase activity of a phosphomimetic S1248E mutant and enhanced kinase activity in mutants of its predicted target residue Lys-1081 support this auto-inhibitory model. Thus, the SFYYS motif controls the organization of the IGF-1R C terminus relative to the kinase domain. Its phosphorylation by GSK-3β restrains kinase activity and regulates receptor trafficking and signaling.  相似文献   

3.
Glycogen synthase kinase 3β (GSK-3β) is a key regulator in signaling networks that control cell proliferation, metabolism, development, and other processes. Lithium chloride is a GSK-3 family inhibitor that has been a mainstay of in vitro and in vivo studies for many years. Beryllium salt has the potential to act as a lithium-like inhibitor of GSK-3, but it is not known whether this agent is effective under physiologically relevant conditions. Here we show that BeSO4 inhibits endogenous GSK-3β in cultured human cells. Exposure to 10 µM Be2+ produced a decrease in GSK-3β kinase activity that was comparable to that produced by 10 mM Li+, indicating that beryllium is about 1,000-fold more potent than the classical inhibitor when treating intact cells. There was a statistically significant dose-dependent reduction in specific activity of GSK-3β immunoprecipitated from cells that had been treated with either agent. Lithium inhibited GSK-3β kinase activity directly, and it also caused GSK-3β in cells to become phosphorylated at serine-9 (Ser-9), a post-translational modification that occurs as part of a well-known positive feedback loop that suppresses the kinase activity. Beryllium also inhibited the kinase directly, but unlike lithium it had little effect on Ser-9 phosphorylation in the cell types tested, suggesting that alternative modes of feedback inhibition may be elicited by this agent. These results indicate that beryllium, like lithium, can induce perturbations in the GSK-3β signaling network of treated cells.  相似文献   

4.
5.
Changes in the morphology of dendritic spines are prominent during learning and in different neurological and neuropsychiatric diseases, including those in which glycogen synthase kinase-3β (GSK-3β) has been implicated. Despite much evidence of the involvement of GSK-3β in functional synaptic plasticity, it is unclear how GSK-3β controls structural synaptic plasticity (i.e., the number and shape of dendritic spines). In the present study, we used two mouse models overexpressing and lacking GSK-3β in neurons to investigate how GSK-3β affects the structural plasticity of dendritic spines. Following visualization of dendritic spines with DiI dye, we found that increasing GSK-3β activity increased the number of thin spines, whereas lacking GSK-3β increased the number of stubby spines in the dentate gyrus. Under conditions of neuronal excitation, increasing GSK-3β activity caused higher activity of extracellularly acting matrix metalloproteinase-9 (MMP-9), and MMP inhibition normalized thin spines in GSK-3β overexpressing mice. Administration of the nonspecific GSK-3β inhibitor lithium in animals with active MMP-9 and animals lacking MMP-9 revealed that GSK-3β and MMP-9 act in concert to control dendritic spine morphology. Altogether, our data demonstrate that the dysregulation of GSK-3β activity has dramatic consequences on dendritic spine morphology, implicating MMP-9 as a mediator of GSK-3β-induced synaptic alterations.  相似文献   

6.
The GSK-3 kinases, GSK-3α and GSK-3β, have a central role in regulating multiple cellular processes such as glycogen synthesis, insulin signaling, cell proliferation and apoptosis. GSK-3β is the most well studied, and was originally described for its role in regulating glycogen synthase. GSK-3β has been studied as a participant in the oncogenic process in a variety of cancers due to its intersection with the PTEN/PI3K/AKT and RAS/RAF/MEK/ERK pathways. Dysregulated signaling through the Notch family of receptors can also promote oncogenesis. Normal Notch receptor signaling regulates cell fate determination in stem cell pools. GSK-3β and Notch share similar targets such β-catenin and the WNT pathway. WNT and β-catenin are involved in several oncogenic processes including those of the colon. In addition, GSK-3β may directly regulate aspects of Notch signaling. This review describes how crosstalk between GSK-3β and Notch can promote oncogenesis, using colon cancer as the primary example.  相似文献   

7.
Glycogen synthase kinase-3β (GSK-3β) is implicated in abnormal hyperphosphorylation of tau protein and its inhibitors are expected to be a promising therapeutic agents for the treatment of Alzheimer’s disease. Here we report design, synthesis and structure–activity relationships of a novel series of oxadiazole derivatives as GSK-3β inhibitors. Among these inhibitors, compound 20x showed highly selective and potent GSK-3β inhibitory activity in vitro and its binding mode was determined by obtaining the X-ray co-crystal structure of 20x and GSK-3β.  相似文献   

8.
Glycogen synthase kinase 3beta (GSK-3β) is an enzyme with a variety of cellular functions in addition to the regulation of glycogen metabolism. In the central nervous system, different intracellular signaling pathways converge on GSK-3β through a cascade of phosphorylation events that ultimately control a broad range of neuronal functions in the development and adulthood. In mice, genetically removing or increasing GSK-3β cause distinct functional and structural neuronal phenotypes and consequently affect cognition. Precise control of GSK-3β activity is important for such processes as neuronal migration, development of neuronal morphology, synaptic plasticity, excitability, and gene expression. Altered GSK-3β activity contributes to aberrant plasticity within neuronal circuits leading to neurological, psychiatric disorders, and neurodegenerative diseases. Therapeutically targeting GSK-3β can restore the aberrant plasticity of neuronal networks at least in animal models of these diseases. Although the complete repertoire of GSK-3β neuronal substrates has not been defined, emerging evidence shows that different ion channels and their accessory proteins controlling excitability, neurotransmitter release, and synaptic transmission are regulated by GSK-3β, thereby supporting mechanisms of synaptic plasticity in cognition. Dysregulation of ion channel function by defective GSK-3β activity sustains abnormal excitability in the development of epilepsy and other GSK-3β-linked human diseases.  相似文献   

9.
The aim of malignant glioma treatment is to inhibit tumor cell proliferation and induce tumor cell apoptosis. Remifentanil is a clinical anesthetic drug that can activate the N-methyl-D-aspartate (NMDA) receptor. NMDA receptor signaling activates glycogen synthase kinase-3β (GSK-3β). Discovered some 32 years ago, GSK-3β was only recently considered as a therapeutic target in cancer treatment. The purpose of this study was to assess whether remifentanil can induce the apoptosis of C6 cells through GSK-3β activation. 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) was used to detect cell viability. Hoechst 33342 staining and flow cytometry were used to detect cell apoptosis. The effect of GSK-3β activation was detected using a GSK-3β activation assay kit and 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), a potent and selective small molecule inhibitor of GSK-3β. The MTT assay indicated that remifentanil induced C6 cell death in a concentration- and time-dependent manner. Hoechst 33342 staining and flow cytometry showed that remifentanil significantly induced C6 cell apoptosis. The measurement of GSK-3β activation showed that remifentanil increased the cellular level of GSK-3β. All of these toxic effects can be attenuated by treatment with TDZD-8. These results suggest that remifentanil is able to induce C6 cell apoptosis through GSK-3β activation, which provides a basis for its potential use in the treatment of malignant gliomas.  相似文献   

10.
Tideglusib is a GSK-3 inhibitor currently in phase II clinical trials for the treatment of Alzheimer disease and progressive supranuclear palsy. Sustained oral administration of the compound to a variety of animal models decreases Tau hyperphosphorylation, lowers brain amyloid plaque load, improves learning and memory, and prevents neuronal loss. We report here that tideglusib inhibits GSK-3β irreversibly, as demonstrated by the lack of recovery in enzyme function after the unbound drug has been removed from the reaction medium and the fact that its dissociation rate constant is non-significantly different from zero. Such irreversibility may explain the non-competitive inhibition pattern with respect to ATP shown by tideglusib and perhaps other structurally related compounds. The replacement of Cys-199 by an Ala residue in the enzyme seems to increase the dissociation rate, although the drug retains its inhibitory activity with decreased potency and long residence time. In addition, tideglusib failed to inhibit a series of kinases that contain a Cys homologous to Cys-199 in their active site, suggesting that its inhibition of GSK-3β obeys to a specific mechanism and is not a consequence of nonspecific reactivity. Results obtained with [(35)S]tideglusib do not support unequivocally the existence of a covalent bond between the drug and GSK-3β. The irreversibility of the inhibition and the very low protein turnover rate observed for the enzyme are particularly relevant from a pharmacological perspective and could have significant implications on its therapeutic potential.  相似文献   

11.
C-reactive protein (CRP) is a significant contributor to atherosclerosis and a powerful predictor of cardiovascular risk. The role of CRP in endothelial cell (EC) activation has been extensively investigated, but the underlying mechanisms have not been fully elucidated. The effect of glycogen synthase kinase-3β (GSK-3β) on CRP-induced EC activation was evaluated in this study. We observed that CRP decreased endothelial nitric oxide synthase (eNOS) activity during EC activation. CRP also activated GSK-3β by dephosphorylating its Ser9 level and reducing β-catenin protein expression in a time-dependent manner. We also found that the GSK-3β inhibitors TDZD-8 and SB415286 partially restored eNOS activity and suppressed the release of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 from ECs. These data provide new evidence for the involvement of GSK-3β in EC activation.  相似文献   

12.
GSK-3β signaling is involved in regulation of both neuronal and glial cell functions, and interference of the signaling affects central nervous system (CNS) development and regeneration. Thus, GSK-3β was proposed to be an important therapeutic target for promoting functional recovery of adult CNS injuries. To further clarify the regulatory function of the kinase on the CNS regeneration, we characterized gecko GSK-3β and determined the effects of GSK-3β inactivation on the neuronal and glial cell lines, as well as on the gecko tail (including spinal cord) regeneration. Gecko GSK-3β shares 91.7-96.7% identity with those of other vertebrates, and presented higher expression abundance in brain and spinal cord. The kinase strongly colocalized with the oligodendrocytes while less colocalized with neurons in the spinal cord. Phosphorylated GSK-3β (pGSK-3β) levels decreased gradually during the normally regenerating spinal cord ranging from L13 to the 6th caudal vertebra. Lithium injection increased the pGSK-3β levels of the corresponding spinal cord segments, and in vitro experiments on neurons and oligodendrocyte cell line revealed that the elevation of pGSK-3β promoted elongation of neurites and oligodendrocyte processes. In the normally regenerate tails, pGSK-3β kept stable in 2 weeks, whereas decreased at 4 weeks. Injection of lithium led to the elevation of pGSK-3β levels time-dependently, however destructed the regeneration of the tail including spinal cord. Bromodeoxyuridine (BrdU) staining demonstrated that inactivation of GSK-3β decreased the proliferation of blastemal cells. Our results suggested that species-specific regulation of GSK-3β was indispensable for the complete regeneration of CNS.  相似文献   

13.
Xu CM  Wang J  Wu P  Xue YX  Zhu WL  Li QQ  Zhai HF  Shi J  Lu L 《Journal of neurochemistry》2011,118(1):126-139
As a ubiquitous serine/threonine protein kinase, glycogen synthase kinase 3β (GSK-3β) has been considered to be important in the synaptic plasticity that underlies dopamine-related behaviors and diseases. We recently found that GSK-3β activity in the nucleus accumbens (NAc) core is critically involved in cocaine-induced behavioral sensitization. The present study further explored the association between the changes in GSK-3β activity in the NAc and the chronic administration of methamphetamine. We also examined whether blocking GSK-3β activity in the NAc could alter the initiation and expression of methamphetamine (1 mg/kg, i.p.)-induced locomotor sensitization in rats using systemic administration of lithium chloride (LiCl, 100 mg/kg, i.p) and brain region-specific administration of the GSK-3β inhibitor SB216763 (1 ng/side). We found that GSK-3β activity increased in the NAc core, but not NAc shell, after chronic methamphetamine administration. The initiation and expression of methamphetamine-induced locomotor sensitization was attenuated by systemic administration of LiCl and direct infusion of SB216763 into the NAc core, but not NAc shell. These results indicate that GSK-3β activity in the NAc core mediates the initiation and expression of methamphetamine-induced locomotor sensitization, suggesting that GSK-3β may be a potential target for the treatment of psychostimulant addiction.  相似文献   

14.
Glycogen synthase kinase-3β (GSK-3β) is involved in glycogen metabolism, neuronal cell development, osteoblast differentiation. Small molecule inhibitors of GSK-3β have various therapeutic potential for the treatment of diabetes type II, bipolar disorders, stroke and chronic inflammatory disease.To identify GSK-3β inhibitors with novel scaffold from chemical library, we primarily screened out putative inhibitors through computer modeling and subsequently evaluated the inhibitory activity of selected compounds against GSK-3β by in vitro Z’-LYTE? assay. A series of compound KRMs strongly inhibited phosphorylation of its substrate with IC50 value of approximately 0.5 μM. Also, we demonstrated that KRM-189 and KRM-191 competed with ATP for GSK-3β, leading to decreased Vmax and constant Km with increasing concentrations of ATP as determined from Lineweaver–Berk equation. Moreover, they showed the selectivity for GSK-3β over other kinases with IC50 values of 2 to 10 μM or more Incubation of cells with KRM-191 with highly selective and potent inhibitory activity caused accumulation of β-catenin, downstream of GSK-3β signaling pathway, indicating that small molecule can prevent degradation of β-catenin via GSK-3β inhibition. Our results suggest that modeling in combination with in vitro assays can be used for the identification of selective and potent inhibitors.  相似文献   

15.
A molecular understanding of substrate recognition of protein kinases provides an important basis for the development of substrate competitive inhibitors. Here, we explored substrate recognition and competitive inhibition of glycogen synthase kinase (GSK)-3β using molecular and computational tools. In previous work, we described Gln89 and Asn95 within GSK-3β as important substrates binding sites. Here, we show that the cavity bordered by loop 89-QDKRFKN-95, located in the vicinity of the GSK-3β catalytic core, is a promiscuous substrate binding subsite. Mutations within this segment highlighted Phe93 as an additional essential contact residue for substrates' recognition. However, unlike Gln89 and Asn95, Phe93 was also important for the binding of our previously described substrate competitive inhibitor, L803 [KEAPPAPPQS(p)P], and its cell-permeable variant L803-mts. The effects of the substitution of charged or polar residues within L803 further suggested that binding to GSK-3β is governed by hydrophobic interactions. Our computational model of GSK-3β bound to L803 was in agreement with the experimental data. It revealed L803 binding with a hydrophobic surface patch and identified interactions between Pro8 (L803) and Phe93 (GSK-3β). Computational modeling of new L803 variants predicted that inhibition would be strengthened by adding contacts with Phe93 or by increasing the hydrophobic content of the peptide. Indeed, the newly designed L803 variants showed improved inhibition. Our study identified different and overlapping elements in GSK-3β substrate and inhibitor recognition and provides a novel example for model-based rational design of substrate competitive inhibitors for GSK-3.  相似文献   

16.
Peroxisome proliferator-activated receptor (PPAR)-γ agonists such as troglitazone, pioglitazone and thiazolidine have been shown to induce apoptosis in human colon cancer cells. The molecular mechanism of PPARγ agonist-induced apoptosis of colon cancer cells, however, is not clear. Glycogen synthase kinase-3β (GSK-3β) is an indispensable element for the activation of nuclear factor-kappa B (NF-κB) which plays a critical role in the mediation of survival signals in cancer cells. To investigate the mechanisms of PPARγ agonist-induced apoptosis of colon cancer cells, we examined the effect of troglitazone (0–16 μM) on the activation of GSK-3β and NF-κB. Our study showed that the inhibitory effect of troglitazone on colon cancer cell growth was associated with inhibition of NF-κB activity and GSK-3β expression in a dose-dependent manner. Cells were arrested in G0/G1 phase followed by the induction of apoptosis after treatment of troglitazone with concomitant decrease in the expression of the G0/G1 phase regulatory proteins; Cdk2, Cdk4, cyclin B1, D1, and E as well as in the anti-apoptosis protein Bcl-2 along with an increase in the expression of the pro-apoptosis-associated proteins; Caspase-3, Caspase-9 and Bax. Transient transfection of GSK-3β recovered troglitazone-induced cell growth inhibition and NF-κB inactivation. In contrast, co-treatment of troglitazone with a GSK-3β inhibitor (AR-a014418) or siRNA against GSK-3β, significantly augmented the inhibitory effect of troglitazone on the NF-κB activity, the cancer cell growth and on the expression of G0/G1 phase regulatory proteins and pro-apoptosis regulatory proteins. These results suggest that the PPARγ agonist, troglitazone, inhibits colon cancer cell growth via inactivation of NF-κB by suppressing GSK-3β activity.  相似文献   

17.
Serine-threonine kinase 38 (STK38) is a member of the protein kinase A (PKA)/PKG/PKC-like family. In the present study, we investigated the regulatory mechanism of STK38 and assessed its role in the cellular stress response. Among various environmental stresses, STK38 was specifically activated by H(2)O(2), and the phosphatidylinositol 3-kinase inhibitor wortmannin or AKT inhibitor IV suppressed this activation. STK38 was also activated by a constitutively active AKT1 or by GSK-3β inhibitor VII. The phosphorylation level of GSK-3β was correlated with the STK38 activity, in response to various stimuli and in different cell lines. Co-immunoprecipitation analysis revealed that GSK-3β physically interacted with STK38 in cells. GSK-3β overexpression inhibited the H(2)O(2)-stimulated STK38 activity. GSK-3β phosphorylated STK38 on residues S6 and T7 in vitro, depending largely on a PKA-mediated priming phosphorylation of STK38 on residues S10 and S11, respectively. STK38's H(2)O(2)-stimulated activity was enhanced by alanine substitution at its priming sites and/or at S6 and T7, and it was partially reduced by a phosphomimetic mutation at S6 or T7. STK38 knockdown enhanced the H(2)O(2)-induced JNK phosphorylation and cell death. Our results indicate that that GSK-3β inhibits STK38's full activation, and suggest that STK38 activation is required to prevent cell death in response to oxidative stress.  相似文献   

18.
BACE-1 and GSK-3β both are potential therapeutic drug targets for Alzheimer’s disease. Recently, both these targets received attention for designing dual inhibitors. Till now only two scaffolds (triazinone and curcumin) derivatives have been reported as BACE-1 and GSK-3β dual inhibitors. In our previous work, we have reported first in class dual inhibitor for BACE-1 and GSK-3β. In this study, we have explored other naphthofuran derivatives for their potential to inhibit BACE-1 and GSK-3β through docking, molecular dynamics, binding energy (MM-PBSA). These computational methods were performed to estimate the binding affinity of naphthofuran derivatives towards the BACE-1 and GSK-3β. In the docking results, two derivatives (NS7 and NS9) showed better binding affinity as compared to previously reported inhibitors. Hydrogen bond occupancy of NS7 and NS9 generated from MD trajectories showed good interaction with the flap residues Gln73, Thr72 of BACE-1 and Arg141, Thr138 residues of GSK-3β. MM-PBSA and energy decomposition per residue revealed different components of binding energy and relative importance of amino acid involved in binding. The results showed that the binding of inhibitors was majorly governed by the hydrophobic interactions and suggesting that hydrophobic interactions might be the key to design dual inhibitors for BACE1-1 and GSK-3β. Distance between important pair of amino acid residues indicated that BACE-1 and GSK-3β adopt closed conformation and become inactive after ligand binding. The results suggested that naphthofuran derivatives might act as dual inhibitor against BACE-1 and GSK-3β.  相似文献   

19.
TNF-α is a cytokine with antitumorigenic property. In contrast, low dose, chronic TNF-α production by tumor cells or stromal cells may promote tumor growth and metastasis. Serum levels of TNF-α are significantly elevated in renal cell carcinoma (RCC) patients. Here, we showed that TNF-α induced epithelial-mesenchymal transition (EMT) and promoted tumorigenicity of RCC by repressing E-cadherin, upregulating vimentin, activating MMP9, and invasion activities. In addition, TNF-α treatment inhibited glycogen synthase kinase 3β (GSK-3β) activity through serine-9 phosphorylation mediated by the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway in RCC cells. Inhibition of PI3K/AKT by LY294002 reactivated GSK-3β and suppressed the TNF-α-induced EMT of RCC cells. Inactivation of GSK-3β by LiCl significantly increased MMP9 activity and EMT of RCC cells. Activation of GSK-3β by transduction of constitutively active GSK-3β into RCC cells suppressed TNF-α-mediated anchorage-independent growth in soft agar and tumorigenicity in nude mice. Overexpression of a kinase-deficient GSK-3β, in contrast, potentiated EMT, anchorage-independent growth and drastically enhanced tumorigenicity in vivo. Most importantly, a 15-fold inactivation of GSK-3β activity, 3-fold decrease of E-cadherin, and 2-fold increase of vimentin were observed in human RCC tumor tissues. These results indicated that inactivation of GSK-3β plays a pivotal role in the TNF-α-mediated tumorigenesis of RCC. Mol Cancer Res; 10(8); 1109-19. ?2012 AACR.  相似文献   

20.
糖原合酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)是调控糖 原代谢的主要激酶.它可以使多种底物蛋白磷酸化,参与调节细胞增殖、细胞分化和细胞凋亡.最 近研究表明,GSK-3β与帕金森病发生密切相关. 在帕金森病研究模型中,GSK-3β活性增高,诱导多巴胺能神经元凋亡;而GSK-3β活性被抑制时,tau蛋白磷酸化减少,α共核蛋白表达降低,神经元得到保护.因此,GSK-3 β可能成为帕金森病治疗的新靶点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号