共查询到20条相似文献,搜索用时 15 毫秒
1.
Plastidic phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin 总被引:2,自引:0,他引:2
Plastidic phosphatidic acid phosphatase (PAP) dephosphorylates phosphatidic acid to yield diacylglycerol, which is a precursor for galactolipids, a primary and indispensable component of photosynthetic membranes. Despite its functional importance, the molecular characteristics and phylogenetic origin of plastidic PAP were unknown because no potential homologs have been found. Here, we report the isolation and characterization of plastidic PAPs in Arabidopsis that belong to a distinct lipid phosphate phosphatase (LPP) subfamily with prokaryotic origin. Because no homolog of mammalian LPP was found in cyanobacteria, we sought an LPP ortholog in a more primitive organism, Chlorobium tepidum, and its homologs in cyanobacteria. Arabidopsis had five homologs of cyanobacterial LPP, three of which (LPP gamma, LPP epsilon 1, and LPP epsilon 2) localized to chloroplasts. Complementation of yeast Delta dpp1 Delta lpp1 Delta pah1 by plastidic LPPs rescued the relevant phenotype in vitro and in vivo, suggesting that they function as PAPs. Of the three LPPs, LPP gamma activity best resembled the native activity. The three plastidic LPPs were differentially expressed both in green and nongreen tissues, with LPP gamma expressed the highest in shoots. A knock-out mutant for LPP gamma could not be obtained, although a lpp epsilon 1 lpp epsilon 2 double knock-out showed no significant changes in lipid composition. However, lpp gamma homozygous mutant was isolated only under ectopic overexpression of LPP gamma, suggesting that loss of LPP gamma may cause lethal effect on plant viability. Thus, in Arabidopsis, there are three isoforms of plastidic PAP that belong to a distinct subfamily of LPP, and LPP gamma may be the primary plastidic PAP. 相似文献
2.
Michel Bernier 《Cell biochemistry and biophysics》2004,40(3):209-217
Insulin receptor signal transduction plays a critical role in regulating pancreatic β-cell function, notably the acute first-phase insulin release in response to glucose. The basis for insulin resistance in pancreatic β-cells is not well understood but may be related to abnormal regulation of tyrosine phosphorylation events, which, in turn, may alter organization of insulin-signaling molecules in space and time. Members of the protein tyrosine phosphatase (PTPase) family are both functionally and structurally diverse; and within the past few years data have emerged from many laboratories that suggest selectivity of the PTPase catalytic domains toward cellular substrates. Of significance, a subset of PTPases has been implicated in the regulation of insulin signaling in a number of insulin-sensitive tissues. Alteration in PTPase expression or activity has been associated with abnormal regulation of tyrosine phosphorylation events and is accompanied by modulation of insulin sensitivity in vivo. Manipulations aimed at reducing expression of physiologically relevant PTPases acting at a step proximal to the insulin receptor are accompanied by normalization of blood glucose levels and improved insulin sensitivity in both normal and diabetic animals. Hence, the development of tissue-specific gene inactivation strategies should facilitate the study of the potential role of PTPases in β-cell insulin signaling transduction. 相似文献
3.
Protein tyrosine phosphatases: structure-function relationships 总被引:1,自引:0,他引:1
Structural analysis of protein tyrosine phosphatases (PTPs) has expanded considerably in the last several years, producing more than 200 structures in this class of enzymes (from 35 different proteins and their complexes with ligands). The small-medium size of the catalytic domain of approximately 280 residues plus a very compact fold makes it amenable to cloning and overexpression in bacterial systems thus facilitating crystallographic analysis. The low molecular weight PTPs being even smaller, approximately 150 residues, are also perfect targets for NMR analysis. The availability of different structures and complexes of PTPs with substrates and inhibitors has provided a wealth of information with profound effects in the way we understand their biological functions. Developments in mammalian expression technology recently led to the first crystal structure of a receptor-like PTP extracellular region. Altogether, the PTP structural work significantly advanced our knowledge regarding the architecture, regulation and substrate specificity of these enzymes. In this review, we compile the most prominent structural traits that characterize PTPs and their complexes with ligands. We discuss how the data can be used to design further functional experiments and as a basis for drug design given that many PTPs are now considered strategic therapeutic targets for human diseases such as diabetes and cancer. 相似文献
4.
Protein-tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post-translational modifications affecting intrinsic catalytic activity, ligand binding and dimerization. Here, we review the regulatory mechanisms found to control the classical protein-tyrosine phosphatases. 相似文献
5.
Dual-specificity phosphatases (DSPs) constitute a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylates phospho-Tyr, phospho-Ser and nonproteinaceous substrates. DSPs are involved in the regulation of both developmental and postnatal essential processes, such as early embryogenesis, placental development and immune responses. Several DSP genes are implicated in familial and sporadic human diseases, including tumor-related, neurological and muscle disorders, and cardiovascular and inflammatory diseases. This association ranges from disease-causative mutations to disease-risk-prone single-nucleotide polymorphisms, promoter methylation or gene duplication (most often in cancer). Deconvolution of the role of DSPs in disease is challenging. The enzymes' activities are regulated at many levels and they form part of extensive, intricate networks with other signaling components. Here, we review current knowledge of the role of cysteine-based PTP-domain DSPs in health and disease, and their suitability as putative therapeutic targets for drugs is discussed. 相似文献
6.
The aim of this review is to provide a synthesis of the published experimental data on protein tyrosine phosphatases from parasitic protozoa, in silico analysis based on the availability of completed genomes and to place available data for individual phosphatases from different unicellular parasites into the comparative and evolutionary context. We analysed the complement of protein tyrosine phosphatases (PTP) in several species of unicellular parasites that belong to Apicomplexa (Plasmodium; Cryptosporidium, Babesia, Theileria, and Toxoplasma), kinetoplastids (Leishmania and Trypanosoma spp.), as well as Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis and a microsporidium Encephalitozoon cuniculi. The analysis shows distinct distribution of the known families of tyrosine phosphatases in different species. Protozoan tyrosine phosphatases show considerable levels of divergence compared with their mammalian homologues, both in terms of sequence similarity between the catalytic domains and the structure of their flanking domains. This potentially makes them suitable targets for development of specific inhibitors with minimal effects on physiology of mammalian hosts. 相似文献
7.
8.
The inactivation of chick tyrosine aminotransferase by acid and alkaline phosphatases 总被引:1,自引:0,他引:1
B Peterkofsky 《Biochemical and biophysical research communications》1971,43(5):1171-1178
9.
In the past few years, a diverse family of receptor-like and nontransmembrane protein tyrosine phosphatases (PTPases) have been identified and characterized at the level of primary structure. Progress is now being made towards defining physiological processes in which the activity of PTPases is important. One thing seems clear: the PTPases cannot be regarded simply as antagonists of the protein tyrosine kinases (PTKs)--rather, they have the potential to act both positively and negatively in mediating cellular signalling responses. 相似文献
10.
Tyrosine phosphatase (PTP)-like proteins exist in many bacteria and are segregated into two major groups: low molecular weight and conventional. The latter group also has activity as phosphoinositide phosphatases. These two kinds of PTP are suggested to be involved in many aspects of bacterial physiology including stress response, DNA binding proteins, virulence, and capsule/cell wall production. By annotation, Listeria monocytogenes possesses two potential low molecular weight and two conventional PTPs. Using L.?monocytogenes wild-type (WT) strain 10403S, we have created an in-frame deletion mutant lacking all four PTPs, as well as four additional complemented strains harboring each of the PTPs. No major physiological differences were observed between the WT and the mutant lacking all four PTPs. However, the deletion mutant strain was resistant to Listeria phages A511 and P35 and sensitive to other Listeria phages. This was attributed to reduced attachment to the cell wall. The mutant lacking all PTPs was found to lack N-acetylglucosamine in its wall teichoic acid. Phage sensitivity and attachment was rescued in a complemented strain harboring a low molecular weight PTP (LMRG1707). 相似文献
11.
12.
Given the importance of tyrosine phosphorylation of proteins in signalling pathways, it is perhaps not surprising that protein tyrosine phosphatases (PTPs) are involved in the pathogenesis of certain human diseases. A PTP produced by the Yersinia bacteria (which can cause bubonic plague, septicemia and enteric diseases) is thought to be used as a ‘weapon’ against host cell functions. In addition, dysfunction of cells' endogenous PTPs may contribute to defective immune function, to cancer and to diabetes. 相似文献
13.
Molecular characterization of protein tyrosine phosphatases. 总被引:16,自引:0,他引:16
14.
Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta, PTPepsilon, CD45, LAR, PTP1B and SHP-1), using pNPP as substrate. Most noticeable is the increase in the turnover number for PTPbeta with increasing pH and the weak pH-dependence of the turnover number of CD45. The kinetic data for PTPalpha-D1 and PTPalpha-D1D2 suggest that D2 affects the catalysis of pNPP. PTPepsilon and the closely homologous PTPalpha behave differently. The K(m) data were lower for PTPepsilon than those for PTPalpha, while the inverse was observed for the catalytic efficiencies. 相似文献
15.
Receptor-like protein tyrosine phosphatases (RPTPs) are type I integral membrane proteins. Together with protein tyrosine kinases, RPTPs regulate the phosphotyrosine levels in the cell. Studies of two RPTPs, CD45 and PTPalpha, have provided strong evidence that dimerization leads to inactivation of the receptors, and that the dimerization of PTPalpha involves interactions in the transmembrane domain (TMD). Using the TOXCAT assay, a genetic approach for analyzing TM interactions in Escherichia coli membranes, we show that the TMD of RPTPs interact in the membrane, albeit to different extents. Using fusion proteins of TMDs, we also observe an equilibrium between monomer and dimer in sodium dodecyl sulfate (SDS) micelles. Through a mutational study of the DEP1 TMD, we demonstrate that these interactions are specific. Taken together, our results define a subset of the RPTP family in which TM homodimerization may act as a mediator of protein function. 相似文献
16.
17.
Tyrosine phosphatases play an important role in cellular signalling and networking that is antagonistic to the kinases. Near completion of the human genome- sequencing project permits us to review the distribution of this family and study its involvement in different pathways. Ninety-six homologues of the classical and dual- specific tyrosine phosphatases (DuSPs) were identified in the human genome using sensitive sequence search techniques. Uncommon domain architectures were encountered, including an example where a kinase and a phosphatase domain are found to co-exist in a single polypeptide. The evolutionary rate is higher for the DuSP compared with the classical tyrosine phosphatases. Orthologues of the 96 putative human tyrosine phosphatases were identified in four model organisms to study the conservation of the family members. Three nuclear localized tyrosine phosphatases retain an orthologous relationship with all model systems considered but still differ in their domain architectures. The diversity in the multi-domain members of the superfamily occurs mainly through domain recruitment, especially in receptor tyrosine phosphatases. The curation of human tyrosine phosphatases provides a convenient framework for characterizing and analysing the functional and structural properties of this diverse family of proteins. 相似文献
18.
Welte S Baringhaus KH Schmider W Müller G Petry S Tennagels N 《Analytical biochemistry》2005,338(1):32-38
The fluorogenic substrate 6,8-difluoro-4-methylumbiliferyl phosphate (DIFMUP) has been widely used for the detection of serine and threonine phosphatase activities. Here we describe the use of this substrate for the characterization of protein tyrosine phosphatases (PTPs) and for the screening for PTP inhibitors. The measured kinetic and inhibitor constants for DIFMUP cleavage were comparable with those of the widely used but less discriminative and practicable substrates, para-nitrophenylphosphate and phosphotyrosine-containing peptides, respectively. Furthermore, the continuous and highly sensitive assay allows fast and accurate investigations of the type, kinetic behavior, and binding mode of small-molecule inhibitors. We discuss the validation of this assay system for various PTPs and its use in inhibitor screening for PTP1B. 相似文献