首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A group of 4-methoxyphenylacetic acid esters were designed, synthesized and evaluated as potential inhibitors of soybean 15-lipoxygenase (SLO) on the basis of eugenol and esteragol structures. Compounds 7de showed the best IC50 in SLO inhibition (IC50 = 3.8 and 1.9 μM, respectively). All compounds were docked in SLO active site and showed that carbonyl group of compounds is oriented toward the FeIII–OH moiety in the active site of enzyme and fixed by hydrogen bonding with hydroxyl group. It is assumed that lipophilic interaction of ligand–enzyme would be in charge of inhibiting the enzyme activity. The selectivity of the synthetic esters in inhibiting of 15-HLOb was also compared with 15-HLOa by molecular modeling and multiple alignment techniques.  相似文献   

2.
A series of 16 oxadiazole and triazolothiadiazole derivatives were designed, synthesized and evaluated as mushroom tyrosinase inhibitors. Five derivatives were found to display high inhibition on the tyrosinase activity ranging from 0.87 to 1.49 μM. Compound 5 exhibited highest tyrosinase inhibitory activity with an IC50 value of 0.87 ± 0.16 μM. The in silico protein–ligand docking using autodock 4.1 was successfully performed on compound 5 with significant binding energy value of ?5.58 kcal/mol. The docking results also showed that the tyrosinase inhibition might be due to the metal chelating effect by the presence of thione functionality in compounds 15. Further studies revealed that the presence of hydrophobic group such as cycloamine derivatives played a major role in the inhibition. Piperazine moiety in compound 5 appeared to be involved in an extensive hydrophobic contact and a 2.9 Å hydrogen bonding with residue Glu 182 in the active site.  相似文献   

3.
Six diphenolic compounds containing adamantane moiety were synthesized and evaluated as potent inhibitors on tyrosinase activity and melanin formation in melan-a cells. The inhibitory activity of 4-adamantyl resorcinol 1 was similar to that of 4-n-butyl resorcinol in both assays. However, dihydroxyl benzamide derivatives 6a–e showed different inhibitory patterns. All derivatives significantly suppressed the cellular melanin formation without tyrosinase inhibitory activities. These behaviors indicated that the introduction of amide bond changes the binding mode of dihydroxyl groups to tyrosinase. Among derivatives, 6d (3,4-dihydroxyl compound) and 6e (2,3-dihydroxyl compound) showed stronger inhibitory activities (IC50 = 1.25 μM and 0.73 μM, respectively) as compared to 4-n-butyl resorcinol (IC50 = 21.64 μM) and hydroquinone (IC50 = 3.97 μM). This study showed that the position of dihydroxyl substituent at aromatic ring is important for the intercellular inhibition of melanin formation, and also amide linkage and adamantane moiety enhance the inhibition.  相似文献   

4.
A group of cyclic imides (110) was designed for evaluation as a selective COX-2 inhibitors and investigated in vivo for their anti-inflammatory activity. Compounds 6a, 6b, 8a, 8b, 9a, 9b, 10a and 10b were proved to be potent COX-2 inhibitors with IC50 range of 0.1–4.0 μM. In vitro COX-1/COX-2 inhibition structure–activity studies identified compound 8a as a highly potent (IC50 = 0.1 μM), and an extremely selective [COX-2 (SI) > 1000] comparable to celecoxib [COX-2 (SI) > 384], COX-2 inhibitor that showed superior anti-inflammatory activity (ED50 = 72.4 mg/kg) relative to diclofenac (ED50 = 114 mg/kg). Molecular modeling was carried out through docking the designed compounds into the COX-2 binding site to predict if these compounds have analogous binding mode to the COX-2 inhibitors. The study showed that the homosulfonamide fragment of 8a inserted deep inside the 2°-pocket of the COX-2 active site, where the SO2NH2 group underwent H-bonding interaction with Gln192(2.95 Å), Phe518(2.82 Å) and Arg513(2.63 and 2.73 Å). Docking study of the synthesized compound 8a into the active site of COX-2 revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   

5.
A series of 2-styryl-5-nitroimidazole derivatives containing 1,4-benzodioxan moiety (3a3r) has been designed, synthesized and their biological activities were also evaluated as potential antiproliferation and focal adhesion kinase (FAK) inhibitors. Among all the compounds, 3p showed the most potent activity in vitro which inhibited the growth of A549 with IC50 value of 3.11 μM and Hela with IC50 value of 2.54 μM respectively. Compound 3p also exhibited significant FAK inhibitory activity (IC50 = 0.45 μM). Docking simulation was performed for compound 3p into the FAK structure active site to determine the probable binding model.  相似文献   

6.
Thymidine phosphorylase (TP) is up regulated in wide variety of solid tumors and therefore presents a remarkable target for drug discovery in cancer. A novel class of extremely potent TPase inhibitors based on benzopyrazine (1–28) has been developed and evaluated against thymidine phosphorylase enzyme. Out of these twenty-eight analogs eleven (11) compounds 1, 4, 14, 15, 16, 17, 18, 19, 20, 24 and 28 showed potent thymidine phosphorylase inhibitory potentials with IC50 values ranged between 3.20 ± 0.30 and 37.60 ± 1.15 μM when compared with the standard 7-Deazaxanthine (IC50 = 38.68 ± 4.42 μM). Structure-activity relationship was established and molecular docking studies were performed to determine the binding interactions of these newly synthesized compounds. Current studies have revealed that these compounds established stronger hydrogen bonding networks with active site residues as compare to the standard compound 7DX.  相似文献   

7.
Piperlongumine (PL) and its derivatives were synthesized by the direct reaction between acid chloride of 3,4,5-trimethoxycinnamic acid and various amides/lactams. Later their anti-inflammatory effects were evaluated in lipopolysaccharide (LPS)-induced RAW-264.7 macrophages. Of the piperlogs prepared in this study, the maximum (91%) inhibitory activity was observed with PL (IC50 = 3 μM) but showed cytotoxicity whereas compound 3 (IC50 = 6 μM) which possess α,β-unsaturated γ-butyrolactam moiety offered good level (65%) of activity with no cytotoxicity. This study revealed that amide/lactam moiety connected to cinnamoyl group with minimum 3 carbon chain length and α,β-unsaturation is fruitful to show potent anti-inflammatory activity.  相似文献   

8.
A series of novel coumarin derivatives containing 4,5-dihydropyrazole moiety as potential telomerase inhibitors were synthesized. The bioassay tests show that compound 3d exhibited potentially high activity against human gastric cancer cell SGC-7901 with IC50 value of 2.69 ± 0.60 μg/mL. All title compounds were assayed for telomerase inhibition by a modified TRAP assay, the results show that compounds 3d and 3f can strongly inhibit telomerase with IC50 values of 2.0 ± 0.07 and 1.8 ± 0.35 μM, respectively. Docking simulation was performed to position compound 3d into the telomerase (3DU6) active site to determine the probable binding model.  相似文献   

9.
A series of (1H-benzo[d][1,2,3]triazol-1-yl)(4-benzylpiperazin-1-yl)methanones and of (1H-benzo[d][1,2,3]triazol-1-yl)(4-phenylpiperazin-1-yl)methanones has been prepared and tested on human fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). In the benzylpiperazinyl series, compound 29 (ML30) exhibited an IC50 value of 0.54 nM on MAGL, combined with a 1000-fold selectivity versus FAAH, while compounds 11 and 16 acted as potent dual FAAH-MAGL inhibitors (IC50 <10 nM). In the phenylpiperazinyl series, compounds 37, 38, 42, and 43 displayed IC50 values against MAGL in the nanomolar range, whilst being between one and two orders of magnitude less potent on the FAAH, while compounds 31 and 32 were potent FAAH inhibitors (IC50 <20 nM) and over 12-fold selective versus MAGL. The key structural determinants driving the structure–activity relationships were explored by the minimization of the inhibitors inside the active site of both enzymes.  相似文献   

10.
A series of N-substituted 1-aminomethyl-β-d-glucopyranoside derivatives was prepared. These novel synthetic compounds were assessed in vitro for inhibitory activity against yeast α-glucosidase and both rat intestinal α-glucosidases maltase and sucrase. Most of the compounds displayed α-glucosidase inhibitory activity, with IC50 values covering the wide range from 2.3 μM to 2.0 mM. Compounds 19a (IC50 = 2.3 μM) and 19b (IC50 = 5.6 μM) were identified as the most potent inhibitors for yeast α-glucosidase, while compounds 16 (IC50 = 7.7 and 15.6 μM) and 19e (IC50 = 5.1 and 10.4 μM) were the strongest inhibitors of rat intestinal maltase and sucrase. Analysis of the kinetics of enzyme inhibition indicated that 19e inhibited maltase and sucrase in a competitive manner. The results suggest that the aminomethyl-β-d-glucopyranoside moiety can mimic the substrates of α-glucosidase in the enzyme catalytic site, leading to competitive enzyme inhibition. Moreover, the nature of the N-substituent has considerable influence on inhibitory potency.  相似文献   

11.
The fragment-based identification of two novel and potent biochemical inhibitors of the nicotinamide phosphoribosyltransferase (NAMPT) enzyme is described. These compounds (51 and 63) incorporate an amide moiety derived from 3-aminopyridine, and are thus structurally distinct from other known anti-NAMPT agents. Each exhibits potent inhibition of NAMPT biochemical activity (IC50 = 19 and 15 nM, respectively) as well as robust antiproliferative properties in A2780 cell culture experiments (IC50 = 121 and 99 nM, respectively). However, additional biological studies indicate that only inhibitor 51 exerts its A2780 cell culture effects via a NAMPT-mediated mechanism. The crystal structures of both 51 and 63 in complex with NAMPT are also independently described.  相似文献   

12.
The involvement of μ-calpain in neurological disorders, such as stroke and Alzheimer’s disease has attracted considerable interest in the use of calpain inhibitors as therapeutic agents. 4-Aryl-4-oxobutanoic acid amide derivatives 4 were designed as acyclic variants of μ-calpain inhibitory chromone and quinolinone derivatives. Of the compounds synthesized, 4c-2, which possesses a 2-methoxymethoxy group at the phenyl ring and a primary amide at the warhead region most potently inhibited μ-calpain (IC50 = 0.34 μM). Our findings suggest that the 4-aryl-4-oxobutanoic acid amide derivatives should be considered as a new family of μ-calpain inhibitors.  相似文献   

13.
14.
Two new series of biphenyls, analogs of aglycone of natural product fortuneanoside E, were prepared using Suzuki–Miyaura cross-coupling and selective magnesium iodide demethylation/debenzylation, and their mushroom tyrosinase inhibitory activity was evaluated. Most of the 4-hydroxy-3,5-dimethoxyphenyl biphenyl compounds (series II, 20–36) were in general more active than 3,4,5-trimethoxyphenyl biphenyl compounds (series I, 1–19). Structure–activity relationships study showed that monosaccharide substituents, such as glucose, were not necessary and the presence of 4-hydroxy-3,5-dimethoxyphenyl moiety was crucial for inhibitory activity. Among the compounds synthesised, compound 21 (IC50 = 0.02 mM) was found to be the most active one, which exhibited an activity that was 7 times higher than that of fortuneanoside E (IC50 = 0.14 mM) and 10 times higher than that of arbutin (IC50 = 0.21 mM), known as potent tyrosinase inhibitors. The inhibition kinetics analyzed by Lineweaver–Burk plots revealed that compound 21 was a competitive inhibitor (Ki = 0.015 mM).  相似文献   

15.
1,3,4-Oxadiazole derivatives have drawn continuing interest over the years because of their varied biological activities. In order to search for novel anticancer agents, we designed and synthesized a series of new 1,3,4-oxadiazole derivatives containing benzotriazole moiety as potential focal adhesion kinase (FAK) inhibitors. All the synthesized compounds were firstly reported. Among the compounds, compound 4 shows the most potent inhibitory activity against MCF-7 and HT29 cell lines with IC50 values of 5.68 μg/ml and 10.21 μg/ml, respectively. Besides, all the compounds were assayed for FAK inhibitory activity using the TRAP–PCR–ELISA assay. The results showed compound 4 exhibited the most potent FAK inhibitory activity with IC50 values of 1.2 ± 0.3 μM. Docking simulation by positioning compound 4 into the FAK structure active site was performed to explore the possible binding mode. Apoptosis which was analyzed by flow cytometry, demonstrated that compound 4 induced apoptosis against MCF-7 cells. Therefore, compound 4 may be a potential anticancer agent against MCF-7 cancer cell.  相似文献   

16.
A series of 4-aminoquinolinyl-chalcone amides 1119 were synthesized through condensation of carboxylic acid-functionalized chalcone with aminoquinolines, using 1,1′-carbonyldiimidazole as coupling agent. These compounds were screened against the chloroquine sensitive (3D7) and chloroquine resistant (W2) strains of Plasmodium falciparum. Their cytotoxicity towards the WI-38 cell line of normal human fetal lung fibroblast was determined. All compounds were found active, with IC50 values ranging between 0.04–0.5 μM and 0.07–1.8 μM against 3D7 and W2, respectively. They demonstrated moderate to high selective activity towards the parasitic cells in the presence of mammalian cells. However, amide 15, featuring the 1,6-diaminohexane linker, despite possessing predicted unfavourable aqueous solubility and absorption properties, was the most active of all the amides tested. It was found to be as potent as CQ against 3D7, while it displayed a two-fold higher activity than CQ against the W2 strain, with good selective antimalarial activity (SI = 435) towards the parasitic cells. During this study, amide 15 was thus identified as the best drug-candidate to for further investigation as a potential drug in search for new, safe and effective antimalarial drugs.  相似文献   

17.
A new series of coumarin thiazole derivatives 7a-7t were synthesized, characterized by 1H NMR, 13C NMR and element analysis, evaluated for their α-glucosidase inhibitory activity. The majority of the screened compounds displayed potent inhibitory activities with IC50 values in the range of 6.24 ± 0.07–81.69 ± 0.39 μM, when compared to the standard acarbose (IC50 = 43.26 ± 0.19 μM). Structure–activity relationship (SAR) studies suggest that the pattern of substitution in the phenyl ring is closely related to the biological activity of this class of compounds. Among all the tested molecules, compound 7e (IC50 = 6.24 ± 0.07 μM) was found to be the most active compound in the library of coumarin thiazole derivatives. Enzyme kinetic studies showed that compound 7e is a non-competitive inhibitor with a Ki of 6.86 μM. Furthermore, the binding interactions of compound 7e with the active site of α-glucosidase were confirmed through molecular docking. This study has identified a new class of potent α-glucosidase inhibitors for further investigation.  相似文献   

18.
Natural products are the main source of motivation to design and synthesize new molecules for drug development. Designing new molecules against β-glucuronidase inhibitory is utmost essential. In this study indole analogs (1–35) were synthesized, characterized using various spectroscopic techniques including 1H NMR and EI-MS and evaluated for their β-glucuronidase inhibitory activity. Most compounds were identified as potent inhibitors for the enzyme with IC50 values ranging between 0.50 and 53.40 μM, with reference to standard d-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 μM). Structure-activity relationship had been also established. The results obtained from docking studies for the most active compound 10 showed that hydrogen bond donor features as well as hydrogen bonding with (Oε1) of nucleophilic residue Glu540 is believed to be the most importance interaction in the inhibition activity. It was also observed that hydroxyl at fourth position of benzylidene ring acts as a hydrogen bond donor and interacts with hydroxyl (OH) on the side chain of catalysis residue Tyr508. The enzyme-ligand complexed were being stabilized through electrostatic π-anion interaction with acid-base catalyst Glu451 (3.96 Å) and thus preventing Glu451 from functioning as proton donor residue.  相似文献   

19.
A type of novel α,β-unsaturated cyclohexanone analogous, which designed based on the curcumin core structure, have been discovered as potential EGFR inhibitors. These compounds exhibit potent antiproliferative activity in two human tumor cell lines (Hep G2 and B16-F10). Among them, compounds I3 and I12 displayed the most potent EGFR inhibitory activity (IC50 = 0.43 μM and 1.54 μM, respectively). Molecular docking of I12 into EGFR TK active site was also performed. This inhibitor nicely fitting the active site might well explain its excellent inhibitory activity.  相似文献   

20.
Several 7-aminoamido-pterins were synthesized to evaluate the electronic and biochemical subtleties observed in the ‘linker space’ when N-{N-(pterin-7-yl)carbonylglycyl}-l-phenylalanine 1 was bound to the active site of RTA. The gylcine–phenylalanine dipeptide analogs included both amides and thioamides. Decarboxy gly-phe analog 2 showed a 6.4-fold decrease in potency (IC50 = 128 μM), yet the analogous thioamide 7 recovered the lost activity and performed similarly to the parent inhibitor (IC50 = 29 μM). Thiourea 12 exhibited an IC50 nearly six times lower than the oxo analog 13. All inhibitors showed the pterin head-group firmly bound in their X-ray structures yet the pendants were not fully resolved suggesting that all pendants are not firmly bound in the RTA linker space. Calculated log P values do not correlate to the increase in bioactivity suggesting other factors dominate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号