首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Protein-secreting procaryotic host organisms are currently being sought as alternatives to Escherichia coli for recombinant processing. In this study we examined how manipulation of the cultivation conditions can enhance heterologous protein production by Streptomyces lividans. The recombinant S. lividans used in this study expressed and excreted a Flavobacterium enzyme capable of hydrolyzing organophosphates. Initial shake-flask studies demonstrated that supplementing Luria-Bertani medium with moderate amounts of glucose (30 g/l), led to improved enzyme production. In fermentor studies with controlled pH, a further twofold increase in production was observed when glucose was fed continuously as compared to batch cultivation. This improved production in the glucose-fed culture may be related to a reduced accumulation of acids. Continuous feeding of both glucose and tryptone led to a further sixfold increase in production. In addition to enhancing production 25-fold, the efficiency of enzyme production and the specific activity of the excreted enzyme were also improved by glucose and tryptone feeding. These results demonstrate that in addition to genetic manipulations, optimization of cultivation conditions can lead to significant improvements in the production of heterologous proteins from Streptomyces. Offprint requests to: G. F. Payne  相似文献   

2.
3.
4.
Streptomyces lividans as host for heterologous protein production   总被引:2,自引:0,他引:2  
Abstract Streptomycetes are Gram-positive soil bacteria with a differentiated morphology. They are considered interesting candidates for the production of heterologous proteins for several reasons, including their efficient secretion mechanism by which the secreted proteins are localized into the culture supernatant. In view of this potential, this review article describes different aspects of gene expression and regulation in Streptomyces , and summarizes and discusses results obtained using Streptomyces lividans as host for secretion of heterologus proteins of prokaryotic and eukaryotic origin.  相似文献   

5.
Non-conventional yeasts as hosts for heterologous protein production.   总被引:4,自引:0,他引:4  
Yeasts are an attractive group of lower eukaryotic microorganisms, some of which are used in several industrial processes that include brewing, baking and the production of a variety of biochemical compounds. More recently, yeasts have been developed as host organisms for the production of foreign (heterologous) proteins. Saccharomyces cerevisiae has usually been the yeast of choice, but an increasing number of alternative non-Saccharomyces yeasts has now become accessible for modern molecular genetics techniques. Some of them exhibit certain favourable traits such as high-level secretion or very strong and tightly regulated promoters, offering significant advantages over traditional bakers' yeast. In the present work, the current status of Kluyveromyces lactis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris (the best-known alternative yeast systems) is reviewed. The advantages and limitations of these systems are discussed in relation to S. cerevisiae.  相似文献   

6.
Antibiotic production in Streptomyces can often be increased by introducing heterologous genes into strains that contain an antibiotic biosynthesis gene cluster. A number of genes are known to be useful for this purpose. We chose three such genes and cloned them singly or in combination under the control of the strong constitutive ermE* promoter into a ?C31-derived integrating vector that can be transferred efficiently by conjugation from Escherichia coli to Streptomyces. The three genes are adpA, a global regulator from Streptomyces coelicolor, metK, encoding S-adenosylmethionine synthetase from S. coelicolor, and, VHbS, hemoglobin from Vitreoscilla. The substitutions with GC in VHbS was intended to convert codons from lower usage to higher, yet causing no change to the encoded amino acid. Plasmids containing either one of these genes or genes in various combinations were introduced into Streptomyces sp. FR-008, which produces the macrolide antibiotic FR-008-III (also known as candicidin D). The largest increase in FR-008-III production was achieved by the plasmid containing all three genes. This plasmid also increased avermectin production in Streptomyces avermitilis, and is likely to be generally useful for improving antibiotic production in Streptomyces.  相似文献   

7.
In the last two decades, the production of complex polyketides such as erythromycin and its precursor 6-deoxyerythronolide B (6-dEB) was demonstrated feasible in Escherichia coli. Although the heterologous production of polyketide skeleton 6-dEB has reached 210 mg l−1 in E. coli, the yield of its post-modification products erythromycins remains to be improved. Cytochrome P450EryF catalyses the C6 hydroxylation of 6-dEB to form erythronolide B (EB), which is the initial rate-limiting modification in a multi-step pathway to convert 6-dEB into erythromycin. Here, we engineered hydroxylase EryF to improve the production of heterologous polyketide EB in E. coli. By comparative analysis of various versions of P450EryFs, we confirmed the optimal SaEryF for the biosynthesis of EB. Further mutation of SaEryF based on the crystal structure of SaEryF and homology modelling of AcEryF and AeEryF afforded the enhancement of EB production. The designed mutant of SaEryF, I379V, achieved the yield of 131 mg l−1 EB, which was fourfold to that produced by wild-type SaEryF. Moreover, the combined mutagenesis of multiple residues led to further boost the EB concentration by another 41%, which laid the foundation for efficient heterologous biosynthesis of erythromycin or other complex polyketides.  相似文献   

8.
Two genes from Zymomonas mobilis that are responsible for ethanol production, pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhII), were heterologously expressed in the Gram-positive bacterium Streptomyces lividans TK24. An examination of carbon distribution revealed that a significant portion of carbon metabolism was switched from biomass and organic acid biosynthesis to ethanol production upon the expression of pdc and adhII. The recombinant S. lividans TK24 produced ethanol from glucose with a yield of 23.7 % based on the carbohydrate consumed. The recombinant was able to produce ethanol from xylose, l-arabinose, mannose, l-rhamnose, galactose, ribose, and cellobiose with yields of 16.0, 25.6, 21.5, 33.6, 30.6, 14.6, and 33.3 %, respectively. Polymeric substances such as starch and xylan were directly converted to ethanol by the recombinant with ethanol yields of 18.9 and 8.8 %, respectively. The recombinant S. lividans TK24/Tpet developed in this study is potentially a useful microbial resource for ethanol production from various sources of biomasses, especially microalgae.  相似文献   

9.
10.
Biosynthesis of polyketides in heterologous hosts.   总被引:3,自引:0,他引:3  
Polyketide natural products show great promise as medicinal agents. Typically the products of microbial secondary biosynthesis, polyketides are synthesized by an evolutionarily related but architecturally diverse family of multifunctional enzymes called polyketide synthases. A principal limitation for fundamental biochemical studies of these modular megasynthases, as well as for their applications in biotechnology, is the challenge associated with manipulating the natural microorganism that produces a polyketide of interest. To ameliorate this limitation, over the past decade several genetically amenable microbes have been developed as heterologous hosts for polyketide biosynthesis. Here we review the state of the art as well as the difficulties associated with heterologous polyketide production. In particular, we focus on two model hosts, Streptomyces coelicolor and Escherichia coli. Future directions for this relatively new but growing technological opportunity are also discussed.  相似文献   

11.
A media development program for the enhanced production of macrolide aglycones by Streptomyces coelicolor is described. Shake flask studies utilizing a yeast extract and a bakers' yeast increased production by 200% and 80%, respectively. However, ammonia generation and high pH were identified as potential problems in these enriched media. Studies in pH-controlled fermentors revealed that production stage pH significantly affects macrolide titers, with low pH (5.5) being more productive than high pH (6.5). Implementation of glucose feeding in shake flask cultures reduced ammonia generation and controlled production stage pH, resulting in significantly enhanced productivities. The combined effects of media supplementation and glucose feeding resulted in a three to five-fold overall improvement in total macrolide aglycone titers, and is the first reported high-level (>1 g/l) production of recombinant polyketides in a heterologous host. Journal of Industrial Microbiology & Biotechnology (2002) 28, 297–301 DOI: 10.1038/sj/jim/7000246 Received 06 August 2001/ Accepted in revised form 26 January 2002  相似文献   

12.
13.
Summary Several mutants ofStreptomyces aureofaciens strain were used for protoplast regeneration and plasmid transformation. All tested mutants (excepting R 8/26) were transformable by number of plasmids and shuttle vectors. The transformation of the CTC production strains by plasmid containing cloned CTC resistance gene resulted in 1,1–4 times higher antibiotic production. From the restriction analysis of plasmid, phage and chromosomal DNAs it was estimated, that all tested mutants normally contain the modification system analogous toNae I (Roberts, 1987). Mutant R 8/26 expresses not only complete restriction-modification system mentioned above but also potential second system restricting several actinophages.  相似文献   

14.
15.
Secretion of the heterologous Kluyveromyces lactis beta-galactosidase into culture medium by several Saccharomyces cerevisiae osmotic-remedial thermosensitive-autolytic mutants was assayed and proved that new metabolic abilities were conferred since the constructed strains were able to grow in lactose-containing media. Cell growth became independent of a lactose-uptake mechanism. Higher levels of extra-cellular and intra-cellular beta-galactosidase production, lactose consumption and growth were obtained with the LHDP1 strain, showing a thermosensitive-autolytic phenotype as well as being peptidase-defective. The recombinant strain LHDP1 presented the highest beta-galactosidase yields from biomass and the lowest ethanol levels from lactose. This strain is effective for the heterologous production and release of K. lactis beta-galactosidase into the extra-cellular medium after osmotic shock.  相似文献   

16.
17.
To date, several actinomycete genomes have been completed and annotated. Among them, Streptomyces microorganisms are of major pharmaceutical interest because they are a rich source of numerous secondary metabolites. S. avermitilis is an industrial microorganism used for the production of an anthelmintic agent, avermectin, which is a commercially important antiparasitic agent in human and veterinary medicine, and agricultural pesticides. Genome analysis of S. avermitilis provides significant information for not only industrial applications but also understanding the features of this genus. On genome mining of S. avermitilis, the microorganism has been found to harbor at least 38 secondary metabolic gene clusters and 46 insertion sequence (IS)-like sequences on the genome, which have not been searched so far. A significant use of the genome data of Streptomyces microorganisms is the construction of a versatile host for heterologous expression of exogenous biosynthetic gene clusters by genetic engineering. Since S. avermitilis is used as an industrial microorganism, the microorganism is already optimized for the efficient supply of primary metabolic precursors and biochemical energy to support multistep biosynthesis. The feasibility of large-deletion mutants of S. avermitilis has been confirmed by heterologous expression of more than 20 exogenous biosynthetic gene clusters.  相似文献   

18.
Summary The value of a heterologous peptide extracellular production system in Streptomyces using a secretory protease inhibitor, was examined. DNA was synthesized encoding apidaecin 1b (AP1), an interesting antibacterial peptide discovered in lymph fluid of the honeybee, and was joined to the Streptomyces subtilisin inhibitor (SSI) gene via a 12-bp nucleotide sequence corresponding to the amino acid sequence specific for cleavage by blood coagulation factor Xa. The fusion protein (SSI-AP1) could be expressed and excreted efficiently into the medium by culturing S. lividans 66 harbouring a plasmid vector constructed for SSI secretion, into which the synthetic DNA was introduced. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and amino acid analysis of the purified SSI-AP1 protided reasonable results of molecular size and composition value. Interestingly, SSI-AP1 protein showed bifunctional activity: inhibitory activity of SSI and antibacterial activity of AP1. The inhibitory activity against Escherichia coli could be also detected after the fusion protein was cleaved by factor Xa. The extracellular production system presented here should provide a useful tool for production, analysis of mode of action, and also for genetic improvement of antimicrobial peptides such as apidaecin.Offprint requests to: H. Momose  相似文献   

19.
The aminocoumarin antibiotic clorobiocin is a potent inhibitor of bacterial gyrase. Two new analogs of clorobiocin could be obtained by deletion of a methyltransferase gene, involved in deoxysugar biosynthesis, from the biosynthetic gene cluster of clorobiocin, followed by expression of the modified cluster in the heterologous host Streptomyces coelicolor M512. However, only low amounts of the desired glycosides were formed, and aminocoumarins accumulated predominantly in form of aglyca. In the present study, we clarified the limiting steps for aminocoumarin glycoside formation, and devised strategies to improve glycosylation efficiency. Heterologous expression of a partial elloramycin biosynthetic gene cluster indicated that the rate of dTDP-l-rhamnose synthesis, rather than the rate of glycosyl transfer, was limiting for glycoside formation in this strain. Introduction of plasmid pRHAM which contains four genes from the oleandomycin biosynthetic gene cluster, directing the synthesis of dTDP-rhamnose, led to a 26-fold increase of the production of glycosylated aminocoumarins. Expression of the 4-ketoreductase gene oleU alone resulted in an 8-fold increase. Structural investigation of the resulting deoxysugars confirmed that both the endogeneous and the heterologous pathway involve a 3,5-epimerization of the deoxysugar, a hypothesis which had recently been questioned.  相似文献   

20.
Streptomyces is an interesting host for the secretory production of recombinant proteins because of its natural ability to secrete high levels of active proteins into the culture broth and the availability of extensive fermentation knowledge. In bacterial expression systems, heterologous protein secretion has, so far, almost exclusively been investigated using signal peptides that direct the secretion to the Sec pathway. In this study, we assessed the possibility of the Streptomyces lividans twin-arginine translocation (Tat) pathway to secrete the human proteins tumor necrosis factor (TNF) alpha and interleukin (IL) 10 by fusing the coding sequences of mature hTNFalpha and hIL10 to the twin-arginine signal peptides of S. lividans xylanase C (XlnC) and Streptomyces antibioticus tyrosinase. Both proteins were secreted and this secretion was blocked in the DeltatatB and DeltatatC single mutants, indicating that the transport of hTNFalpha and hIL10 could be directed through the Tat pathway. Secretion levels of hTNFalpha and hIL10, however, were lower for Tat-dependent than for Sec-dependent transport using the Sec-dependent signal peptide of the Streptomyces venezuelae subtilisin inhibitor. Surprisingly, Sec-dependent transport was enhanced in the tatB deletion strain. This was especially interesting in the case of hIL10, where Sec-dependent transport of hIL10 was at least 15 times higher in the DeltatatB mutant than in the wild-type strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号