首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the present study we have discovered compound 1, a benzo[1.3.2]dithiazolium ylide-based compound, as a new prototype dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (5-LOX). Compound 1 was initially discovered as a COX-2 inhibitor, resulting indirectly from the COX-2 structure-based virtual screening that identified compound 2 as a virtual hit. Compounds 1 and 2 inhibited COX-1 and COX-2 in mouse macrophages with IC50 in the range of 1.5–18.1 μM. Both compounds 1 and 2 were also found to be potent inhibitors of human 5-LOX (IC50 = 1.22 and 0.47 μM, respectively). Interestingly, compound 1 also had an inhibitory effect on tumor necrosis factor-α (TNF-α) production (IC50 = 0.44 μM), which was not observed with compound 2. Docking studies suggested the (S)-enantiomer of 1 as the biologically active isomer that binds to COX-2. Being a cytokine-suppressive dual COX/5-LOX inhibitor, compound 1 may represent a useful lead structure for the development of advantageous new anti-inflammatory agents.  相似文献   

2.
A hitherto unknown class of linear acetylene regioisomers were designed such that a SO2Me or SO2NH2 group was located at the ortho-, meta- or para-position of the acetylene C-1 phenyl ring, and a N-difluoromethyl-1,2-dihydropyridin-2-one moiety was attached via its C-5 position to the C-2 position on an acetylene template (scaffold). All three SO2Me regioisomers, and the 4-SO2NH2 analog, were potent inhibitors of 5-lipoxygenase (5-LOX IC50 = 3.2–3.5 μM range) relative to the reference drug caffeic acid (IC50 = 4.0 μM). The SO2Me regioisomers exhibited weak cyclooxygenease-1 (COX-1) and -2 (COX-2) inhibitory activity with a modest COX-2 selectivity index. The most potent 3-SO2Me, 4-SO2Me and 4-SO2NH2 compounds, with respective ED50 values of 66.1, 68.5 and 86.5 mg/kg po, exhibited comparable oral anti-inflammatory (AI) activity to that of the reference drug ibuprofen (ED50 = 67.4 mg/kg po). The N-difluoromethyl-1,2-dihydropyridin-2-one moiety provides a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of inhibiting 5-LOX for exploitation in the development of 5-LOX inhibitory AI drugs.  相似文献   

3.
A new series of pyrazole-hydrazone derivatives 4a-i were designed and synthesized, their chemical structures were confirmed by IR, 1H NMR, 13C NMR, MS spectral data and elemental analysis. IC50 values for all prepared compounds to inhibit COX-1, COX-2 and 5-LOX enzymes were determined in vitro. Compounds 4a (IC50 = 0.67 μM) and 4b (IC50 = 0.58 μM) showed better COX-2 inhibitory activity than celecoxib (IC50 = 0.87 μM) with selectivity index (SI = 8.41, 10.55 in sequent) relative to celecoxib (SI = 8.85). Also, compound 4a and 4b exhibited superior inhibitory activity against 5-LOX (IC50 = 1.92, 2.31 μM) higher than zileuton (IC50 = 2.43 μM). All target pyrazoles were screened for their ability to reduce nitric oxide production in LPS stimulated peritoneal macrophages. Compounds 4a, 4b, 4f and 4i displayed concentration dependent reduction and were screened for in vivo anti-inflammatory activity using carrageenan-induced rat paw edema assay. Compound 4f showed the highest anti-inflammatory activity (% edema inhibition = 15–20%) at all doses when compared to reference drug celecoxib (% edema inhibition = 15.7–17.5%). Docking studies were carried out to investigate the interaction of target compounds with COX-2 enzyme active site.  相似文献   

4.
Three novel series of diaryl heterocyclic derivatives bearing the 2-oxo-5H-furan, 2-oxo-3H-1,3-oxazole, and 1H-pyrazole moieties as the central heterocyclic ring were synthesized and their in vitro inhibitory activities on COX-1 and COX-2 isoforms were evaluated using a purified enzyme assay. The 2-oxo-5H-furan derivative 6b was identified as potent COX inhibitor with selectivity toward COX-1 (COX-1 IC50 = 0.061 μM and COX-2 IC50 = 0.325 μM; selectivity index (SI) = 0.19). Among the 1H-pyrazole derivatives, 11b was found to be a potent COX-2 inhibitor, about 38 times more potent than Rofecoxib (COX-2 IC50 = 0.011 μM and 0.398 μM, respectively), but showed no selectivity for COX-2 isoform. Compound 11c demonstrated strong and selective COX-2 inhibitory activity (COX-1 IC50 = 1 μM, COX-2 IC50 = 0.011 μM; SI = ~92). Molecular docking studies of compounds 6b and 11bd into the binding sites of COX-1 and COX-2 allowed to shed light on the binding mode of these novel COX inhibitors.  相似文献   

5.
In our previous study, we designed a series of pyrazole derivatives as novel COX-2 inhibitors. In order to obtain novel dual inhibitors of COX-2 and 5-LOX, herein we designed and synthesized 20 compounds by hybridizing pyrazole with substituted coumarin who was reported to exhibit 5-LOX inhibition to select potent compounds using adequate biological trials sequentially including selective inhibition of COX-2 and 5-LOX, anti-proliferation in vitro, cells apoptosis and cell cycle. Among them, the most potent compound 11g (IC50 = 0.23 ± 0.16 μM for COX-2, IC50 = 0.87 ± 0.07 μM for 5-LOX, IC50 = 4.48 ± 0.57 μM against A549) showed preliminary superiority compared with the positive controls Celecoxib (IC50 = 0.41 ± 0.28 μM for COX-2, IC50 = 7.68 ± 0.55 μM against A549) and Zileuton (IC50 = 1.35 ± 0.24 μM for 5-LOX). Further investigation confirmed that 11g could induce human non-small cell lung cancer A549 cells apoptosis and arrest the cell cycle at G2 phase in a dose-dependent manner. Our study might contribute to COX-2, 5-LOX dual inhibitors thus exploit promising novel cancer prevention agents.  相似文献   

6.
Twenty four pyrazoline derivatives modified from Celecoxib were designed and synthesized as bi-inhibitor of COX-2 and B-Raf. They were evaluated for their COX-1/COX-2/B-Raf inhibitory and anti-proliferation activities. Compound A3 displayed the most potent activity against COX-2 and HeLa cell line (IC50 = 0.008 μM; GI50 = 19.86 μM) and showed superb COX-1/COX-2 selectivity (>500), being more potent and selective than positive control Celecoxib or 5-fluorouracil. Compounds A5 and B5 were introduced best B-Raf inhibitory activities (IC50 = 0.15 μM and 0.12 μM, respectively). Compound A4 retained superb bioactivity against COX-2 and HeLa cell line (IC50 = 0.015 μM; GI50 = 23.82 μM) and displayed moderate B-Raf inhibitory activity (IC50 = 3.84 μM). Docking simulation was conducted to give binding patterns. QSAR models were built using bioactivity data and optimized conformations to provide a future modification of COX-2/B-Raf inhibitors.  相似文献   

7.
Four derivatives of schisandrin, a major dibenzo[a,c]cyclooctadiene lignan of Schisandra chinensis (Turcz.) Baillon were synthesized and structurally characterized by means of NMR and mass spectroscopy. Furthermore, axial chirality of the biphenyl system was determined by comparison of calculated with measured circular dichroism (CD) spectra. Three of the obtained derivatives showed a ring contraction during chemical modification. While the original lignans were inactive on the performed bioassays, the compounds which showed the cycloheptadiene skeleton revealed remarkable activities. For the inhibition of LTB4 production the IC50 values of aR-6,7-dihydro-6-(1′-hydroxyethyl)-3,9-dimethoxy-6-methyl-5H-dibenzo[a,c]cycloheptene-1,2,10,11-tetraol (6) and aR-6-(1′-iodoethyl)-1,2,3,9,10,11-hexamethoxy-6-methyl-5H-dibenzo[a,c]cycloheptene (8) were 4.2 ± 0.3 μM and 4.5 ± 0.2 μM, respectively. aR-6,7-Dihydro-6-(1′-hydroxyethyl)-6-methyl-5H-dibenzo[a,c]cycloheptene-1,2,3,9,10,11-hexaol (5) revealed dual inhibition on COX-2 (IC50 32.1 ± 2.5 μM) and on LTB4 production (37.3 ± 5.5% inhibition at 50 μM).  相似文献   

8.
Human reticulocyte 12/15-lipoxygenase (h12/15-LOX) is a lipid-oxidizing enzyme that can directly oxidize lipid membranes in the absence of a phospholipase, leading to a direct attack on organelles, such as the mitochondria. This cytotoxic activity of h12/15-LOX is up-regulated in neurons and endothelial cells after a stroke and thought to contribute to both neuronal cell death and blood–brain barrier leakage. The discovery of inhibitors that selectively target recombinant h12/15-LOX in vitro, as well as possessing activity against the murine ortholog ex vivo, could potentially support a novel therapeutic strategy for the treatment of stroke. Herein, we report a new family of inhibitors discovered in a High Throughput Screen (HTS) that are selective and potent against recombinant h12/15-LOX and cellular mouse 12/15-LOX (m12/15-LOX). MLS000099089 (compound 99089), the parent molecule, exhibits an IC50 potency of 3.4 ± 0.5 μM against h12/15-LOX in vitro and an ex vivo IC50 potency of approximately 10 μM in a mouse neuronal cell line, HT-22. Compound 99089 displays greater than 30-fold selectivity versus h5-LOX and COX-2, 15-fold versus h15-LOX-2 and 10-fold versus h12-LOX, when tested at 20 μM inhibitor concentration. Steady-state inhibition kinetics reveals that the mode of inhibition of 99089 against h12/15-LOX is that of a mixed inhibitor with a Kic of 1.0 ± 0.08 μM and a Kiu of 6.0 ± 3.3 μM. These data indicate that 99089 and related derivatives may serve as a starting point for the development of anti-stroke therapeutics due to their ability to selectively target h12/15-LOX in vitro and m12/15-LOX ex vivo.  相似文献   

9.
A series of dihydro-pyrazolyl-thiazolinone derivatives (5a5t) have been synthesized and their biological activities were also evaluated as potential cyclooxygenase-2 (COX-2) inhibitors. Among these compounds, compound 2-(3-(3,4-dimethylphenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (5a) displayed the most potent COX-2 inhibitory activity with IC50 of 0.5 μM, but weak to COX-1. Docking simulation was performed to position compound 5a into the COX-2 active site to determine the probable binding model. Based on the preliminary results, compound 5a with potent inhibitory activity and low toxicity would be a potential and selective anti-cyclooxygenase-2 agent.  相似文献   

10.
A series of 4,5-diaryl-1H-imidazole-2(3H)-thione was synthesized and their inhibitory potency against soybean 15-lipoxygenase and free radical scavenging activities were determined. Compound 11 showed the best IC50 for 15-LOX inhibition (IC50 = 4.7 μM) and free radical scavenging activity (IC50 = 14 μM). Methylation of SH at C2 position of imidazole has dramatically decreased the 15-LOX inhibition and radical scavenging activity as it can be observed in the inactive compound 14 (IC50 >250 μM). Structure activity similarity (SAS) showed that the most important chemical modification in this series was methylation of SH group and Docking studies revealed a proper orientation for SH group towards Fe core of the 15-LOX active site. Therefore it was concluded that iron chelating could be a possible mechanism for enzyme inhibition in this series of compounds.  相似文献   

11.
A novel class of indomethacin analogs were synthesized wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety (5-LOX pharmacophore) was attached at its C-4 or C-5 position via either a CO (14ab) or CH2 (19ab) linker to the indole N1-position. In this regard, replacement of the 4-chlorobenzoyl group present in indomethacin by N-difluoromethyl-1,2-dihydropyrid-2-one-4-(or 5-)carbonyl and N-difluoromethyl-1,2-dihydropyrid-2-one-4-yl(or 5-yl)methylene moieties furnished compounds showing no inhibitory activities against the COX-2/5-LOX enzymes (except for the weak but selective COX-2 inhibitor 19a, COX-2 IC50 = 31 μM), and moderate in vivo anti-inflammatory activities (except for the methylene compound 19a that was inactive). These structure–activity data indicate replacement of the 4-chlorobenzoyl group present in indomethacin by a N-difluoromethyl-1,2-dihydropyrid-2-one ring system connected by a CO or CH2 linker is not a suitable approach for the design of dual COX-2/5-LOX inhibitory analogs of indomethacin.  相似文献   

12.
A new group of 2,3-diarylquinoline derivatives possessing a methylsulfonyl COX-2 pharmacophore at the para-position of the C-2 phenyl ring were synthesized and evaluated as selective COX-2 inhibitors. In vitro COX-1/COX-2 structure–activity relationships were determined by varying the substituents on the C-4 quinoline ring. Among the 2,3-diarylquinolines, 2-(4-(methylsulfonyl) phenyl)-3-phenylquinoline-4-carboxylic acid (8) exhibited the highest potency and selectivity for COX-2 inhibitory activity (COX-2 IC50 = 0.07 μM; selectivity index = 687.1) that was more selective than the reference drug celecoxib (COX-2 IC50 = 0.06 μM; selectivity index = 405). A molecular modeling study where 8 was docked in the binding site of COX-2 indicated that the p-MeSO2 COX-2 pharmacophore group on the C-2 phenyl ring is oriented in the vicinity of the COX-2 secondary pocket (Arg513, Phe518 and Val523) and the carboxylic acid substituent can interact with Ser530. The structure activity data acquired indicate that the size and nature of the C-4 quinoline substituent are important for COX-2 inhibitory activity.  相似文献   

13.
A series of 6-nitro-3-(m-tolylamino) benzo[d]isothiazole 1,1-dioxide analogues were synthesized and evaluated for their inhibition activity against 5-lipoxygenase (5-LOX) and microsomal prostaglandin E2 synthase (mPGES-1). These compounds can inhibit both enzymes with IC50 values ranging from 0.15 to 23.6 μM. One of the most potential compounds, 3g, inhibits 5-LOX and mPGES-1 with IC50 values of 0.6 μM, 2.1 μM, respectively.  相似文献   

14.
A series of (S)-N-substitued-1-phenyl-3,4-dihydroisoquinoline-2(1H)-carboxamide derivatives were designed, synthesized and evaluated for their anti-inflammatory and analgesic effects in vivo. Among the synthesized compounds 2a and 2n showed the best anti-inflammatory activity (inhibition rate: 95% and 92.7%, respectively) and analgesic effect (inhibition rate: 100% and 100%, respectively), which was greater than that or nearly equivalent to that of indomethacin. Compounds 2a and 2n were selected to test their inhibitory effects against ovine COX-1 and COX-2 using the cyclooxygenase inhibition assay in vitro. Compounds 2a and 2n are weak inhibitors of COX-1 isozyme but displayed moderate COX-2 isozyme inhibitory effects (IC50 = 0.47 μM and 1.63 μM, respectively) and COX-2 selectivity indexes (SI = 11.5 and 4.8). Furthermore, compound 2a was more inhibitors of COX-2 isozyme active than the reference drug celecoxib.  相似文献   

15.
Bioassay-guided isolation and purification of the ethyl acetate extract of Moringa oleifera fruits yielded three new phenolic glycosides; 4-[(2′-O-acetyl-α-l-rhamnosyloxy) benzyl]isothiocyanate (1), 4-[(3′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate (2), and S-methyl-N-{4-[(α-l-rhamnosyloxy)benzyl]}thiocarbamate (3), together with five known phenolic glycosides (48). The structures of the new metabolites were determined on the basis of spectroscopic analyses including 1D- and 2D-NMR and mass spectrometry. The anti-inflammatory activity of isolated compounds was investigated with the lipopolysaccharide (LPS)-induced murine macrophage RAW 264.7 cell line. It was found that 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate (1) possessed potent NO–inhibitory activity with an IC50 value of 1.67 μM, followed by 2 (IC50 = 2.66 μM), 4 (IC50 = 2.71 μM), and 5 (IC50 = 14.4 μM), respectively. Western blots demonstrated these compounds reduced LPS-mediated iNOS expression. In the concentration range of the IC50 values, no significant cytotoxicity was noted. Structure–activity relationships following NO-release indicated: (1) the isothiocyanate group was essential for activity, (2) acetylation of the isothiocyanate derivatives at C-2′ or at C-3′ of rhamnose led to higher activity, (3) un-acetylated isothiocyanate derivatives displayed eight times less activity than the acetylated derivatives, and (4) acetylation of the thiocarbamate derivatives enhanced activity. These data indicate compounds 1, 2, 4 and 5 are responsible for the reported NO-inhibitory effect of Moringa oleifera fruits, and further studies are warranted.  相似文献   

16.
An aqueous acetone extract from the fruit of Alpinia galanga (Zingiberaceae) demonstrated inhibitory effects on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells (IC50 = 7.3 μg/mL). Through bioassay-guided separation of the extract, a new 7-O-9′-linked neolignan, named galanganol D diacetate (1), was isolated along with 16 known compounds including 14 phenylpropanoids (215). The structure of 1, including its absolute stereochemistry in the C-7 position, was elucidated by means of extensive NMR analysis and total synthesis. Among the isolates, 1 (IC50 = 2.5 μM), 1′S-1′-acetoxychavicol acetate (2, 5.0 μM), and 1′S-1′-acetoxyeugenol acetate (3, 5.6 μM) exhibited a relatively potent inhibitory effect without notable cytotoxicity at effective concentrations. The following structural requirements were suggested to enhance the inhibitory activity of phenylpropanoids on melanogenesis: (i) compounds with 4-acetoxy group exhibit higher activity than those with 4-hydroxy group; (ii) 3-methoxy group dose not affect the activity; (iii) acetylation of the 1′-hydroxy moiety enhances the activity; and (iv) phenylpropanoid dimers with the 7-O-9′-linked neolignan skeleton exhibited higher activity than those with the corresponding monomer. Their respective enantiomers [1′ (IC50 = 1.9 μM) and 2′ (4.5 μM)] and racemic mixtures [(±)-1 (2.2 μM) and (±)-2 (4.4 μM)] were found to exhibit melanogenesis inhibitory activities equivalent to those of the naturally occurring optical active compounds (1 and 2). Furthermore, the active compounds 13 inhibited tyrosinase, tyrosine-related protein (TRP)-1, and TRP-2 mRNA expressions, which could be the mechanism of melanogenesis inhibitory activity.  相似文献   

17.
In an aim at developing new antiproliferative agents, new series of benzothiazole/benzoxazole and/or benzimidazole substituted pyrazole derivatives 11a-c, 12a-c and 13a-c were prepared and evaluated for their antiproliferative activity against breast carcinoma (MCF-7) and non-small cell lung cancer (A549) cell lines. The target compound, 2-acetyl-4-[(3-(1H-benzimidazol-2-yl)-phenyl]-hydrazono-5-methyl-2,4-dihydropyrazol-3-one (12a) was the most active compound against both MCF-7 and A549 cell lines with half maximal inhibitory concentrations (IC50) = 6.42 and 8.46 μM, respectively. Furthermore, the inhibitory activity of the all the target compounds against COX enzymes was recorded as a proposed mechanism for their antiproliferative activity. The obtained results revealed that the benzothiazolopyrazolone derivative 13c was the most potent COX-2 inhibitor (IC50 = 0.10 μM), while the 5-acetylbenzimidazolylpyrazolone derivative 12a was the most COX-2 selective (S.I. = 104.67) in comparison with celecoxib (COX-2 IC50 = 1.11 μM, S.I. = 13.33). Docking simulation on the most active compounds 12a and 13c had been performed to investigate the binding interaction of these active compounds within the binding site of COX-2 enzyme. Collectively, this work demonstrated the promising activity of the newly designed compounds as leads for further development into antiproliferative agents.  相似文献   

18.
A series of 1,3,4-trisubstituted pyrazole derivatives (3af), (4af), and (5af) have been synthesized and evaluated for their cyclooxygenase (COX-1 and COX-2) inhibitory activity. The structures of newly synthesized compounds were characterized by IR, 1H NMR, and mass spectral analysis. All of the compounds showed good inhibition of COX-2 with IC50 of 1.33–17.5 μM. Among these derivatives, compound (5c) was the most potent and selective COX-2 inhibitor (IC50 = 1.33 μM), with a significant selectivity index (SI >60). Molecular docking studies were carried out in order to predict the hypothetical binding mode of these compounds to the COX-2 isoenzyme. The result of present study suggests that pyrazole–thiadiazole hybrid could be an interesting approach for the design of new selective COX-2 inhibitory agents.  相似文献   

19.
Ten novel mono- and di-O-prenylated chalcone derivatives were designed on the basis of a homology derived molecular model of 5-lipoxygenase (5-LOX). The compounds were docked into 5-LOX active site and the binding characteristics were quantified using LUDI. To verify our theoretical assumption, the molecules were synthesized and tested for their 5-LOX inhibitory activities. The synthesis was carried out by Claisen–Schmidt condensation reaction of mono- and di-O-prenylated acetophenones with appropriate aldehydes. 5-LOX in vitro inhibition assay showed higher potency of di-O-prenylated chalcones than their mono-O-prenylated chalcone analogs. Compound 5e exhibited good inhibition with an IC50 at 4 μM. The overall trend for the binding energies calculated and LUDI score was in good qualitative agreement with the experimental data. Further, the compound 5e showed potent anti-proliferative effects (GI50 at 9 μM) on breast cancer cell line, MCF-7.  相似文献   

20.
Two series of thiazolidinone derivatives designing for potential EGFR and HER-2 kinase inhibitors have been discovered. Some of them exhibited significant EGFR and HER-2 inhibitory activity. Compound 2-(2-(5-bromo-2-hydroxybenzylidene)hydrazinyl)thiazol-4(5H)-one (12) displayed the most potent inhibitory activity (IC50 = 0.09 μM for EGFR and IC50 = 0.42 μM for HER-2), comparable to the positive control erlotinib. Docking simulation was performed to position compound 12 into the EGFR active site to determine the probable binding model. Antiproliferative assay results indicating that some of the thiazolidinone derivatives own high antiproliferative activity against MCF-7. Compound 12 with potent inhibitory activity in tumor growth inhibition would be a potential anticancer agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号