首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HIV-1 Vpu prevents incorporation of tetherin (BST2/ CD317) into budding virions and targets it for ESCRT-dependent endosomal degradation via a clathrin-dependent process. This requires a variant acidic dileucine-sorting motif (ExxxLV) in Vpu. Structural studies demonstrate that recombinant Vpu/tetherin fusions can form a ternary complex with the clathrin adaptor AP-1. However, open questions still exist about Vpu’s mechanism of action. Particularly, whether endosomal degradation and the recruitment of the E3 ubiquitin ligase SCFβTRCP1/2 to a conserved phosphorylated binding site, DSGNES, are required for antagonism. Re-evaluation of the phenotype of Vpu phosphorylation mutants and naturally occurring allelic variants reveals that the requirement for the Vpu phosphoserine motif in tetherin antagonism is dissociable from SCFβTRCP1/2 and ESCRT-dependent tetherin degradation. Vpu phospho-mutants phenocopy ExxxLV mutants, and can be rescued by direct clathrin interaction in the absence of SCFβTRCP1/2 recruitment. Moreover, we demonstrate physical interaction between Vpu and AP-1 or AP-2 in cells. This requires Vpu/tetherin transmembrane domain interactions as well as the ExxxLV motif. Importantly, it also requires the Vpu phosphoserine motif and adjacent acidic residues. Taken together these data explain the discordance between the role of SCFβTRCP1/2 and Vpu phosphorylation in tetherin antagonism, and indicate that phosphorylation of Vpu in Vpu/tetherin complexes regulates promiscuous recruitment of adaptors, implicating clathrin-dependent sorting as an essential first step in tetherin antagonism.  相似文献   

2.
Vigan R  Neil SJ 《Journal of virology》2010,84(24):12958-12970
Tetherin (BST2/CD317) potently restricts the particle release of human immunodeficiency virus type 1 (HIV-1) mutants defective in the accessory gene vpu. Vpu antagonizes tetherin activity and induces its cell surface downregulation and degradation in a manner dependent on the transmembrane (TM) domains of both proteins. We have carried out extensive mutagenesis of the HIV-1 NL4.3 Vpu TM domain to identify three amino acid positions, A14, W22, and, to a lesser extent, A18, that are required for tetherin antagonism. Despite the mutants localizing indistinguishably from the wild-type (wt) protein and maintaining the ability to multimerize, mutation of these positions rendered Vpu incapable of coimmunoprecipitating tetherin or mediating its cell surface downregulation. Interestingly, these amino acid positions are predicted to form one face of the Vpu transmembrane alpha helix and therefore potentially contribute to an interacting surface with the transmembrane domain of tetherin either directly or by modulating the conformation of Vpu oligomers. While the equivalent of W22 is invariant in HIV-1/SIVcpz Vpu proteins, the positions of A14 and A18 are highly conserved among Vpu alleles from HIV-1 groups M and N, but not those from group O or SIVcpz that lack human tetherin (huTetherin)-antagonizing activity, suggesting that they may have contributed to the adaption of HIV-1 to human tetherin.  相似文献   

3.
During human immunodeficiency virus-1 (HIV-1) assembly, the host proteins CD4 (the HIV-1 receptor) and tetherin (an interferon stimulated anti-viral protein) both reduce viral fitness. The HIV-1 accessory gene Vpu counteracts both of these proteins, but it is thought to do so through two distinct mechanisms. Modulation of CD4 likely occurs through proteasomal degradation from the endoplasmic reticulum. The exact mechanism of tetherin modulation is less clear, with possible roles for degradation and alteration of protein transport to the plasma membrane. Most investigations of Vpu function have used different assays for CD4 and tetherin. In addition, many of these investigations used exogenously expressed Vpu, which could result in variable expression levels. Thus, few studies have investigated these two Vpu functions in parallel assays, making direct comparisons difficult. Here, we present results from a rapid assay used to simultaneously investigate Vpu-targeting of both tetherin and a viral glycoprotein, gibbon ape leukemia virus envelope (GaLV Env). We previously reported that Vpu modulates GaLV Env and prevents its incorporation into HIV-1 particles through a recognition motif similar to that found in CD4. Using this assay, we performed a comprehensive mutagenic scan of Vpu in its native proviral context to identify features required for both types of activity. We observed considerable overlap in the Vpu sequences required to modulate tetherin and GaLV Env. We found that features in the cytoplasmic tail of Vpu, specifically within the cytoplasmic tail hinge region, were required for modulation of both tetherin and GaLV Env. Interestingly, these same regions features have been determined to be critical for CD4 downmodulation. We also observed a role for the transmembrane domain in the restriction of tetherin, as previously reported, but not of GaLV Env. We propose that Vpu may target both proteins in a mechanistically similar manner, albeit in different cellular locations.  相似文献   

4.
HIV-1 efficiently forms pseudotyped particles with many gammaretrovirus glycoproteins, such as Friend murine leukemia virus (F-MLV) Env, but not with the related gibbon ape leukemia virus (GaLV) Env or with a chimeric F-MLV Env with a GaLV cytoplasmic tail domain (CTD). This incompatibility is modulated by the HIV-1 accessory protein Vpu. Because the GaLV Env CTD does not resemble tetherin or CD4, the well-studied targets of Vpu, we sought to characterize the modular sequence in the GaLV Env CTD required for this restriction in the presence of Vpu. Using a systematic mutagenesis scan, we determined that the motif that makes GaLV Env sensitive to Vpu is INxxIxxVKxxVxRxK. This region in the CTD of GaLV Env is predicted to form a helix. Mutations in the CTD that would break this helix abolish sensitivity to Vpu. Although many of these positions can be replaced with amino acids with similar biophysical properties without disrupting the Vpu sensitivity, the final lysine residue is required. This Vpu sensitivity sequence appears to be modular, as the unrelated Rous sarcoma virus (RSV) Env can be made Vpu sensitive by replacing its CTD with the GaLV Env CTD. In addition, F-MLV Env can be made Vpu sensitive by mutating two amino acids in its cytoplasmic tail to make it resemble more closely the Vpu sensitivity motif. Surprisingly, the core components of this Vpu sensitivity sequence are also present in the host surface protein CD4, which is also targeted by Vpu through its CTD.  相似文献   

5.
The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery, a highly conserved set of four hetero-oligomeric protein complexes, is required for multivesicular body formation, sorting ubiquitinylated membrane proteins for lysosomal degradation, cytokinesis and the final stages of assembly of a number of enveloped viruses, including the human immunodeficiency viruses. Here, we show an additional role for the ESCRT machinery in HIV-1 release. BST-2/tetherin is a restriction factor that impedes HIV release by tethering mature virus particles to the plasma membrane. We found that HRS, a key component of the ESCRT-0 complex, promotes efficient release of HIV-1 and that siRNA-mediated HRS depletion induces a BST-2/tetherin phenotype. This activity is related to the ability of the HIV-1 Vpu protein to down-regulate BST-2/tetherin. We found that BST-2/tetherin undergoes constitutive ESCRT-dependent sorting for lysosomal degradation and that this degradation is enhanced by Vpu expression. We demonstrate that Vpu-mediated BST-2/tetherin down-modulation and degradation require HRS (ESCRT-0) function and that knock down of HRS increases cellular levels of BST-2/tetherin and restricts virus release. Furthermore, HRS co-precipitates with Vpu and BST-2. Our results provide further insight into the mechanism by which Vpu counteracts BST-2/tetherin and promotes HIV-1 dissemination, and they highlight an additional role for the ESCRT machinery in virus release.  相似文献   

6.
Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi''s sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition.  相似文献   

7.
Host cells impose a broad range of obstacles to the replication of retroviruses. Tetherin (also known as CD317, BST-2 or HM1.24) impedes viral release by retaining newly budded HIV-1 virions on the surface of cells. HIV-1 Vpu efficiently counteracts this restriction. Here, we show that HIV-1 Vpu induces the depletion of tetherin from cells. We demonstrate that this phenomenon correlates with the ability of Vpu to counteract the antiviral activity of both overexpressed and interferon-induced endogenous tetherin. In addition, we show that Vpu co-immunoprecipitates with tetherin and β-TrCP in a tri-molecular complex. This interaction leads to Vpu-mediated proteasomal degradation of tetherin in a β-TrCP2-dependent manner. Accordingly, in conditions where Vpu-β-TrCP2-tetherin interplay was not operative, including cells stably knocked down for β-TrCP2 expression or cells expressing a dominant negative form of β-TrCP, the ability of Vpu to antagonize the antiviral activity of tetherin was severely impaired. Nevertheless, tetherin degradation did not account for the totality of Vpu-mediated counteraction against the antiviral factor, as binding of Vpu to tetherin was sufficient for a partial relief of the restriction. Finally, we show that the mechanism used by Vpu to induce tetherin depletion implicates the cellular ER-associated degradation (ERAD) pathway, which mediates the dislocation of ER membrane proteins into the cytosol for subsequent proteasomal degradation. In conclusion, we show that Vpu interacts with tetherin to direct its β-TrCP2-dependent proteasomal degradation, thereby alleviating the blockade to the release of infectious virions. Identification of tetherin binding to Vpu provides a potential novel target for the development of drugs aimed at inhibiting HIV-1 replication.  相似文献   

8.
The interferon-induced transmembrane protein BST-2/CD317 (tetherin) restricts the release of diverse enveloped viruses from infected cells. The HIV-1 accessory protein Vpu antagonizes this restriction by an unknown mechanism that likely involves the down-regulation of BST-2 from the cell surface. Here, we show that the optimal removal of BST-2 from the plasma membrane by Vpu requires the cellular protein β-TrCP, a substrate adaptor for a multi-subunit SCF E3 ubiquitin ligase complex and a known Vpu-interacting protein. β-TrCP is also required for the optimal enhancement of virion-release by Vpu. Mutations in the DSGxxS β-TrCP binding-motif of Vpu impair both the down-regulation of BST-2 and the enhancement of virion-release. Such mutations also confer dominant-negative activity, consistent with a model in which Vpu links BST-2 to β-TrCP. Optimal down-regulation of BST-2 from the cell surface by Vpu also requires the endocytic clathrin adaptor AP-2, although the rate of endocytosis is not increased; these data suggest that Vpu induces post-endocytic membrane trafficking events whose net effect is the removal of BST-2 from the cell surface. In addition to its marked effect on cell-surface levels, Vpu modestly decreases the total cellular levels of BST-2. The decreases in cell-surface and intracellular BST-2 are inhibited by bafilomycin A1, an inhibitor of endosomal acidification; these data suggest that Vpu induces late endosomal targeting and partial degradation of BST-2 in lysosomes. The Vpu-mediated decrease in surface expression is associated with reduced co-localization of BST-2 and the virion protein Gag along the plasma membrane. Together, the data support a model in which Vpu co-opts the β-TrCP/SCF E3 ubiquitin ligase complex to induce endosomal trafficking events that remove BST-2 from its site of action as a virion-tethering factor.  相似文献   

9.
Nef is the viral gene product employed by the majority of primate lentiviruses to overcome restriction by tetherin (BST-2 or CD317), an interferon-inducible transmembrane protein that inhibits the detachment of enveloped viruses from infected cells. Although the mechanisms of tetherin antagonism by HIV-1 Vpu and HIV-2 Env have been investigated in detail, comparatively little is known about tetherin antagonism by SIV Nef. Here we demonstrate a direct physical interaction between SIV Nef and rhesus macaque tetherin, define the residues in Nef required for tetherin antagonism, and show that the anti-tetherin activity of Nef is dependent on clathrin-mediated endocytosis. SIV Nef co-immunoprecipitated with rhesus macaque tetherin and the Nef core domain bound directly to a peptide corresponding to the cytoplasmic domain of rhesus tetherin by surface plasmon resonance. An analysis of alanine-scanning substitutions identified residues throughout the N-terminal, globular core and flexible loop regions of Nef that were required for tetherin antagonism. Although there was significant overlap with sequences required for CD4 downregulation, tetherin antagonism was genetically separable from this activity, as well as from other Nef functions, including MHC class I-downregulation and infectivity enhancement. Consistent with a role for clathrin and dynamin 2 in the endocytosis of tetherin, dominant-negative mutants of AP180 and dynamin 2 impaired the ability of Nef to downmodulate tetherin and to counteract restriction. Taken together, these results reveal that the mechanism of tetherin antagonism by Nef depends on a physical interaction between Nef and tetherin, requires sequences throughout Nef, but is genetically separable from other Nef functions, and leads to the removal of tetherin from sites of virus release at the plasma membrane by clathrin-mediated endocytosis.  相似文献   

10.
Lv M  Wang J  Wang X  Zuo T  Zhu Y  Kong W  Yu X 《PloS one》2011,6(6):e20890
Tetherin (BST-2/CD317) is an interferon-inducible antiviral protein that restricts the release of enveloped viruses from infected cells. The HIV-1 accessory protein Vpu can efficiently antagonize this restriction. In this study, we analyzed mutations of the transmembrane (TM) domain of Vpu, including deletions and substitutions, to delineate amino acids important for HIV-1 viral particle release and in interactions with tetherin. The mutants had similar subcellular localization patterns with that of wild-type Vpu and were functional with respect to CD4 downregulation. We showed that the hydrophobic binding surface for tetherin lies in the core of the Vpu TM domain. Three consecutive hydrophobic isoleucine residues in the middle region of the Vpu TM domain, I15, I16 and I17, were important for stabilizing the tetherin binding interface and determining its sensitivity to tetherin. Changing the polarity of the amino acids at these positions resulted in severe impairment of Vpu-induced tetherin targeting and antagonism. Taken together, these data reveal a model of specific hydrophobic interactions between Vpu and tetherin, which can be potentially targeted in the development of novel anti-HIV-1 drugs.  相似文献   

11.
The HIV-1 Vpu protein is expressed from a bi-cistronic message late in the viral life cycle. It functions during viral assembly to maximise infectious virus release by targeting CD4 for proteosomal degradation and counteracting the antiviral protein tetherin (BST2/CD317). Single genome analysis of vpu repertoires throughout infection in 14 individuals infected with HIV-1 clade B revealed extensive amino acid diversity of the Vpu protein. For the most part, this variation in Vpu increases over the course of infection and is associated with predicted epitopes of the individual''s MHC class I haplotype, suggesting CD8+ T cell pressure is the major driver of Vpu sequence diversity within the host. Despite this variability, the Vpu functions of targeting CD4 and counteracting both physical virus restriction and NF-κB activation by tetherin are rigorously maintained throughout HIV-1 infection. Only a minority of circulating alleles bear lesions in either of these activities at any given time, suggesting functional Vpu mutants are heavily selected against even at later stages of infection. Comparison of Vpu proteins defective for one or several functions reveals novel determinants of CD4 downregulation, counteraction of tetherin restriction, and inhibition of NF-κB signalling. These data affirm the importance of Vpu functions for in vivo persistence of HIV-1 within infected individuals, not simply for transmission, and highlight its potential as a target for antiviral therapy.  相似文献   

12.
The HIV-1 accessory protein Vpu modulates membrane protein trafficking and degradation to provide evasion of immune surveillance. Targets of Vpu include CD4, HLAs, and BST-2. Several cellular pathways co-opted by Vpu have been identified, but the picture of Vpu’s itinerary and activities within membrane systems remains incomplete. Here, we used fusion proteins of Vpu and the enzyme ascorbate peroxidase (APEX2) to compare the ultrastructural locations and the proximal proteomes of wild type Vpu and Vpu-mutants. The proximity-omes of the proteins correlated with their ultrastructural locations and placed wild type Vpu near both retromer and ESCRT-0 complexes. Hierarchical clustering of protein abundances across the mutants was essential to interpreting the data and identified Vpu degradation-targets including CD4, HLA-C, and SEC12 as well as Vpu-cofactors including HGS, STAM, clathrin, and PTPN23, an ALIX-like protein. The Vpu-directed degradation of BST-2 was supported by STAM and PTPN23 and to a much lesser extent by the retromer subunits Vps35 and SNX3. PTPN23 also supported the Vpu-directed decrease in CD4 at the cell surface. These data suggest that Vpu directs targets from sorting endosomes to degradation at multi-vesicular bodies via ESCRT-0 and PTPN23.  相似文献   

13.
The interferon-inducible cellular protein tetherin (CD317/BST-2) inhibits the release of a broad range of enveloped viruses. The HIV-1 accessory protein Vpu enhances virus particle release by counteracting this host restriction factor. While the antagonism of human tetherin by Vpu has been associated with both proteasomal and lysosomal degradation, the link between Vpu-mediated tetherin degradation and the ability of Vpu to counteract the antiviral activity of tetherin remains poorly understood. Here, we show that human tetherin is expressed at low levels in African green monkey kidney (COS) cells. However, Vpu markedly increases tetherin expression in this cell line, apparently by sequestering it in an internal compartment that bears lysosomal markers. This stabilization of tetherin by Vpu requires the transmembrane sequence of human tetherin. Although Vpu stabilizes human tetherin in COS cells, it still counteracts the ability of tetherin to suppress virus release. The enhancement of virus release by Vpu in COS cells is associated with a modest reduction in cell-surface tetherin expression, even though the overall expression of tetherin is higher in the presence of Vpu. This study demonstrates that COS cells provide a model system in which Vpu-mediated enhancement of HIV-1 release is uncoupled from Vpu-mediated tetherin degradation.  相似文献   

14.

Background

The human immunodeficiency virus type 1 (HIV-1) Vpu protein degrades CD4 and counteracts a restriction factor termed tetherin (CD317; Bst-2) to enhance virion release. It has been suggested that both functions can be genetically separated by mutation of a serine residue at position 52. However, recent data suggest that the S52 phosphorylation site is also important for the ability of Vpu to counteract tetherin. To clarify this issue, we performed a comprehensive analysis of HIV-1 with a mutated casein kinase-II phosphorylation site in Vpu in various cell lines, primary blood lymphocytes (PBL), monocyte-derived macrophages (MDM) and ex vivo human lymphoid tissue (HLT).

Results

We show that mutation of serine 52 to alanine (S52A) entirely disrupts Vpu-mediated degradation of CD4 and strongly impairs its ability to antagonize tetherin. Furthermore, casein-kinase II inhibitors blocked the ability of Vpu to degrade tetherin. Overall, Vpu S52A could only overcome low levels of tetherin, and its activity decreased in a manner dependent on the amount of transiently or endogenously expressed tetherin. As a consequence, the S52A Vpu mutant virus was unable to replicate in macrophages, which express high levels of this restriction factor. In contrast, HIV-1 Vpu S52A caused CD4+ T-cell depletion and spread efficiently in ex vivo human lymphoid tissue and PBL, most likely because these cells express comparably low levels of tetherin.

Conclusion

Our data explain why the effect of the S52A mutation in Vpu on virus release is cell-type dependent and suggest that a reduced ability of Vpu to counteract tetherin impairs HIV-1 replication in macrophages, but not in tissue CD4+ T cells.  相似文献   

15.
In different primate lentiviruses, three proteins (Vpu, Env and Nef) have been shown to have anti-tetherin activities. SIVden is a primate lentivirus harbored by a Cercopithecus denti (C. denti) whose genome code for a Vpu gene. We have compared the activity of HIV-1 Vpu and of SIVden Vpu on tetherin proteins from humans, from C. denti and from Cercopithecus neglectus (C. neglectus), a monkey species that is naturally infected by SIVdeb, a virus closely related to SIVden but which does not encode a Vpu protein. Here, we demonstrate that SIVden Vpu, is active against C. denti tetherin, but not against human tetherin. Interestingly, C. neglectus tetherin was more sensitive to SIVden Vpu than to HIV-1 Vpu. We also identify residues in the tetherin transmembrane domains that are responsible for the species-specific Vpu effect. Simultaneous mutation (P40L and T45I) of human tetherin conferred sensitivity to SIVden Vpu, while abolishing its sensitivity to HIV-1 Vpu. We next analyzed the anti-tetherin activity of the Nef proteins from HIV-1, SIVden and SIVdeb. All three Nef proteins were unable to rescue virus release in the presence of human or C. denti tetherin. Conversely, SIVdeb Nef enhanced virus release in the presence of C. neglectus tetherin, suggesting that SIVdeb relies on Nef in its natural host. Finally, while HIV-1 Vpu not only removed human tetherin from the cell surface but also directed it for degradation, SIVden Vpu only induced the redistribution of both C. denti and C. neglectus tetherins, resulting in a predominantly perinuclear localization.  相似文献   

16.
BST-2/CD317/tetherin is a host factor that inhibits the release of HIV-1 and other unrelated viruses. A current model proposes that BST-2 physically tethers virions to the surface of virus-producing cells. The HIV-1-encoded Vpu protein effectively antagonizes the activity of BST-2. How Vpu accomplishes this task remains unclear; however, it is known that Vpu has the ability to down-modulate BST-2 from the cell surface. Here we analyzed the effects of Vpu on BST-2 by performing a series of kinetic studies with HeLa, 293T, and CEMx174 cells. Our results indicate that the surface downregulation of BST-2 is not due to an accelerated internalization or reduced recycling of internalized BST-2 but instead is caused by interference with the resupply of newly synthesized BST-2 from within the cell. While our data confirm previous reports that the high-level expression of Vpu can cause the endoplasmic reticulum (ER)-associated degradation of BST-2, we found no evidence that Vpu targets endogenous BST-2 in the ER in the course of a viral infection. Instead, we found that Vpu acts in a post-ER compartment and increases the turnover of newly synthesized mature BST-2. Our observation that Vpu does not affect the recycling of BST-2 suggests that Vpu does not act directly at the cell surface but may interfere with the trafficking of newly synthesized BST-2 to the cell surface, resulting in the accelerated targeting of BST-2 to the lysosomal compartment for degradation.  相似文献   

17.
HIV-1 forms infectious particles with Murine Leukemia virus (MLV) Env, but not with the closely related Gibbon ape Leukemia Virus (GaLV) Env. We have determined that the incompatibility between HIV-1 and GaLV Env is primarily caused by the HIV-1 accessory protein Vpu, which prevents GaLV Env from being incorporated into particles. We have characterized the ‘Vpu sensitivity sequence’ in the cytoplasmic tail domain (CTD) of GaLV Env using a chimeric MLV Env with the GaLV Env CTD (MLV/GaLV Env). Vpu sensitivity is dependent on an alpha helix with a positively charged face containing at least one Lysine. In the present study, we utilized functional complementation to address whether all the three helices in the CTD of an Env trimer have to contain the Vpu sensitivity motif for the trimer to be modulated by Vpu. Taking advantage of the functional complementation of the binding defective (D84K) and fusion defective (L493V) MLV and MLV/GaLV Env mutants, we were able to assay the activity of mixed trimers containing both MLV and GaLV CTDs. Mixed trimers containing both MLV and GaLV CTDs were functionally active and remained sensitive to Vpu. However, trimers containing an Env with the GaLV CTD and an Env with no CTD remained functional but were resistant to Vpu. Together these data suggest that the presence of at least one GaLV CTD is sufficient to make an Env trimer sensitive to Vpu, but only if it is part of a trimeric CTD complex.  相似文献   

18.
HIV-1 groups M and N emerged within the last century following two independent cross-species transmissions of SIVcpz from chimpanzees to humans. In contrast to pandemic group M strains, HIV-1 group N viruses are exceedingly rare, with only about a dozen infections identified, all but one in individuals from Cameroon. Poor adaptation to the human host may be responsible for this limited spread of HIV-1 group N in the human population. Here, we analyzed the function of Vpu proteins from seven group N strains from Cameroon, the place where this zoonosis originally emerged. We found that these N-Vpus acquired four amino acid substitutions (E15A, V19A and IV25/26LL) in their transmembrane domain (TMD) that allow efficient interaction with human tetherin. However, despite these adaptive changes, most N-Vpus still antagonize human tetherin only poorly and fail to down-modulate CD4, the natural killer (NK) cell ligand NTB-A as well as the lipid-antigen presenting protein CD1d. These functional deficiencies were mapped to amino acid changes in the cytoplasmic domain that disrupt putative adaptor protein binding sites and an otherwise highly conserved ßTrCP-binding DSGxxS motif. As a consequence, N-Vpus exhibited aberrant intracellular localization and/or failed to recruit the ubiquitin-ligase complex to induce tetherin degradation. The only exception was the Vpu of a group N strain recently discovered in France, but originally acquired in Togo, which contained intact cytoplasmic motifs and counteracted tetherin as effectively as the Vpus of pandemic HIV-1 M strains. These results indicate that HIV-1 group N Vpu is under strong host-specific selection pressure and that the acquisition of effective tetherin antagonism may lead to the emergence of viral variants with increased transmission fitness.  相似文献   

19.
Bone marrow stromal antigen 2 (BST-2, also known as tetherin) is a recently identified interferon-inducible host restriction factor that can block the production of enveloped viruses by trapping virus particles at the cell surface. This antiviral effect is counteracted by the human immunodeficiency virus type 1 (HIV-1) accessory protein viral protein U (Vpu). Here we show that HIV-1 Vpu physically interacts with BST-2 through their mutual transmembrane domains and leads to the degradation of this host factor via a lysosomal, not proteasomal, pathway. The degradation is partially controlled by a cellular protein, β-transducin repeat-containing protein (βTrCP), which is known to be required for the Vpu-induced degradation of CD4. Importantly, targeting of BST-2 by Vpu occurs at the plasma membrane followed by the active internalization of this host protein by Vpu independently of constitutive endocytosis. Thus, the primary site of action of Vpu is the plasma membrane, where Vpu targets and internalizes cell-surface BST-2 through transmembrane interactions, leading to lysosomal degradation, partially in a βTrCP-dependent manner. Also, we propose the following configuration of BST-2 in tethering virions to the cell surface; each of the dimerized BST-2 molecules acts as a bridge between viral and cell membranes.  相似文献   

20.
Vpu is an accessory viral protein almost unique to HIV-1 among primate immunodeficiency viruses, and has two major functions: degradation of the CD4 molecule in endoplasmic reticulum and enhancement of virion release from cells. Recent identification of a novel host restriction factor, tetherin, as a Vpu-antagonist suggests that Vpu contributes to virus spread by facilitating progeny virion production. This review focuses on the two distinct functions of Vpu and summarizes current knowledge on its virological role in the HIV-1 life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号