首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis that meta-chlorophenylpiperazine (mCPP; 1) is a nonselective 5-HT2C agonist, that benz-fused tryptamines (e.g., 5) display enhanced 5-HT2 affinity, and that certain isotryptamines 3 reportedly bind with enhanced affinity and selectivity at 5-HT2C receptors, we prepared and examined a series of isotryptamine-related analogues as potentially selective 5-HT2C agonists. None of the compounds displayed selectivity for 5-HT2C versus 5-HT2A receptors. Detailed re-examination of a compound previously reported to display 100-fold 5-HT2C selectivity [i.e., S(+)-5,6-difluoro-α-methylisotryptamine] revealed that its selectivity versus 5-HT2A receptors was, at best, only 10-fold.  相似文献   

2.
A novel scaffold derived from l-SPD with a substituted thiophene group in the D ring were designed, synthesized, and evaluated for their binding affinities at dopamine (D1, D2 and D3) and serotonin (5-HT1A and 5-HT2A) receptors. Most of the tetracyclic compounds exhibited higher affinities for D2 and 5-HT1A receptors than l-SPD, while compound 23e showed the highest Ki value of 7.54 nM at D2 receptor which was 14 times more potent than l-SPD. Additionally, compounds 23d and 23e were more potent than l-SPD at D3 receptor. According to the functional assays, 23d and 23e were demonstrated as full antagonists at D1 and D2 receptors and full agonists at 5-HT1A receptor. Since the combination of D2 antagonism and 5-HT1A agonism is considered effective in treating both the positive and negative symptoms of schizophrenia, these novel compounds are implicated as potential therapeutic agents.  相似文献   

3.
In this work we describe the synthesis, docking studies and biological evaluation of a focused library of novel arylpiperazinyl derivatives of 8-acetyl-7-hydroxy-4-methylcoumarin. The new compounds were screened for their 5-HT1A and 5-HT2A receptor affinity. Among the evaluated compounds, six displayed high affinities to 5-HT1A receptors (4a-0.9?nM, 6a-0.5?nM, 10a-0.6?nM, 3b-0.9?nM, 6b-1.5?nM, 10b-1?nM). Compound 6a and 10a bearing a bromo- or methoxy- substituent in ortho position of the piperazine phenyl ring, were identified as potent antagonists of the 5-HT1A receptors. In the tail suspension test, mice injected with 6a showed a dose-dependent increase in depressive-like behavior that was related to a decrease in locomotor activity. Compound 10a did not decrease or prolong immobility time nor did it affect home cage activity. Molecular docking studies using 5-HT1A and 5-HT2A homology models revealed structural basis of the high affinity of ortho-substituted derivatives and subtle changes in amino acid interactions patterns depending on the length of the alkyl linker.  相似文献   

4.
Aporphine alkaloids containing a C10 nitrogen motif were synthesized and evaluated for affinity at 5-HT1AR, 5-HT2AR, 5-HT6R and 5-HT7AR. Three series of racemic aporphines were investigated: 1,2,10-trisubstituted, C10 N-monosubstituted and compounds containing a C10 benzofused aminothiazole moiety. The 1,2,10-trisubstituted series of compounds as a group displayed modest selectivity for 5-HT7AR and also had moderate 5-HT7AR affinity. Compounds from the C10 N-monosubstituted series generally lacked affinity for 5-HT2AR and 5-HT6R and showed strong affinity for 5-HT1A or 5-HT7AR. Compounds in this series that contained an N6-methyl group were up to 27-fold selective for 5-HT7AR over 5-HT1AR, whereas compounds with an N6-propyl substituent showed a reversal in this selectivity. The C10 benzofused aminothiazole analogues showed a similar binding profile as the C10 N-monosubstituted series i.e. strong affinity for 5-HT1AR or 5-HT7AR, with selectivity between the two receptors being similarly influenced by N6-methyl or N6-propyl substituents. Compounds 29 and 34a exhibit high 5-HT7AR affinity, excellent selectivity versus dopamine receptors and function as antagonists in 5-HT7AR cAMP-based assays. Compounds 29 and 34a have been identified as new lead molecules for further tool and pharmaceutical optimization.  相似文献   

5.
Compounds 7, 8, and 9, derived from the novel scaffolds 3, 5, and 6, were synthesized and evaluated in vitro. The b,c  c,d shift of the E-phenyl ring resulted in a large decrease (ca. 20- to 1000-fold) in binding to the 5-HT2A, 5-HT2C and H2, receptors, and a modest decrease (ca. 10- to 20-fold) in binding to the 5-HT5A, D2, D5, and α1D, receptors. The b,c  d,e shift resulted in a large decrease in binding to the 5-HT1D, 5-HT2C, 5-HT6, and H1 receptors, a modest decrease in binding to 5-HT1A, 5-HT5A and D2, D5, α2B, and H2 receptors, and a large increase in affinity to the 5-HT3, 5-HT6, and σ1 receptors.  相似文献   

6.
Abstract: This study was undertaken to investigate the pharmacology of cloned guinea pig and rat 5-hydroxytryptamine (serotonin; 5-HT)1D receptor sites. Guinea pig, rat, and mouse 5-HT1D receptor genes were cloned, and their amino acid sequences were compared with those of the human, dog, and rabbit. The overall amino acid sequence identity between these 5-HT1D receptors is high and varies between 86 and 99%. The sequence homology is slightly more divergent (13–27%) in the N-terminal extracellular region of these 5-HT1D receptors. Guinea pig and rat 5-HT1D receptors, stably and separately expressed in rat C6 glial cells, are negatively coupled to cyclic AMP formation upon stimulation with agonists, as previously found for cloned human 5-HT1D receptor sites. The cyclic AMP data show some common pharmacological features for the 5-HT1D receptors of guinea pig, rat, and human: an almost similar rank order of potency for the investigated 5-HT1D receptor agonists, stereoselectivity for the binding affinity and agonist potency of R(+)-8-hydroxy-2-(di-n-propylamino)tetralin, and equal 5-HT1D receptor-mediated antagonist potency for methiothepin and the 5-HT2 receptor antagonists ritanserin and ketanserin. In conclusion, the pharmacology of the cloned 5-HT1D receptor subtype seems, unlike the 5-HT1B receptor subtype, conserved among various mammal species such as the human, guinea pig, and rat.  相似文献   

7.
A series of 2,3,3a,4-tetrahydro-1H-pyrrolo[3,4-c]isoquinolin-5(9bH)-ones is described, several examples of which exhibit potent 5-HT2C agonism with excellent selectivity over the closely related 5-HT2A and 5-HT2B receptors. Compounds such as 38 and 44 were shown to be effective in reducing food intake in an acute rat feeding model.  相似文献   

8.
5-HT7 receptor (5-HT7R) is a promising target for the treatment of depression and neuropathic pain. 5-HT7R antagonists exhibited antidepressant effects, while the agonists produced strong anti-hyperalgesic effects. In our efforts to discover selective 5-HT7R antagonists or agonists, N-biphenylylmethyl 2-methoxyphenylpiperazinylalkanamides 1 were designed, synthesized, and biologically evaluated against 5-HT7R. Among the synthesized compounds, N-2′-chlorobiphenylylmethyl 2-methoxyphenylpiperazinylpentanamide 18 showed the best binding affinity with a Ki value of 8.69 nM and it was verified as a novel antagonist according to functional assays. The compound 18 was very selective over 5-HT1DR, 5-HT2AR, 5-HT3R, 5-HT5AR and 5-HT6R and moderately selective over 5-HT1AR, 5-HT1BR and 5-HT2CR. The novel 5-HT7R antagonist 18 exhibited an antidepressant effect at a dose of 25 mg/kg in the forced swimming test in mice and showed a U-shaped dose–response curve which typically appears in 5-HT7R antagonists such as SB-269970 and lurasidone.  相似文献   

9.
More than 300 million people are suffering from depression, one of the civilization diseases in the 21st century. Serotonin 5-HT1AR and dopamine D2R play an important role in the treatment and pathogenesis of depression. Moreover, in recent years, the efficacy of dual 5-HT1A/D2 receptors ligands has been demonstrated in the fight against depression. In this work the new bulky arylpiperazine derivatives (LCAP) were synthesized in microwave radiation field. The affinities for the selected serotonin (5-HT1A,5-HT2A,5-HT6,5-HT7) and dopamine (D2) receptors have been evaluated in vitro. Compounds 5.3a, 5.4, 5.1c, 5.3d, 5.2a are promising dual 5-HT1AR/D2R ligands. The SAR analysis were additionally supported with molecular docking studies.  相似文献   

10.
Novel 3-(arylsulfonyl)-1-(azacyclyl)-1H-indoles 6 were synthesized as potential 5-HT6 receptor ligands, based on constraining a basic side chain as either a piperidine or a pyrrolidine. Many of these compounds had good 5-HT6 binding affinity with Ki values <10 nM. Depending on substitution, both agonists (e.g., 6o: EC50 = 60 nM, Emax = 70%) and antagonists (6y: IC50 = 17 nM, Imax = 86%) were identified in a 5-HT6 adenylyl cyclase assay.  相似文献   

11.
An effective and rapid method for the microwave-assisted preparation of the key intermediate for the total synthesis of tetrahydroprotoberberines (THPBs) including l-stepholidine (l-SPD) was developed. Thirty-one THPB derivatives with diverse substituents on A and D ring were synthesized, and their binding affinity to dopamine D1, D2 and serotonin 5-HT1A and 5-HT2A receptors were determined. Compounds 18k and 18m were identified as partial agonists at the D1 receptor with Ki values of 50 and 6.3 nM, while both compounds act as D2 receptor antagonists (Ki = 305 and 145 nM, respectively) and 5-HT1A receptor full agonists (Ki = 149 and 908 nM, respectively). These two THPBs compounds exerted antipsychotic actions in animal models. Further electrophysiological studies employing single-unit recording in intact animals demonstrated that 18k-excited dopaminergic (DA) neurons are associated with its 5-HT1A receptor agonistic activity. These results suggest that these two compounds targeted to multiple neurotransmitter receptors may present novel lead drugs with new pharmacological profiles for the treatment of schizophrenia.  相似文献   

12.
1-(2-Aminoethyl)-3-(arylsulfonyl)-1H-pyrrolopyridines were prepared. Binding assays indicated they are 5-HT6 receptor ligands, among which 6f and 6g showed high affinity for 5-HT6 receptors with Ki = 3.9 and 1.7 nM, respectively.  相似文献   

13.
In the pharmacotherapy of schizophrenia, there is a lack of effective drugs, and currently used agents cause a large number of side effects. The D2, 5-HT1A, 5-HT2A receptors are among the most important receptor targets in the treatment of schizophrenia, but antagonism at 5-HT6 and 5-HT7 receptors may bring about additional improvement of cognitive functions. However, doubt exists regarding the importance of 5-HT7R in the pharmacotherapy. In 2010, lurasidone (with high affinity for D2, D3, 5-HT1A, 5-HT2A, 5-HT7 receptors) was approved for the treatment of schizophrenia. Due to the efficacy of the mentioned drug and doubts related to the role of 5-HT7R, we decided to obtain compounds with an activity profile similar to that of lurasidone, but with the reduced affinity for 5-HT7R and increased affinity for 5-HT6R. For this purpose, we chose a flexible hexyl derivative of lurasidone (2-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)hexahydro-1H-4,7-methanoisoindole-1,3(2H)-dione 1a) as a hit structure. After molecular modeling, we modified it, in the area of the arylpiperazine and imide group, using the moieties found in other known CNS drugs. We received the compounds in accordance with the previously developed method of ecological synthesis in the microwave radiation field. Among the obtained compounds, N-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)naphthalene-sulfonamides 1v and 1w were distinguished as multifunctional ligands showing increased affinity for 5-HT6R, and 2-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one 1i – a multifunctional ligand showing moderate affinity for 5-HT6R and threefold lower for 5-HT7R. In the paper, we discuss some of the observed dependencies regarding 5-HT6/5-HT7R affinity using molecular docking methods.  相似文献   

14.
Syntheses, biological evaluation, and structure–activity relationships for a series of novel 5-styryl and 5-phenethyl analogs of dimebolin are disclosed. The novel derivatives and dimebolin share a broad spectrum of activities against therapeutically relevant targets. Among all synthesized derivatives, 2,8-dimethyl-5-[(Z)-2-phenylvinyl]-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole and its 5-phenethyl analog are the most potent blockers of 5-HT7, 5-HT6, 5-HT2C, Adrenergic α2 and H1 receptors. The general affinity rank order towards the studied receptors was Z-3(2) > 4(2) ? 4(3) ? dimebolin, all of them having highest affinities to 5-HT7 receptors.  相似文献   

15.
A series of fourteen novel, eight-membered lactam- and dilactam-based analogues of tricyclic drugs were obtained in a simple one-pot procedure. Crystal structures of two compounds were determined by single-crystal X-ray diffraction analysis and their selected structural features were discussed and compared with those of imipramine and dibenzepine. Affinity of developed molecules for histamine receptor H1, serotonin receptors 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, serotonin transporter (SERT) and dopamine receptor D2 was determined. The commercial drug dibenzepine was also checked on these molecular targets, as its mechanism of action is largely unknown. Two derivatives of 11,12-dihydrodibenzo[b,f]azocin-6(5H)-one (7,8) and two of dibenzo[b,f]azocin-6(5H)-one (9,10) were found to be active toward the H1 receptor in sub-micromolar concentrations.  相似文献   

16.
A series of novel 3β-aminotropane derivatives containing a 2-naphthalene or a 2-quinoline moiety was synthesised and evaluated for their affinity for 5-HT1A, 5-HT2A and D2 receptors. Their affinity for the receptors was in the nanomolar to micromolar range. p-Substitution (6c, 6f, 6i, 6l, 6o), as well as substitution with chlorine atoms (6g, 6h, 6i), led to a significant increase in binding affinity for D2 receptors with compounds 6f (Ki = 0.6 nM), 6c and 6i (Ki = 0.4 nM), having the highest binding affinities. m-Substituted derivatives were the most promising ligands in terms of 5-HT2A receptor binding affinity whereas 2-quinoline derivatives (10a, 10b) displayed the highest affinity for 5-HT1AR and were the most selective ligands with Ki = 62.7 nM and Ki = 30.5 nM, respectively. Finally, the selected ligands 6b, 6d, 6e, 6g, 6h, 6k, 6n and 6o, with triple binding activity for the D2, 5-HT1A and 5-HT2A receptors, were subjected to in vivo tests, such as those for induced hypothermia, climbing behaviour and the head twitch response, in order to determine their pharmacological profile. The tested ligands presented neither agonist nor antagonist properties for the 5-HT1A receptors in the induced hypothermia and lower lip retraction (LLR) tests. All tested compounds displayed antagonistic activity against 5-HT2A, with 6n and 6o being the most active. Four (6b, 6k, 6n and 6o) out of eight tested compounds could be classified as D2 antagonists. Additionally, evaluation of metabolic stability was performed for selected ligands, and introduction of halogen atoms into the benzene ring of 6h, 6k, 6n and 6o improved their metabolic stability. The project resulted in the selection of the lead compounds 6n and 6o, which had antipsychotic profiles, combining dopamine D2-receptor and 5-HT2A antagonism and metabolic stability.  相似文献   

17.
Piperazinyl derivatives of 1-(arylsulfonyl)-2,3-dihydro-1H-quinolin-4-ones have been identified with high binding affinities for 5-HT6 receptor. In particular, 2-methyl-5-(N-methyl-piperazin-1-yl)-1-(naphthalene-2-sulfonyl)-2,3-dihydro-1H-quinolin-4-one (8g) exhibits high binding affinity toward 5-HT6 (IC50 = 8 nM) receptor with good selectivity over other serotonin and dopamine receptors.  相似文献   

18.
(Piperazin-1-yl-phenyl)-arylsulfonamides were synthesized and identified to show high affinities for both 5-HT2C and 5-HT6 receptors. Among them, naphthalene-2-sulfonic acid isopropyl-[3-(4-methyl-piperazin-1-yl)-phenyl]-amide (6b) exhibits the highest affinity towards both 5-HT2C (IC50 = 4 nM) and 5-HT6 receptors (IC50 = 3 nM) with good selectivity over other serotonin (5-HT1A, 5-HT2A, and 5-HT7) and dopamine (D2–D4) receptor subtypes. In 5-HT2C and 5-HT6 receptor functional assays, this compound showed considerable antagonistic activity for both receptors.  相似文献   

19.
In an attempt to design novel 5-HT1A agonists/partial agonists, based on an arylpiperazine nucleus, a series of N-{4-[4-(aryl)piperazine-1-yl]-phenyl}-amine derivatives were synthesized and biologically tested. The anxiolytic effect of the compounds was investigated employing the Elevated plus Maze (EPM) task. On the basis of in vivo functional test, compound 1c (3 mg/kg) and 4c (3 mg/kg) induced significant increments in open arm entries and time on EPM as compared to Buspirone. The anxiolytic effects of compounds 1c and 4c were effectively antagonized by WAY-100635, a 5-HT1A receptor antagonist (0.5 mg/kg). Furthermore, we have also evaluated the concentration of 5-HT in the brain tissue using HPLC with fluorescent detection. Our result showed that serotonin levels were significantly decreased by ~38% (p < 0.001) and ~32% (p < 0.001) after acute administration of compounds 1c and 4c, respectively. These findings suggest that the anxiolytic like activity of these new arylpiperazines is mediated via 5-HT1A receptors in the brain.  相似文献   

20.
Abstract

To study the regulation of 5-HT1A receptors in the brainstem, the region most relevant to the serotonin syndrome and to serotonin-responsive human myoclonic disorders, we chronically treated rats with various 5-HT1A agonists and labeled 5-HT1A sites with [3H]8-OH-DPAT. Daily injection for 30 consecutive days of 10 mg/kg ip 8-OH-DPAT (pre- and post-synaptic 5-HT1A agonist) significantly decreased 8-OH-DPAT-evoked flat body posture, forelimb myoclonus, and hypothermia compared to chronic vehicle injection. There was no cross tolerance to 8-OH-DPAT in rats chronically injected with ipsapirone or buspirone (presynaptic 5-HT1A agonists). However, none of the 5HT1A agonists significantly altered Bmax of brainstem 5-HT1A binding sites. Chronic injection with other drugs such as 1-propranolol, (±) pindolol and spiperone (5-HT1A and 5-HT2 antagonists), methysergide (5-HT1 and 5-HT2 antagonist), and agonists and antagonists at various other 5-HT receptors also had no effect on binding parameters. These data demonstrate lack of cross-tolerance between pre- and post-synaptically acting 5-HT1A agonists and absence of down-regulation of presynaptic 5-HT1A sites at doses which induced tolerance of 5-HT1A-mediated behaviors of the serotonin syndrome. They suggest changes in the post-synaptic cell rather than the receptor recognition site as the mechanism of tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号