首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 518 毫秒
1.
Tin sulfide (SnS) is a candidate absorber material for Earth-abundant, non-toxic solar cells. SnS offers easy phase control and rapid growth by congruent thermal evaporation, and it absorbs visible light strongly. However, for a long time the record power conversion efficiency of SnS solar cells remained below 2%. Recently we demonstrated new certified record efficiencies of 4.36% using SnS deposited by atomic layer deposition, and 3.88% using thermal evaporation. Here the fabrication procedure for these record solar cells is described, and the statistical distribution of the fabrication process is reported. The standard deviation of efficiency measured on a single substrate is typically over 0.5%. All steps including substrate selection and cleaning, Mo sputtering for the rear contact (cathode), SnS deposition, annealing, surface passivation, Zn(O,S) buffer layer selection and deposition, transparent conductor (anode) deposition, and metallization are described. On each substrate we fabricate 11 individual devices, each with active area 0.25 cm2. Further, a system for high throughput measurements of current-voltage curves under simulated solar light, and external quantum efficiency measurement with variable light bias is described. With this system we are able to measure full data sets on all 11 devices in an automated manner and in minimal time. These results illustrate the value of studying large sample sets, rather than focusing narrowly on the highest performing devices. Large data sets help us to distinguish and remedy individual loss mechanisms affecting our devices.  相似文献   

2.
A newly designed counter electrode (CE) composed of a hybridized structure of Au networks and cobalt sulfide (CoS) nanowire (NW) arrays is presented for flexible dye‐sensitized solar cells (DSSCs) and quantum dot‐sensitized solar cells (QDSSCs). The sheet resistance of the Au networks electrode is ≈10 Ω sq?1 with a transmittance up to 90%. The CoS NWs/Au hybridized networks show excellent electrocatalytic activity and lower charge transfer resistance toward the reduction of both Sx2? ions and I3? ions. The hybridized electrode exhibits remarkable mechanical strength and no obvious changes in morphology and sheet resistance even after 500 bending cycles; 3.13% and 4.73% efficiency are obtained by utilizing CoS/Au hybridized networks as CEs in TiO2 nanotube array (TNAR) based DSSCs and QDSSCs. This work provides a novel approach to fabricate flexible, transparent, conductive, and catalytically active electrodes for QDSSCs and DSSCs and pomotes the development of transparent percolation conductive films for photovoltaics.  相似文献   

3.
Multijunction solar cells employing perovskite and crystalline‐silicon (c‐Si) light absorbers bear the exciting potential to surpass the efficiency limit of market‐leading single‐junction c‐Si solar cells. However, scaling up this technology and maintaining high efficiency over large areas are challenging as evidenced by the small‐area perovskite/c‐Si multijunction solar cells reported so far. In this work, a scalable four‐terminal multijunction solar module design employing a 4 cm2 semitransparent methylammonium lead triiodide perovskite solar module stacked on top of an interdigitated back contact c‐Si solar cell of identical area is demonstrated. With a combination of optimized transparent electrodes and efficient module design, the perovskite/c‐Si multijunction solar modules exhibit power conversion efficiencies of 22.6% on 0.13 cm2 and 20.2% on 4 cm2 aperture area. Furthermore, a detailed optoelectronic loss analysis along with strategies to enhance the performance is discussed.  相似文献   

4.
5.
Device architectures for semi‐transparent perovskite solar cells are proposed that are not only highly efficient but also very effective in thermal‐mirror operation. With the optimal top transparent electrode design based on thin metal layer capped with a high‐index dielectric layer for selective transmittance in visible and high reflectance in near‐infrared (NIR) region, the proposed see‐through devices exhibit average power conversion efficiency as large as 13.3% and outstanding NIR rejection of 85.5%, demonstrating their great potential for ideal “energy‐generating and heat‐rejecting” solar windows that can make a smart use of solar energy.  相似文献   

6.
Semitransparent organic solar cells (ST‐OSCs) have appealing features, such as flexibility, transparency, and color in addition to generating clean energy, and therefore show potential applications in building integrated photovoltaics and photovoltaic vehicles. Concerted efforts in materials synthesis (particularly low‐band‐gap polymer donors and nonfullerene acceptors) and device optimization (particularly incorporating transparent electrodes) have raised the efficiencies of ST‐OSCs to >10%, with average visible transparency of >30%. In this Research News article, the recent progress in nonfullerene‐based ST‐OSCs is summarized and discussed. The future perspectives and research directions for the ST‐OSCs field are proposed.  相似文献   

7.
A efficient indium tin oxide (ITO)‐free transparent electrode based on an improved Ag film is designed by introducing small amount of Al during co‐deposition, producing ultrathin and smooth Ag film with low loss. A transparent electrode as thin as 4 nm is achieved by depositing the film on top of Ta2O5 layer, and organic solar cells based on such ultrathin electrode are built, producing power conversion efficiency over 7%. The device efficiency can be optimized by simply tuning Ta2O5 layer thickness external to the organic photovoltaic (OPV) structure to create an optical cavity resonance inside the photoactive layer. Therefore Ta2O5/Al‐doped Ag films function as a high‐performance electrode with high transparency, low resistance, improved photon management capability and mechanical flexibility.  相似文献   

8.
Dye‐sensitized solar cells (DSCs) have attracted great interest as one of the most promising photovoltaic technologies, and transparent DSCs show potential applications as photovoltaic windows. However, the competition between light absorption for photocurrent generation and light transmittance for obtaining high transparency limits the performance of transparent DSCs. Here, transparent DSCs exhibiting a high light transmittance of 60.3% and high energy conversion efficiency (3.66%) are reported. The strategy is to create a cocktail system composed of ultraviolet and near‐infrared dye sensitizers that selectively and efficiently harvest light in the invisible or low‐eye‐sensitivity region while transmitting light in high‐eye‐sensitivity regions. This new design provides a reasonable approach for realizing high efficiency and transparency DSCs that have potential applications as photovoltaic windows.  相似文献   

9.
Window‐ or building‐integrated semi‐transparent solar cells are particularly interesting applications for organic photovoltaic devices. In this work, we present an easy‐to‐process inverted device architecture comprising fully solution processable poly(3,4‐ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) bilayer top‐electrodes for efficient semi‐transparent organic solar cells. By incorporating dyes with a complementary absorption to the light harvesting polymer poly[[9‐(1‐octylnonyl)‐9H‐carbazole‐2,7‐diyl]‐2,5‐thiophenediyl‐2,1,3‐benzothiadiazole‐4,7‐diyl‐2,5‐thiophenediyl] (PCDTBT) into the PEDOT:PSS electrode, we achieve fully color neutral transparency perception and a color rendering index approaching 100. This makes the devices suitable for applications such as window shadowing or the integration into overhead glazing.  相似文献   

10.
Flexible and semitransparent organic solar cells (OSCs) have been regarded as the most promising photovoltaic devices for the application of OSCs in wearable energy resources and building‐integrated photovoltaics. Therefore, the flexible and semitransparent OSCs have developed rapidly in recent years through the synergistic efforts in developing novel flexible bottom or top transparent electrodes, designing and synthesizing high performance photoactive layer and low temperature processed electrode buffer layer materials, and device architecture engineering. To date, the highest power conversion efficiencies have reached over 10% of the flexible OSCs and 7.7% with average visible transmittance of 37% for the semitransparent OSCs. Here, a comprehensive overview of recent research progresses and perspectives on the related materials and devices of the flexible and semitransparent OSCs is provided.  相似文献   

11.
A high-throughput, single-source laser scribing method exploiting a transparent conducting oxide (TCO) indirect liftoff mechanism is developed to produce serially interconnected perovskite solar modules. The TCO-based indirect liftoff mechanism relies solely on laser absorption in the front transparent electrode material reducing thermal damage to the overlying layers and allowing for fast scribing speeds with low-cost μs-pulse duration fiber laser systems. Minimal resistive power losses are observed with the method compared to conventional ablative laser scribes, maintaining the power conversion efficiencies of small-area devices (≈0.2 cm2) across significantly larger deposition areas (≈1 cm2). Demonstrating > 3 m s−1 processing speeds, TCO-based liftoff provides the highest throughput laser scribing method for thin-film photovoltaic devices produced on glass/TCO substrates, capable of processing large-area perovskite solar modules at a manufacturing scale.  相似文献   

12.
Transparent top electrodes for solid‐state dye‐sensitized solar cells (ssDSCs) allow for fabrication of mechanically stacked ssDSC tandems, partially transparent ssDSCs for building integration, and ssDSCs on metal foil substrates. A solution‐processed, highly transparent, conductive electrode based on PEDOT:PSS [poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)] and spray‐deposited silver nanowires (Ag NWs) is developed as an effective top contact for ssDSCs. The electrode is solution‐deposited using conditions and solvents that do not damage or dissolve the underlying ssDSC and achieves high performance: a peak transmittance of nearly 93% at a sheet resistance of 18 Ω/square – all without any annealing that would harm the ssDSC. The role of the PEDOT:PSS in the electrode is twofold: it ensures ohmic contact between the ssDSC 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)9,9′‐spirobifluorene (Spiro‐OMeTAD) overlayer and the silver nanowires and it decreases the series resistance of the device. Semitransparent ssDSCs with D35 dye fabricated using this Ag NW/PEDOT:PSS transparent electrode show power conversion efficiencies of 3.6%, nearly as high as a reference device using an evaporated silver electrode (3.7%). In addition, the semitransparent ssDSC shows high transmission between 700–1100 nm, a necessity for use in efficient tandem devices. Such an electrode, in combination with efficient ssDSCs or hybrid perovskite‐sensitized solar cells, can allow for the fabrication of efficient, cost‐effective tandem photovoltaics.  相似文献   

13.
Solution processed polymer:fullerene solar cells on opaque substrates have been fabricated in conventional and inverted device configurations. Opaque substrates, such as insulated steel and metal covered glass, require a transparent conducting top electrode. We demonstrate that a high conducting (900 S cm?1) PEDOT:PSS layer, deposited by a stamp‐transfer lamination technique using a PDMS stamp, in combination with an Ag grid electrode provides a proficient and versatile transparent top contact. Lamination of large size PEDOT:PSS films has been achieved on variety of surfaces resulting in ITO‐free solar cells. Power conversion efficiencies of 2.1% and 3.1% have been achieved for P3HT:PCBM layers in inverted and conventional polarity configurations, respectively. The power conversion efficiency is similar to conventional glass/ITO‐based solar cells. The high fill factor (65%) and the unaffected open‐circuit voltage that are consistently obtained in thick active layer inverted geometry devices, demonstrate that the laminated PEDOT:PSS top electrodes provide no significant potential or resistive losses.  相似文献   

14.
Regulation of solar and thermal radiation of building envelope shows huge energy-saving potentials. Existing reviews mainly focus on the materials with fixed solar and thermal optical properties. Although there are reviews reporting the materials with modulated optical properties (e.g., radiative cooling materials with modulating thermal emissivity while maintaining high solar reflectance), they merely focus on either solar or thermal radiation modulation, which can provide limited or even negative building energy savings and thus may mislead the researchers to design low energy-efficient materials in practice. To help gain a holistic understanding of the state-of-the-art solar and thermal radiation-modulation materials (STRMMs) and guide researchers to develop more effective STRMMs for maximum building energy savings, here the STRMMs are reviewed in three categories, solar radiation modulation, thermal radiation modulation, and synergetic solar and thermal radiation modulation. In the former two categories, only single solar or thermal optical property is modulated while in the third category both solar and thermal optical properties are modulated. For STRMMs in each category, their working principles, representative examples, potential applications and future perspectives are compared and elaborated.  相似文献   

15.
Semi‐transparent (ST) organic solar cells with potential application as power generating windows are studied. The main challenge is to find proper transparent electrodes with desired electrical and optical properties. In this work, this is addressed by employing an amphiphilic conjugated polymer PFPA‐1 modified ITO coated glass substrate as the ohmic electron‐collecting cathode and PEDOT:PSS PH1000 as the hole‐collecting anode. For active layers based on different donor polymers, considerably lower reflection and parasitic absorption are found in the ST solar cells as compared to solar cells in the standard geometry with an ITO/PEDOT:PSS anode and a LiF/Al cathode. The ST solar cells have remarkably high internal quantum efficiency at short circuit condition (~90%) and high transmittance (~50%). Hence, efficient ST tandem solar cells with enhanced power conversion efficiency (PCE) compared to a single ST solar cell can be constructed by connecting the stacked two ST sub‐cells in parallel. The total loss of photons by reflection, parasitic absorption and transmission in the ST tandem solar cell can be smaller than the loss in a standard solar cell based on the same active materials. We demonstrate this by stacking five separately prepared ST cells on top of each other, to obtain a higher photocurrent than in an optimized standard solar cell.  相似文献   

16.
Among many other requirements, energy efficient building materials require effective daylight harvesting and thermal insulation to reduce electricity usage and weatherization cost. The most commonly used daylight harvesting material, glass, has limited light management capability and poor thermal insulation. For the first time, transparent wood is introduced as a building material with the following advantages compared with glass: (1) high optical transparency over the visible wavelength range (>85%); (2) broadband optical haze (>95%), which can create a uniform and consistent daylight distribution over the day without glare effect; (3) unique light guiding effect with a large forward to back scattering ratio of 9 for a 0.5 cm thick transparent wood; (4) excellent thermal insulation with a thermal conductivity around 0.32 W m?1 K?1 along the wood growth direction and 0.15 W m?1 K?1 in the cross plane, much lower than that of glass (≈1 W m?1 K?1); (5) high impact energy absorption that eliminates the safety issues often presented by glass; and (6) simple, scalable fabrication with reliable performance. The demonstrated transparent wood composite exhibits great promise as a future building material, especially as a replacement of glass toward energy efficient building with sustainable materials.  相似文献   

17.
The fabrication of a low reabsorption emission loss, high efficient luminescent solar concentrator (LSC) is demonstrated by embedding near infrared (NIR) core/shell quantum dots (QDs) in a polymer matrix. An engineered Stokes shift in NIR core/shell PbS/CdS QDs is achieved via a cation exchange approach by varying the core size and shell thickness through the refined reaction parameters such as reaction time, temperature, precursor molar ratio, etc. The as‐synthesized core/shell QDs with high quantum yield (QY) and excellent chemical/photostability exhibit a large Stokes shift with respect to the bare PbS QDs due to the strong core‐to‐shell electrons leakage. The large‐area planar LSC based on core/shell QDs exhibits the highest value (6.1% with a geometric factor of 10) for optical efficiency compared to the bare NIR QD‐based LSCs and other reported NIR QD‐based LSCs. The suppression of emission loss and the broad absorption of PbS/CdS QDs offer a promising pathway to integrate LSCs and photovoltaic devices with good spectral matching, indicating that the proposed core/shell QDs are strong candidates for fabricating high efficiency semi‐transparent large‐area LSCs.  相似文献   

18.
Luminescent solar concentrators (LSCs) are optical systems that absorb, convert, and concentrate solar light by means of photoluminescence of an emitting material embedded in a transparent waveguide. LSCs combine large possibilities of variation of shape, flexibility, color, and transparency and can operate under direct or diffuse light. LSCs were actively investigated in the period 1975–1985 in view of photovoltaic (PV) conversion. After 20 years of sleep, research on LSCs has reemerged in the first years of the millennium driven by their potential application for PV conversion in built environment. Research on LSCs aims at the development of new active and passive components, namely emitting and light‐guiding materials, and at the reduction of the loss factors associated with the elemental processed involved in the operation in order to improve power conversion efficiency. After a brief historical account, the operating principles, characterization, components, technology, and applications are reviewed. Finally, the performance of LSCs are critically discussed in a global perspective with particular emphasis on the basic contradiction between light concentration and conversion efficiency leading to some suggestions for future development of the topic.  相似文献   

19.
Organic photovoltaic (OPV) solar cells that can be simply processed from solution are in the focus of the academic and industrial community because of their enormous potential to reduce cost. One big challenge in developing a fully solution‐processed OPV technology is the design of a well‐performing electrode system, allowing the replacement of ITO. Several solution‐processed electrode systems were already discussed, but none of them could match the performance of ITO. Here, we report efficient ITO‐free and fully solution‐processed semitransparent inverted organic solar cells based on silver nanowire (AgNW) electrodes. To demonstrate the potential of these AgNW electrodes, they were employed as both the bottom and top electrodes. Record devices achieved fill factors as high as 63.0%, which is comparable to ITO based reference devices. These results provide important progress for fully printed organic solar cells and indicate that ITO‐free, transparent as well as non‐transparent organic solar cells can indeed be fully solution‐processed without losses.  相似文献   

20.
The feasibility of using solar photo-oxidation to inactivate faecal bacterial contaminants in drinking water has been evaluated under field conditions in India and South Africa. Freshly drawn samples from all six test water sources were low in dissolved oxygen, at 13-40% of the air saturation value. However, vigorous mixing followed by exposure to full-strength sunlight in transparent plastic containers (1-25 l capacity) caused a rapid decrease in the counts of faecal indicator bacteria, giving complete inactivation within 3-6 h, with no evidence of reactivation. These results demonstrate that solar photo-oxidation may provide a practical, low-cost approach to the improvement of drinking water quality in developing countries with consistently sunny climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号