首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphatidylinositol 4,5-bisphosphate (PIP2) reorganizes actin filaments by modulating the functions of a variety of actin-regulatory proteins. Until now, it was thought that bound PIP2 is hydrolyzed only by tyrosine-phosphorylated phospholipase Cgamma (PLCgamma) after the activation of tyrosine kinases. Here, we show a new mechanism for the hydrolysis of bound PIP2 and the regulation of actin filaments by PIP2 phosphatase (synaptojanin). We isolated a 150-kDa protein (p150) from brains that binds the SH3 domains of Ash/Grb2. The sequence of this protein was found to be homologous to that of synaptojanin. The expression of p150 in COS 7 cells produces a decrease in the number of actin stress fibers in the center of the cells and causes the cells to become multinuclear. On the other hand, the expression of a PIP2 phosphatase-negative mutant does not disrupt actin stress fibers or produce the multinuclear phenotype. We have also shown that p150 forms the complexes with Ash/Grb2 and epidermal growth factor (EGF) receptors only when the cells are treated with EGF and that it reorganizes actin filaments in an EGF-dependent manner. Moreover, the PIP2 phosphatase activity of native p150 purified from bovine brains is not inhibited by profilin, cofilin, or alpha-actinin, although PLCdelta1 activity is markedly inhibited by these proteins. Furthermore, p150 suppresses actin gelation, which is induced by smooth muscle alpha-actinin. All these data suggest that p150 (synaptojanin) hydrolyzes PIP2 bound to actin regulatory proteins, resulting in the rearrangement of actin filaments downstream of tyrosine kinase and Ash/Grb2.  相似文献   

2.
During the course of the 2,2,6,6-tetramethyl-1-piperidinyloxy free radical-catalyzed electrochemical oxidation of D-glucose to D-glucaric acid a new side-product was observed. This compound was isolated and identified as a tricarboxylic acid of unique structure, which was named maribersonic acid. Its structure was proven by different experiments coupled with several analytical methods, and its appearance during the electrochemical oxidation of D-glucose was rationalized through a thorough study.  相似文献   

3.
4.
5.
Parvifloron D was isolated from Plectranthus ecklonii together with sugiol and mixtures of β-sitosterol and stigmasterol and ursolic and oleanolic acids. Treatment of parvifloron D [2α-(4-hydroxy)benzoyloxy-11-hydroxy-5,7,9(11),13-abietatetraen-12-one] with acid-washed molecular sieves gave the microstegiol derivative 2β-(4-hydroxy)benzoyloxy-11β-hydroxy-4(5  11),20(10  5)diabeo-5(10),6,8,13-abietatetraen-12-one in a moderate yield (26%). The new microstegiol derivative inhibited the growth of some Staphylococcus and Enterococcus species with significant MIC values ranging from 3.91 to 7.81 μg/ml.  相似文献   

6.
An initial incubation of dog thyroid slices with 0.1 or 1 microM acetylcholine (ACH) for at least 2 h decreases its subsequent stimulation of [1-14C]glucose oxidation. Refractoriness persists for as long as 6 h in the absence of ACH. While new protein synthesis is essential for recovery, it is not necessary for its induction. Refractoriness is prevented when 25 microM tropicamide, an atropine-like drug, is present from the beginning of the initial incubation, but not when it is added after 2 h of incubation of slices with ACH, indicating that at this time ACH is no longer necessary for refractoriness. During refractoriness induced by ACH, stimulation of glucose oxidation by thyroid-stimulating hormone, prostaglandin E1, dibutyryl cyclic AMP, and cholera toxin, but not menadiol, is also significantly diminished. Incubation of thyroid slices with ACH does not modify its stimulation of iodide organification or 32Pi incorporation into phospholipids. These results suggest that the desensitization is not due to changes in the ACH receptor but rather to intracellular metabolic effects. This phenomenon may be important in the regulation of cholinergic effects on the thyroid.  相似文献   

7.
8.
9.
Liu P  Burdzy A  Sowers LC 《DNA Repair》2003,2(2):199-210
The oxidation of the thymine methyl group can generate 5-formyluracil (FoU). Template FoU residues are known to miscode, generating base substitution mutations. The repair of the FoU lesion is therefore important in minimizing mutations induced by DNA oxidation. We have studied the repair of FoU in synthetic oligonucleotides when paired with A and G. In E. coli cell extract, the repair of FoU is four orders of magnitude lower than the repair of U and is similar for both FoU:A and FoU:G base pairs. In HeLa nuclear extract, the repair of FoU:A is similarly four orders of magnitude lower than the repair of uracil, although the FoU:G lesion is repaired 10 times more efficiently than FoU:A. The FoU:G lesion is shown to be repaired by E. coli mismatch uracil DNA glycosylase (Mug), thermophile mismatch thymine DNA glycosylase (Tdg), mouse mismatch thymine DNA glycosylase (mTDG) and human methyl-CpG-binding thymine DNA glycosylase (MBD4), whereas the FoU:A lesion is repaired only by Mug and mTDG. The repair of FoU relative to the other pyrimidines examined here in human cell extract differs from the substrate preferences of the known glycosylases, suggesting that additional, and as yet unidentified glycosylases exist in human cells to repair the FoU lesion. Indeed, as observed in HeLa nuclear extract, the repair of mispaired FoU derived from misincorporation of dGMP across from template FoU could promote rather than minimize mutagenesis. The pathways by which this important lesion is repaired in human cells are as yet unexplained, and are likely to be complex.  相似文献   

10.
11.
The pH profile of the reaction of glyceraldehyde with either valylhistidine or alanylhistidine exhibits an optimum near pH 6.5. One of the intermediates in the reaction, the Schiff base (aldimine), can be readily detected on an amino acid analyzer. The product of the reaction, the ketoamine formed after Amadori rearrangement of the aldimine, has been isolated by chromatography on Dowex 50. Its structure has been established by elemental analysis, amino acid analysis, and the relative amounts of carbonyl and histidine moieties. These chromatographic systems should facilitate studies on the mechanism of this reaction as it relates to peptides and proteins.  相似文献   

12.
Bromination of bis(3,4-dimethoxyphenyl)methanone (5) gave four products (6–9) with mono, di, tri, and tetra Br under different conditions. Reduction and demethylation reactions of product 9 with tetra Br were performed, consecutively and a natural product, 5,5′-methylene bis(3,4-dibrombenzene-1,2-diol) (1), was obtained with a 53% yield. Five derivatives, (13–17) (bromophenols), of 1 were also synthesised. The antioxidant and radical scavenging activities of bromophenols 1 and 13–17 were determined by employing various in vitro assays such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH?), 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS?+), N,N-dimethyl-p-phenylenediamine dihydrochloride radical cation (DMPD?+), and superoxide anion radical (O2?-) scavenging, reducing ability determination by the Fe3+-Fe2+ and Cu2+-Cu+ cupric reducing antioxidant capacity (CUPRAC) transformation methods, hydrogen peroxide scavenging, and ferrous ion (Fe2+) chelating activities. Moreover, these activities were compared to those of synthetic standard antioxidant compounds such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol, and trolox. The results showed that the synthesised bromophenols had effective antioxidant power.  相似文献   

13.
The essential structure of the orexin 1 receptor (OX1R) antagonist YNT-707 (2) was clarified, particularly the roles to OX1R antagonist activities of the 3-OMe, the 4,5-epoxy ring, the 14-hydroxy group, and the orientation of the 6-amide side chain.The 3-OMe and 17-sulfonamide group were shown to be essential for the OX1R antagonistic activity. The 4,5-epoxy ring plays an important role for the active orientation of the 6-amide group. The 14-hydroxy group could lower the activity of the 6β-amide isomer by the interaction of the 14-hydroxy group with the 6-amide group, which could orient the 6-amide group toward the upper side of the C-ring.Finally, we proposed the difference in the active conformation between OX1R and κ opioid receptor (KOR), especially in the orientation of the 6-amide group which is expected to be a useful guide for medicinal chemists to design OX1R ligands.  相似文献   

14.
Hydrolysates play an important role in modern biological production. These mixtures are mostly undefined and contain a mixture of proteins, peptides, and amino acids along with other non–amino acid‐based components. Recently, there has been an interest in defining and sequencing proteins and peptides in these hydrolysates to subsequently develop an assay to ensure removal during product purification. This work investigates an ultrafiltrate of yeastolate to determine whether any protein is present. Size exclusion chromatography indicated a possible high molecular weight component (>10 kDa). This suspected high molecular weight fraction was collected and investigated. It was determined that this fraction consists of nucleic acids; and no protein was detected using sensitive modern techniques including HPLC, mass spectrometry, and SDS‐PAGE. Next, five unique, yeast‐specific peptides were identified, sequenced, and confirmed. Finally, an impurity assay for any residual yeast specific peptides was developed and the analytical metrics were determined including accuracy, precision, linearity, range, and limits of detection and quantitation. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

15.
16.
Berberine bridge enzyme catalyzes the stereospecific oxidation and carbon–carbon bond formation of (S)-reticuline to (S)-scoulerine. In addition to this type of reactivity the enzyme can further oxidize (S)-scoulerine to the deeply red protoberberine alkaloid dehydroscoulerine albeit with a much lower rate of conversion. In the course of the four electron oxidation, no dihydroprotoberberine species intermediate was detectable suggesting that the second oxidation step leading to aromatization proceeds at a much faster rate. Performing the reaction in the presence of oxygen and under anoxic conditions did not affect the kinetics of the overall reaction suggesting no strict requirement for oxygen in the oxidation of the unstable dihydroprotoberberine intermediate. In addition to the kinetic characterization of this reaction we also present a structure of the enzyme in complex with the fully oxidized product. Combined with information available for the binding modes of (S)-reticuline and (S)-scoulerine a possible mechanism for the additional oxidation is presented. This is compared to previous reports of enzymes ((S)-tetrahydroprotoberberine oxidase and canadine oxidase) showing a similar type of reactivity in different plant species.  相似文献   

17.
Nitrous oxide (N2O), a greenhouse gas, is emitted during autotrophic and heterotrophic ammonia oxidation. This emission may result from either coupling to aerobic denitrification, or it may be formed in the oxidation of hydroxylamine (NH2OH) to nitrite (NO2 ). Therefore, the N2O production during NH2OH oxidation was studied with Alcaligenes faecalis strain TUD. Continuous cultures of A. faecalis showed increased N2O production when supplemented with increasing NH2OH concentrations. 15N-labeling experiments showed that this N2O production was not due to aerobic denitrification of NO2 . Addition of 15N-labeled NH2OH indicated that N2O was a direct by-product of NH2OH oxidation, which was subsequently reduced to N2. These observations are sustained by the fact that NO2 production was low (0.23 mM maximum) and did not increase significantly with increasing NH2OH concentration in the feed. The NH2OH-oxidizing capacity increased with increasing NH2OH concentrations. The apparent V max and K m were 31 nmol min−1 mg dry weight−1 and 1.5 mM respectively. The culture did not increase its growth yield and was not able to use NH2OH as the sole N source. A non-haem hydroxylamine oxidoreductase was partially purified from A. faecalis strain TUD. The enzyme could only use K3Fe(CN)6 as an electron acceptor and reacted with antibodies raised against the hydroxylamine oxidoreductase of Thiosphaera pantotropha. Received: 1 September 1998 / Received revision: 5 November 1998 / Accepted: 7 November 1998  相似文献   

18.
The classical tachykinins, substance P, neurokinin A and neurokinin B are predominantly found in the nervous system where they act as neurotransmitters and neuromodulators. Significantly reduced levels of these peptides were observed in neurodegenerative diseases and it may be suggested that this reduction may also result from the copper(II)-catalyzed oxidation. The studies of the interaction of copper(II) with neurokinin A and the copper(II)-catalyzed oxidation were performed. Copper(II) complexes of the neurokinin A (His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2) and acetyl-neurokinin A (Ac-His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2) were studied by potentiometric, UV-Vis (UV-visible), CD (circular dichroism) and EPR spectroscopic methods to determine the stoichiometry, stability constants and coordination modes in the complexes formed. The histidine residue in first position of the peptide chain of neurokinin A coordinates strongly to Cu(II) ion with histamine-like {NH2, NIm} coordination mode. With increasing of pH, the formation of a dimeric complex Cu2H2L2 was found but this dimeric species does not prevent the deprotonation and coordination of the amide nitrogens. In the Ac-neurokinin A case copper(II) coordination starts from the imidazole nitrogen of the His; afterwards three deprotonated amide nitrogens are progressively involved in copper coordination. To elucidate the products of the copper(II)-catalyzed oxidation of the neurokinin A and Ac-neurokinin A, liquid chromatography-mass spectrometry (LC-MS) method and Cu(II)/hydrogen peroxide as a model oxidizing system were employed.Oxidation target for both studied peptides is the histidine residue coordinated to the metal ions. Both peptides contain Met and His residues and are very susceptible on the copper(II)-catalyzed oxidation.  相似文献   

19.
20.
The apparent paradox of aerobic glycolysis has been investigated in bone and in cartilage. A new cytochemical procedure for hydroxyacyl dehydrogenase (HOAD) activity showed that the maximal activity of this enzyme in both tissues was equivalent to the maximal activity of glyceraldehyde 3-phosphate dehydrogenase (GAPD). The sum of these activities gave a measure of the maximum amount of acetyl-coenzyme A that could be produced. In these tissues, but not in liver which does not exhibit aerobic glycolysis, this summed value exceeded the maximal activity of succinate dehydrogenase (SDH). Consequently, it suggested that where fatty acid oxidation is sufficient to supply all the acetyl-coenzyme A required for the Krebs' cycle, that derived from fatty acid oxidation may inhibit pyruvate dehydrogenase causing accumulation of pyruvate which must be converted to lactate if pentose-shunt activity is to be maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号