首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

We report a simple and fast microwave-assisted method to grow silver nanoparticle films with tunable plasmon resonance band. Microwaving time controls nucleation and growth as well as particle agglomeration, cluster formation, particle morphology, and the plasmonic properties. Films produced with times shorter than 30 s presented a single well-defined plasmon resonance band (~ 400 nm), whereas films produced with times longer than 40 s presented higher wavelength resonances modes (> 500 nm). Plasmon band position and intensity can be easily tuned by controlling microwaving time and power. SEM and AFM images suggested the growth of asymmetrical silver nanoparticles. Simulated extinction spectra considering particles as spheres, hemispheres, and spherical caps were performed. The films were employed to enhance the sensitivity of ionizing radiation detectors assessed by optically stimulated luminescence (OSL) via plasmon-enhanced luminescence. By tuning the plasmon resonance band to overlap with the OSL stimulation (530 nm), luminescence enhancements of greater than 100-fold were obtained, demonstrating the importance of tuning the plasmon resonance band to maximize the OSL intensity and detector sensitivity. This versatile method to produce silver nanoparticle films with tunable plasmonic properties is a promising platform for developing small-sized radiation detectors and advanced sensing technologies.

Graphical Abstract

  相似文献   

2.

Boron is an important element for plants, humans, and animals in limited amounts. However, excess amounts can cause adverse effects in both humans and plants, necessitating its removal from certain systems. Boron compounds are used in many industrial applications, including in developing sectors like alternative energy technology; as a result, the need for this element is increasing and industries are looking towards boron recovery for the sustained use of this element in their products. While the literature on boron removal strategies is abundant, there is a relative lack of studies on boron recovery, with no review papers having yet addressed this topic. In this review, both boron removal and recovery techniques involving conventional approaches and membrane processes are examined to juxtapose the states of the science in these two related—and increasingly important—processes.

Graphical abstract
  相似文献   

3.

Silver (Ag) nanoparticles (NPs) and Ag nanorings (NRs) have been fabricated. Due to the inherent features of Ag NPs and Ag NRs, strong electromagnetic (EM) near-field distributions were expected, and hence surface-enhanced Raman scattering (SERS) activity was demonstrated. Size and interparticle gaps distribution of Ag NPs were estimated to be 48.14?±?10.14 nm and 14.11?±?5.24 nm respectively along with estimated coverage density of?~?4?×?1010 cm?2. On the other hand, Ag NRs were found to consist of Ag clusters and of various shapes and sizes, instead of a perfect ring structure. High-resolution FESEM revealed that the individual constituent clusters were different from each other, particularly in terms of size and shape in addition to the cases how such clusters were connected to form the edge of the NR. However, the coverage density of Ag NRs was estimated to be?~?5.6?×?106 cm?2. Based on the scenarios, it was speculated that the local EM near-field distribution would excel and thus led to enhanced SERS signals. SERS enhancement of R6G was estimated as high as 2.18?×?104 and 2.78?×?104 at 610 cm?1 (C???C ring bending mode in phenyl rings) for Ag NPs and Ag NRs respectively. FDTD analysis was carried out to elucidate the EM near-field distributions.

Graphical abstract

Ag NPs and Ag NRs from an ultrathin layer of Ag on ZnO/Glass (middle pane) confirming high EF of R6G adsorbed on Ag NRs (right pane) and Ag NPs (left pane) supported by corresponding EM near-field distributions.

  相似文献   

4.
Yang  Yanqiu  Zhang  Haoran  Ma  Liping  Lu  Xuemei  Wu  Shiwei  Song  Peng  Xia  Lixin 《Plasmonics (Norwell, Mass.)》2020,15(5):1525-1532

4,4’-Dithiobisbenzoic acid (DTBA) is equivalent to two 4-mercaptobenzoic acid (pMBA) molecules connected together after losing H+, and this bimolecular mechanism of DTBA efficiently promotes the ionization reaction. Under the irradiation of laser light, DTBA molecules are broken to form bimolecules similar to pMBA, and this kind of bimolecular coupling greatly increases the probability of binding with Ag NPs. Also, this molecule has the carboxylic acid group, which leads to a certain sensitivity to pH. In this article, through the comparison of DTBA and pMBA parallel experiments, it is clear that DTBA has better Raman activity, higher reaction efficiency, and more stable reaction than pMBA. The occurrence of this highly efficient ionization reaction under the monitoring of surface-enhanced Raman spectroscopy (SERS) provides a certain value for the progress of further related reactions, and it also has a wide range of applications in pH sensors and intracellular pH monitoring.

The study of efficient ionization reaction of 4,4’-dithiobisbenzoic acid with bimolecular structure

  相似文献   

5.

Dendrimeric copper nanoparticles (CuNPs) were prepared by the reduction of [Cu2(CH3CO2)4] with ascorbic acid at 75 °C in the presence of ranelate ions. The metallic nanoparticles exhibited a strong plasmonic band centered at 581 nm, and their average size distribution was typically in the range of 20–30 nm. By adding polyvinylpyrrolidone to the reaction mixture, the growth of the initial copper nanoparticles was hindered. Their sizes were stabilized around 1.8 nm, leading to spherical agglomerates of about 50 nm. Upon green light excitation, the agglomerates exhibited yellow-orange fluorescence emission, keeping the surface plasmon resonance band at 581 nm. This dual behavior suggested the occurrence of collective plasmonic resonance and efficient energy transfer within the agglomerated nanoparticles, in order to account for the observed fluorescence in the system.

Graphical Abstract

  相似文献   

6.

In utero hyperglycemia has consequences on future outcomes in the offsprings. We had earlier shown that in utero hyperglycemia impacts proteoglycans/glycosaminoglycans, one of the key molecules involved in brain development. Hypothalamic HSPGs such as syndecan-1 and syndecan-3 are well known for their involvement in feeding behavior. Therefore, studies were carried out to determine the effect of maternal hyperglycemia on the expression of HSPGs in the hypothalamus of offspring brain. Results revealed increased protein abundance of Syndecan-1 and -3 as well as glypican-1 in postnatal adults from hyperglycemic mothers. This was associated with increased hyperphagia and increased expression of Neuropeptide Y. These results indicate the likely consequences on offsprings exposed to in utero hyperglycemia on its growth.

Graphical abstract
  相似文献   

7.

Herein, we presented the synthesis and application of sodium dodecylbenzenesulfonate–based silver nanoparticles (termed as SDBS-AgNPs). The SDBS reverse micelles (RMs) in ethanol was used as nanoreactor for green AgNPs synthesis. The size, structure, and shape of SDBS-AgNPs were well distinct by UV/visible (UV/Vis), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) techniques. The SDBS-AgNPs were quite stable even at high temperature (80 °C), salt concentration (up to 300 μM), and wide pH range (2 to 12). Moreover, SDBS-AgNPs were found to be highly sensitive and selective colorimetric sensor for antihypertensive drug amlodipine (AML). The interaction of AML with SDBS-AgNPs resulted as a substantial increase in the absorbance and a prominent blue shift in wavelength from 426 to 400 nm. DLS results were further confirmed that the SDBS-AgNPs break into smaller sized particles. Similarly, FTIR results also verified the SDBS-AgNPs etching–based sensing of AML molecules due to the strong attraction by amine and carbonyl functional groups on the target drug. The proposed sensor exhibited linear response in the range of 0.001–200 μM (R2 = 0.9917) with limit of detection (LOD) and quantification (LOQ) of 0.161 and 0.49 μM, respectively. The probe remained selective against AML, even in the presence of equimolar interfering species (including other drugs and metal ions). Furthermore, findings proposed that the SDBS-AgNPs might be used as effective substitute to minimize infection severity by obstructing the biofilm formation against nosocomial and urinary tract infection (UTI) causing pathogens.

Graphical abstract

  相似文献   

8.

Poor quality and quantity of sleep are very common in elderly people throughout the world. Growing evidence has suggested that sleep disturbances could accelerate the process of neurodegeneration. Recent reports have shown a positive correlation between sleep deprivation and amyloid-β (Aβ)/tau aggregation in the brain of Alzheimer’s patients. Glial cells have long been implicated in the progression of Alzheimer’s disease (AD) and recent findings have also suggested their role in regulating sleep homeostasis. However, how glial cells control the sleep–wake balance and exactly how disturbed sleep may act as a trigger for Alzheimer’s or other neurological disorders have recently gotten attention. In an attempt to connect the dots, the present review has highlighted the role of glia-derived sleep regulatory molecules in AD pathogenesis.

Graphical Abstract

Role of glia in sleep disturbance and Alzheimer’s progression.

  相似文献   

9.

Non-invasive microstructural characterisation has the potential to determine the stability, or lack thereof, of atherosclerotic plaques and ultimately aid in better assessing plaques’ risk to rupture. If linked with mechanical characterisation using a clinically relevant imaging technique, mechanically sensitive rupture risk indicators could be possible. This study aims to provide this link–between a clinically relevant imaging technique and mechanical characterisation within human atherosclerotic plaques. Ex vivo diffusion tensor imaging, mechanical testing, and histological analysis were carried out on human carotid atherosclerotic plaques. DTI-derived tractography was found to yield significant mechanical insight into the mechanical properties of more stable and more vulnerable microstructures. Coupled with insights from digital image correlation and histology, specific failure characteristics of different microstructural arrangements furthered this finding. More circumferentially uniform microstructures failed at higher stresses and strains when compared to samples which had multiple microstructures, like those seen in a plaque cap. The novel findings in this study motivate diagnostic measures which use non-invasive characterisation of the underlying microstructure of plaques to determine their vulnerability to rupture.

Graphic abstract
  相似文献   

10.

Plasmonic nanoparticles are of great importance owing to their highly responsive ‘localized surface plasmon resonance’ (LSPR) behaviour to self-agglomeration/aggregation leading to the development of various nanosensors. Herein, we demonstrated the definite self-assembly of citrate functionalized silver nanoparticles (AgNPs) into a one-dimensional linear chain in presence of charged lead ions (Pb2+), one of the most toxic heavy metal pollutants. We have explored detail mechanism using a variety of spectroscopic tools and electron microscopy. The self-aggregation of AgNPs leads to the generation of new LSPR modes due to coupling of nearby existing modes. The conclusion of our experimental findings is duly supported by our developed numerical modelling based on the quasi-static approximation that the generated new LSPR modes are solely due to formation of chain-like aggregation of AgNPs. We have also monitored the LSPR spectra in the presence of other metal ions; however, only Pb2+ found to give such unique self-assembled geometry may due to its high interaction affinity with citrate. These findings play a key role for citrate functionalised AgNPs to be used as a low cost highly selective and sensitive lead ion sensor for potential application in industrial lead pollution monitoring. We have further varied several sensor parameters such as AgNPs size, concentration, and the allowed reaction time for it to be practically implemented as an efficient lead sensor meeting the Environmental Protection Agency recommendations.

Graphical abstract

The possible sensing mechanism of citrate-functionalized silver nanoparticles towards Pb2?+?followed by unique chain-like aggregation for potential atmospheric and industrial lead pollution monitoring.

  相似文献   

11.

Globally, water resources contaminated with petroleum hydrocarbons are under much consideration due to their hazardous effects on human beings as well as on plants and animals in the ecosystem. Petroleum hydrocarbons are classified as recalcitrant pollutants in nature. These petroleum products are mostly released in the water resources during the petroleum refining process by oil refineries. The conventional clean-up technologies for hydrocarbons contaminated water have more destructive effects on the aquatic and land ecosystems. Consequently, to develop cost-effective and more environment-friendly techniques that clean up the environment and restore the marine ecosystem to its original forms. Keeping in view, this review article explores the detailed information on fabrication, cost-effectiveness, and an overview of innovation of the floating treatment wetlands (FTWs) using plants and bacterial combined functions to remediate the petroleum hydrocarbons contaminated water. The review also discusses the improvement of microbial efficacy for hydrocarbon degradation using FTWs. The review article shows the various applications of FTWs to remove different organic pollutants in petroleum hydrocarbons contaminated water. The review also describes the prospective benefits of FTWs for their multiple uses for removal of hydrocarbons, chemical oxygen demand (COD), biochemical oxygen demand (BOD), phenol, and solids from hydrocarbons contaminated water. This review widely discusses the role of hydrocarbons in degrading bacteria, and wetland plants and the mechanism involved during the remediation process of hydrocarbons in FTWs. It further demonstrates features disturbing the treatment efficiency of FTWs, and finally, it is concluded by successful applications of FTWs and various suggestions for potential future research prospects.

Graphical Abstract
  相似文献   

12.

Oil-in-water (O/W) Pickering emulsions are attracting attention as carriers of lipophilic active compounds with clear advantages over traditional systems. Having in view their effective use it is important to study their stability against environmental stresses impacting manufacture, storage, and application conditions. In this work, hydroxyapatite nanoparticles (n-HAp) Pickering emulsions produced in continuous mode using a mesostructured reactor (average size?~?7, 11 and 18 µm) and in batch mode using a rotor–stator device (average size?~?18 µm) were studied concerning their behaviour at different temperatures (5–90 ºC), pH (2–10) and ionic strength (0–500 mM), conditions with relevance for food applications. Droplet size, morphology, and zeta-potential were analysed after 1 and 7 days under storage. In general, and despite the droplet size, the n-HAp Pickering emulsions were stable within the tested ionic strength range, at relatively high pH environments (6–10), and at temperatures up to 70 ºC. Pickering emulsions undergo complete phase separation at very low pH (2) due to n-HAp particle's disruption. A clear tendency to aggregation and coalescence was observed for high temperatures (70–90 ºC). Results indicate no significant differences related to the used production method. From an industrial perspective, this work also corroborates that the scale-up to a continuous process using a mesostructured reactor, NETmix, from a batch laboratorial process is feasible without impacting stability.

Graphical abstract
  相似文献   

13.
14.

Co-management, a governance process whereby management responsibility is shared between resource users and other collaborators, is a mainstream approach for governing social and ecological aspects of small-scale fisheries. While many assessments of co-management are available for single time periods, assessments across longer time-scales are rare–meaning the dynamic nature, and long-term outcomes, of co-management are insufficiently understood. In this study we analyse ten-years of catch and effort data from a co-managed, multi-species reef fishery in Solomon Islands. To further understand social, ecological and management dynamics we also draw on interviews with fishers and managers that had been conducted throughout the same decade. We aimed to answer (1) what are the temporal trends in fishing effort, harvesting efficiency, and catch composition within and beyond a periodically-harvested closure (i.e. a principal and preferred management tool in Pacific island reef fisheries), and, (2) what are the internal and external drivers that acted upon the fishery, and its management. Despite high fishing effort within the periodically-harvested closure, catch per unit effort remained stable throughout the ten years. Yet the taxonomic composition of catch changed substantially as species targeted early in the decade became locally depleted. These observations indicate that both the frequency of harvesting and the volumes harvested may have outpaced the turnover rates of target species. We argue that this reflects a form of hyperstability whereby declining abundance is not apparent through catch per unit effort since it is masked by a shift to alternate species. While the community sustained and adapted their management arrangements over the decade as a response to internal pressures and some signs of resource changes, some external social and ecological drivers were beyond their capabilities to govern. We argue the collaborative, knowledge exchange, and learning aspects of adaptive co-management may need even more attention to deal with this complexity, particularly as local and distal pressures on multi-species fisheries and community governance intensify.

Graphical abstract
  相似文献   

15.
16.

The luminescence properties of pure and ZrO2: Eu+3 nanophosphors with different concentration of the Eu+3 is synthesised and studied. A novel and environment benign microwave-induced hydrothermal process is used to synthesise the nanoparticles. As-formed pure ZrO2 nanoparticles were X-ray amorphous, and upon calcination at higher temperatures, they crystallise to a combination of both cubic and tetragonal phases. However, the ZrO2: Eu+3 nanophosphors prepared through the same technique under similar conditions yield exclusively cubic ZrO2, and it entirely depends on the concentration of Eu+3 as revealed by XRD studies. The nanoparticles are found to be spherical, non-porous and agglomerated as observed by SEM. The surface area of the nanoparticles of pure ZrO2 is found to be 30 m2/g for as-formed samples and 130 m2/g for calcined samples by BET studies. The increase in the surface area for calcined sample is due to the escaping of the adsorbed hydroxyl groups from the surface of the nanoparticles. The photoluminescence properties of the pure and Eu+3-doped ZrO2 nanoparticles were measured under 251 nm excitation wavelength. Under this excitation, pure ZrO2 gives the emissions at 394 nm, whereas Eu+3-doped nanoparticles gives the emissions at 613 nm, which corresponds to inter-f-f transition from 5D07F2 (613 nm) and is arising due to electronic dipole in the Eu+3 activator ion. CIE colour space (x, y) coordinates corresponding to 613 nm in the CIE chromaticity diagram is 0.680, 0.319.

Graphical Abstract

  相似文献   

17.

Proanthocyanidins are phenolic compounds abundant in the diet, commonly found in grapes and derivatives, foods known for their health-promoting benefits. There is previous evidence showing the antidiabetic activity of proanthocyanidins, however, their mechanisms of action have not been fully elucidated. This study evaluated the capacity of grape seed proanthocyanidins extract (GSPE) to modulate oxidative stress, nitric oxide levels, mitochondrial dysfunction, apoptosis, and sirtuin expression in endothelial cells EA.hy926 under high glucose condition. In addition, the possible toxic effects of GSPE was evaluated in a zebrafish embryos model. The results showed that GSPE was able to enhance cell viability and avoid the disturbance in redox metabolism induced by high glucose. Moreover, GSPE was able to avoid mitochondria dysfunction and the increased in p53 and poly-(ADP-ribose) polymerase expression induced by high glucose exposition. These effects were attributed to the increase in expression of sirtuin 3, a protein able to regulate mitochondrial function. GSPE in an effective concentration did not show toxic effects in zebrafish embryos model. Taken together, these data elucidate the key molecular target of GSPE for future pharmacological interventions in diabetic patients.

Graphic abstract
  相似文献   

18.

The increased phenomenon of antimicrobial resistance and the slow pace of development of new antibiotics are at the base of a global health concern regarding microbial infections. Antibiotic resistance kills an estimated 700,000 people each year worldwide, and this number is expected to increase dramatically if efforts are not made to develop new drugs or alternative containment strategies. Increased vaccination coverage, improved sanitation or sustained implementation of infection control measures are among the possible areas of action. Indeed, vaccination is one of the most effective tools of preventing infections. Starting from 1970s polysaccharide-based vaccines against Meningococcus, Pneumococcus and Haemophilus influenzae type b have been licensed, and provided effective protection for population. However, the development of safe and effective vaccines for infectious diseases with broad coverage remains a major challenge in global public health. In this scenario, nanosystems are receiving attention as alternative delivery systems to improve vaccine efficacy and immunogenicity. In this report, we provide an overview of current applications of glyconanomaterials as alternative platforms in the development of new vaccine candidates. In particular, we will focus on nanoparticle platforms, used to induce the activation of the immune system through the multivalent-displacement of saccharide antigens.

Graphical abstract
  相似文献   

19.

Geraniol (GE), an important ingredient in several essential oils, displayed pleiotropic biological activities through targeting multiple signaling cascades. In the current study, we aimed to examine the protective effect of GE on d-galactose (d-gal) induced cognitive impairment and explore the underlying mechanisms. Forty male Wistar rats (8 weeks old) were randomly categorized into 4 groups; Group I (saline?+?vehicle [edible oil]), group II (saline?+?geraniol) (100 mg/kg/day orally), group III (d-galactose) (100 mg/kg/day subcutaneously injected), and group IV (d-galactose?+?geraniol). Behavioral impairments were evaluated. Brain levels of malondialdehyde (MDA) and reduced glutathione (GSH) as well as superoxide dismutase (SOD) and acetylcholinesterase (AchE) activities were estimated. The levels of inflammatory markers [tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, and nuclear factor kappa beta (NF-kβ)], endoplasmic reticulum stress sensors [inositol requiring protein 1(IRE1) and protein kinase RNA–like endoplasmic reticulum kinase (PERK)], brain-derived neurotrophic factor (BDNF), and mitogen-activated protein kinases (MAPK) pathway were measured by ELISA. Also, hippocampal histopathological assessment and immunohistochemical analysis of glial fibrillary acidic protein (GFAP) and caspase-3 were performed. Glucose regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) mRNA expression and protein levels were assessed. GE effectively ameliorated aging-related memory impairment through increasing GSH, BDNF, Ach levels, and SOD activity. Additionally, GE treatment caused a decrease in the levels of MDA, inflammatory mediators, and ER stress sensors as well as the AchE activity together with concomitant down-regulation of GRP78 and CHOP mRNA expression. Moreover, GE improved neuronal architecture and rat's spatial memory; this is evidenced by the shortened escape latency and increased platform crossing number. Therefore, GE offers a unique pharmacological approach for aging-associated neurodegenerative disorders.

Graphical Abstract
  相似文献   

20.

In this paper, we study the postcranial morphology (humerus, ulna, innominate, femur, tibia, astragalus, navicular, and metatarsal III) of Neoepiblema, a giant Late Miocene South American rodent, searching for evidence about its paleobiology based on unpublished specimens from Solimões Formation (Upper Miocene, Brazil). The study includes a morphofunctional analysis of the postcranial bones and a comparison with extant and extinct rodents, especially Phoberomys. The morphofunctional analysis of the postcranial bones suggests that Neoepiblema (as well as Phoberomys) would have a crouched forelimb that was not fully extended, with powerful pectoral and triceps musculature, and able to produce movements of pronation/supination and possibly with a hand able to grasp. The combination of characters of the innominate bone, femur, and tibia indicates a predominance of parasagittal movements and a thigh with powerful musculature used during propulsion. In sum, the analyzed postcranial features are consistent with the limb morphology of ambulatory rodents, but with faculty to dig or swim. The sedimentary evidence of the localities in which fossils of neoepiblemids have been found suggests that these rodents lived in wet and water-related environments (near swamps, lakes, and/or rivers).

Graphical abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号