首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu J  Tan GS  Deng PY  Xu KP  Hu CP  Li YJ 《Regulatory peptides》2005,125(1-3):93-97
Previous investigations have indicated that calcitonin gene-related peptide (CGRP), a principal transmitter in capsaicin-sensitive sensory nerves, could alleviate cardiac anaphylaxis injury. Rutaecarpine relaxes vascular smooth by stimulation of CGRP release via activation of vanilloid receptor subtype 1 (VR1). In the present study, we examined the role of capsaicin-sensitive sensory nerves in anaphylactic vessels and the effect of rutaecarpine on antigen-challenged constriction in the guinea pig isolated thoracic aorta. The aortas were challenged with 0.01 mg/ml bovine serum albumin, and the tension of aorta rings was continuously monitored. The amount of CGRP released from thoracic aortas was determined in the absence or presence of rutaecarpine. Antigen challenge caused a vasoconstrictor response concomitantly with an increase in the release of CGRP from the isolated thoracic aorta, and the vasoconstrictor responses were potentiated by CGRP8-37 (10 microM) or capsaicin (1 microM). Pretreatment with diphenhydramine (1 microM) markedly decreased antigen-challenged vasoconstriction. Acute application of capsaicin (0.03 or 0.1 microM) significantly inhibited vasoconstrictor responses. Pretreatment with rutaecarpine (10 or 30 microM) significantly increased CGRP release concomitantly with decrease in antigen-challenged vasoconstriction, which was abolished by CGRP8-37 (10 microM) or capsazepine (10 microM). The present results suggest that an increase in the release of CGRP during vascular anaphylaxis may be a beneficial compensatory response, and that rutaecarpine inhibits antigen-challenged vasoconstriction, which is related to stimulation of endogenous CGRP release via activation of VR1.  相似文献   

2.
Li D  Peng J  Xin HY  Luo D  Zhang YS  Zhou Z  Jiang DJ  Deng HW  Li YJ 《Peptides》2008,29(10):1781-1788
We have previously reported that Chinese traditional medicine rutaecarpine (Rut) produced a sustained hypotensive effect in phenol-induced and two-kidney, one-clip hypertensive rats. The aims of this study are to determine whether Rut could exert antihypertensive and anti-platelet effects in spontaneously hypertensive rats (SHR) and the underlying mechanisms. In vivo, SHR were given Rut and the blood pressure was monitored. Blood was collected for the measurements of calcitonin gene-related peptide (CGRP), tissue factor (TF) concentration and activity, and platelet aggregation, and the dorsal root ganglia were saved for examining CGRP expression. In vitro, the effects of Rut and CGRP on platelet aggregation were measured, and the effect of CGRP on platelet-derived TF release was also determined. Rut exerted a sustained hypotensive effect in SHR concomitantly with the increased synthesis and release of CGRP. The treatment of Rut also showed an inhibitory effect on platelet aggregation concomitantly with the decreased TF activity and TF antigen level in plasma. Study in vitro showed an inhibitory effect of Rut on platelet aggregation in the presence of thoracic aorta, which was abolished by capsazepine or CGRP(8-37), an antagonist of vanilloid receptor or CGRP receptor. Exogenous CGRP was able to inhibit both platelet aggregation and the release of platelet-derived TF, which were abolished by CGRP(8-37). The results suggest that Rut exerts both antihypertensive and anti-platelet effects through stimulating the synthesis and release of CGRP in SHR, and CGRP-mediated anti-platelet effect is related to inhibiting the release of platelet-derived TF.  相似文献   

3.
Calcitonin gene-related peptide and hypertension   总被引:7,自引:0,他引:7  
Deng PY  Li YJ 《Peptides》2005,26(9):1676-1685
Capsaicin-sensitive sensory nerves participate in the regulation of cardiovascular functions both in the normal state and the pathophysiology of hypertension through the actions of potent vasodilator neuropeptides, including calcitonin gene-related peptide (CGRP). CGRP, a very potent vasodilator, is the predominant neurotransmitter in capsaicin-sensitive sensory nerves, and plays an important role in the initiation, progression and maintenance of hypertension via: (1) the alterations in its synthesis and release and/or in vascular sensitivity response to it; (2) interactions with pro-hypertensive systems, including renin-angiotensin-aldosterone system, sympathetic nervous system and endothelin system; and (3) anti-hypertrophy and anti-proliferation of vascular smooth muscle cells. The decrease in CGRP synthesis and release contributes to the elevated blood pressure, as shown in the spontaneously hypertensive rats, alpha-CGRP knockout mice, Dahl-salt or phenol-induced hypertensive rats. In contrast, the increase in CGRP levels or the enhancement of vascular sensitivity response to CGRP plays a beneficial compensatory depressor role in the development of hypertension, as shown in deoxycorticosterone-salt, sub-total nephrectomy-salt, N(omega)-nitro-L-arginine methyl ester or two-kidney, one-clip models of hypertension in rats. We found that rutaecarpine causes a sustained depressor action by stimulation of CGRP synthesis and release via activation of vanilloid receptor subtype 1 (VR1) in hypertensive rats, which reveals the therapeutic implications of VR1 agonists for treatment of hypertension.  相似文献   

4.
Calcitonin gene-related peptide (CGRP), a potent vasodilator released during activation from a subset of sensory Aδ- and C-fiber afferents, has been suggested to play a beneficial role in myocardial ischemia. Variations in CGRP release can possibly be correlated with diseases that involve changes in activity or degeneration of cardiac afferent fibers. The aim of the present study was to examine basal and stimulated CGRP release from cardiac tissue in patients who underwent cardiopulmonary bypass surgery and to compare patients with and without known history of diabetes mellitus. Small pieces of the right atrium routinely excised during the bypass operations were passed through series of oxygenated solutions. The TRPV1 receptor agonist capsaicin and the nitric oxide donor NONOate were added for stimulation of cardiac afferent fibers. The eluates were processed using an enzyme immuno-assay (EIA) for measurement of CGRP concentrations. Both capsaicin and NONOate caused significant increases in CGRP release. No significant differences in CGRP release between patients with and without diabetes mellitus were examined. The present study evaluates a simple and reproducible model for measuring stimulated CGRP release from the human right atrium.  相似文献   

5.
Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous “entourage” compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at nanomolar concentrations. Furthermore, intracerebroventricular injection of JZL184 produced TRPV1-dependent antinociception in the mouse formalin test. Our results show that intact 2-arachidonoylglycerol and 1-arachidonoylglycerol are endogenous TRPV1 activators, contributing to phospholipase C-dependent TRPV1 channel activation and TRPV1-mediated antinociceptive signaling in the brain.  相似文献   

6.
N-oleoyldopamine (OLDA), a bioactive lipid originally found in the mammalian brain, is an endovanilloid that selectively activates the transient receptor potential vanilloid type 1 (TRPV1) channel. This study tests the hypothesis that OLDA protects the heart against ischemia and reperfusion (I/R) injury via activation of the TRPV1 in wild-type (WT) but not in gene-targeted TRPV1-null mutant (TRPV1(-/-)) mice. Hearts of WT or TRPV1(-/-) mice were Langendorffly perfused with OLDA (2 x 10(-9) M) in the presence or absence of CGRP8-37 (1 x 10(-6) M), a selective calcitonin gene-related peptide (CGRP) receptor antagonist; RP-67580 (1 x 10(-6) M), a selective neurokinin-1 receptor antagonist; chelerythrine (5 x 10(-6) M), a selective protein kinase C (PKC) antagonist; or tetrabutylammonium (TBA, 5 x 10(-4) M), a nonselective K(+) channel antagonist, followed by 35 min of global ischemia and 40 min of reperfusion (I/R). Left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), coronary flow (CF), and left ventricular peak positive dP/dt (+dP/dt) were evaluated after I/R. OLDA improved recovery of cardiac function after I/R in WT but not TRPV1(-/-) hearts by increasing LVDP, CF, and +dP/dt and by decreasing LVEDP. CGRP8-37, RP-67580, chelerythrine, or TBA abolished the protective effect of OLDA in WT hearts. Radioimmunoassay showed that the release of substance P (SP) and CGRP after OLDA treatment was higher in WT than in TRPV1(-/-) hearts, which was blocked by chelerythrine or TBA. Thus OLDA exerts a cardiac protective effect during I/R injury in WT hearts via CGRP and SP release, which is abolished by PKC or K(+) channel antagonists. The protective effect of OLDA is void in TRPV1(-/-) hearts, supporting the notion that TRPV1 mediates OLDA-induced protection against cardiac I/R injury.  相似文献   

7.
Luo D  Zhang YW  Peng WJ  Peng J  Chen QQ  Li D  Deng HW  Li YJ 《Regulatory peptides》2008,150(1-3):66-72
Calcitonin gene-related peptide (CGRP), the principal transmitter in sensory nerves, could also be expressed in vascular endothelium. Transient receptor potential vanilloid 1(TRPV1), which modulates the synthesis and release of CGRP in sensory nerves, is also present in endothelial cells. The present study tested whether TRPV1 modulates the release and synthesis of CGRP in endothelial cells, and evaluated the protective effect of endothelial cell-derived CGRP. Human umbilical vein endothelial cells (HUVECs) were treated with capsaicin or hyperthermia. The level of CGRP mRNA was detected by RT-PCR, and protein level was measured by radioimmunoassay. Endothelial cell injury was induced by lysophosphatidylcholine, and evaluated by cell viability and lactate dehydrogenase activity. HUVECs expressed CGRP, both alpha- and beta-subtype. Capsaicin increased the level of CGRP in the culture medium, and up-regulated the expression of CGRP in endothelial cells. Hyperthermia also increased the level of CGRP mRNA. These effects were abolished by capsazepine, a competitive antagonist of TRPV1. Capsaicin significantly attenuated the endothelial cell damage induced by LPC, which was prevented and aggravated by capsazepine or CGRP(8-37,) antagonist of CGRP receptor. These results indicate that TRPV1 also regulates the expression and secretion of endothelial cell-derived CGRP, which affords protective effects on endothelial cells.  相似文献   

8.
The mechanism of pancreatitis-induced pain is unknown. In other tissues, inflammation activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to liberate CGRP and substance P (SP) in peripheral tissues and the dorsal horn to cause neurogenic inflammation and pain, respectively. We evaluated the contribution of TRPV1, CGRP, and SP to pancreatic pain in rats. TRPV1, CGRP, and SP were coexpressed in nerve fibers of the pancreas. Injection of the TRPV1 agonist capsaicin into the pancreatic duct induced endocytosis of the neurokinin 1 receptor in spinal neurons in the dorsal horn (T10), indicative of SP release upon stimulation of pancreatic sensory nerves. Induction of necrotizing pancreatitis by treatment with L-arginine caused a 12-fold increase in the number of spinal neurons expressing the proto-oncogene c-fos in laminae I and II of L1, suggesting activation of nociceptive pathways. L-arginine also caused a threefold increase in spontaneous abdominal contractions detected by electromyography, suggestive of referred pain. Systemic administration of the TRPV1 antagonist capsazepine inhibited c-fos expression by 2.5-fold and abdominal contractions by 4-fold. Intrathecal, but not systemic, administration of antagonists of CGRP (CGRP(8-37)) and SP (SR140333) receptors attenuated c-fos expression in spinal neurons by twofold. Thus necrotizing pancreatitis activates TRPV1 on pancreatic sensory nerves to release SP and CGRP in the dorsal horn, resulting in nociception. Antagonism of TRPV1, SP, and CGRP receptors may suppress pancreatitis pain.  相似文献   

9.
Hu CP  Li NS  Xiao L  Deng HW  Li YJ 《Regulatory peptides》2003,114(1):45-49
In the present study, we examined whether rutaecarpine protects against myocardial ischemia-reperfusion injury in rats and whether the protective effects of rutaecarpine are related to activation of capsaicin-sensitive sensory nerves. Rats were pretreated with rutaecarpine 10 min before the experiment, and then the left main coronary artery of rat hearts was subjected to 60-min occlusion followed by 3-h reperfusion. The infarct size, serum concentration of creatine kinase, and CGRP concentration in plasma were measured. Pretreatment with rutaecarpine (100 or 300 microg/kg, i.v.) significantly reduced infarct size and creatine kinase release concomitantly with a significant increase in plasma concentrations of CGRP. These effects of rutaecarpine were completely abolished by capsazepine (38 mg/kg, s.c.), a competitive vanilloid receptor antagonist, or by pretreatment with capsaicin (50 mg/kg, s.c.), which selectively depletes transmitters in capsaicin-sensitive sensory nerves. These results suggest that rutaecarpine protects against myocardial ischemia-reperfusion injury in rats and that the protective effects of rutaecarpine are related to activation of capsaicin-sensitive sensory nerves via activating vanilloid receptors.  相似文献   

10.
In esophageal mucosa, HCl causes TRPV1-mediated release of calcitonin gene-related peptide (CGRP) and substance P (SP) from submucosal neurons and of platelet-activating factor (PAF) from epithelial cells. CGRP and SP release was unaffected by PAF antagonists but reduced by the purinergic antagonist suramin. ATP caused CGRP and SP release from esophageal mucosa, confirming a role of ATP in the release. The human esophageal epithelial cell line HET-1A was used to identify epithelial cells as the site of ATP release. HCl caused ATP release from HET-1A, which was reduced by the TRPV1 antagonist 5-iodoresiniferatoxin. Real-time PCR demonstrated the presence of mRNA for several P2X and P2Y purinergic receptors in epithelial cells. HCl also increased activity of lyso-PAF acetyl-CoA transferase (lyso-PAF AT), the enzyme responsible for production of PAF. The increase was blocked by suramin. ATP caused a similar increase, confirming ATP as a mediator for the TRPV1-induced increase in enzyme activity. Repeated exposure of HET-1A cells to HCl over 2 days caused upregulation of mRNA and protein expression for lyso-PAF AT. Suramin blocked this response. Repeated exposure to ATP caused a similar mRNA increase, confirming ATP as a mediator for upregulation of the enzyme. Thus, HCl-induced activation of TRPV1 causes ATP release from esophageal epithelial cells that causes release of CGRP and SP from esophageal submucosal neurons and activation of lyso-PAF AT, the enzyme responsible for the production of PAF in epithelial cells. Repeated application of HCl or of ATP causes upregulation of lyso-PAF AT in epithelial cells.  相似文献   

11.
Our recent study has shown that asymmetric dimethylarginine (ADMA) plays an important role in facilitating gastric mucosal injury by multiple factors. To explore whether the protection of rutaecarpine against gastric mucosal injury is related to reduction of ADMA content, a model of ethanol-induced gastric mucosal injury in rats was selected for this study. The ulcer index, the content of ADMA and NO, and the activity of dimethylarginine dimethylaminohydrolase (DDAH) in gastric tissues were measured in vivo after pretreatment with rutaecarpine. The in vitro effect of rutaecarpine on the release of calcitonin gene-related peptide (CGRP) and NO from isolated gastric tissues was also determined. The results showed that ethanol significantly increased the ulcer index, decreased the DDAH activity and the NO level, and elevated the ADMA level, which was attenuated by pretreatment with rutaecarpine (0.6 mg/kg or 1.2 mg/kg). In the isolated gastric tissues, rutaecarpine significantly increased the release of both CGRP and NO; the release of NO, but not CGRP, was abolished in the presence of l-NAME (10(-4) mol/L). The present results suggest that rutaecarpine protects the gastric mucosa against injury induced by ethanol and that the gastroprotection of rutaecarpine is related to reduction of ADMA levels through stimulating the release of CGRP.  相似文献   

12.
Ren JY  Song JX  Lu MY  Chen H 《Regulatory peptides》2011,169(1-3):49-57
We previously found that the expression of transient receptor potential vanilloid 1 (TRPV1) and contents of calcitonin gene-related peptide (CGRP) and substance P (SP), two main neuropeptides released from TRPV1, were decreased in diabetic hearts. This study aimed to test whether decreased TRPV1, CGRP and SP levels were responsible for the loss of cardioprotection by ischemic postconditioning (IPostC) in isolated perfused heart from streptozotocin-induced diabetic rats. IPostC effectively protected non-diabetic hearts against ischemia/reperfusion injury by improving cardiac function and lowering creatine kinase (CK) and cardiac troponin I (cTnI) release, which could be abolished by inhibiting TRPV1, CGRP receptor or SP receptor. However, IPostC had no effect on cardiac function and the release of CK and cTnI in diabetic hearts regardless of whether TRPV1, CGRP receptor or SP receptor were inhibited. CGRP or SP-induced postconditioning significantly prevented both non-diabetic and diabetic hearts from ischemia/reperfusion injury by improving cardiac function and lowering CK and cTnI release. Additionally, IPostC markedly increased CGRP and SP release in non-diabetic hearts, which could be reversed with TRPV1 inhibition, but not CGRP receptor or SP receptor inhibition. However, IPostC failed to affect CGRP and SP release in diabetic hearts in the presence or absence of TRPV1, CGRP receptor or SP receptor inhibition. These results indicate that the loss of cardioprotection by IPostC during diabetes is partly associated with a failure to increase CGRP and SP release, likely due to decreased TRPV1 expression and CGRP and SP contents in diabetic hearts.  相似文献   

13.
Intermedin/adrenomedullin-2 (IMD/AM2) is a 47 amino acid peptide formed by enzymatic degradation of preprointermedin. The present study was undertaken to investigate the effects of rat IMD (rIMD) in the isolated buffer perfused rat lung (IBPR) under resting conditions and under conditions of elevated pulmonary vasoconstrictor tone (PVT). Under resting conditions in the IBPR, rIMD had little or no activity. When PVT was actively increased by infusion of U46619, bolus injection of IMD decreased pulmonary arterial pressure (PAP) in a dose-dependent manner. Since the pulmonary perfusion rate and left atrial pressure were constant, these reductions in PAP directly reflect reductions in pulmonary vascular resistance (PVR). The pulmonary vasodilator response to rIMD, when compared to calcitonin gene-related peptide (CGRP) on a molar basis, was greater at the lowest and midrange doses. The degree of inhibition by CGRP8-37 on pulmonary vasodilator response to rIMD was significantly less when compared to CGRP. Pretreatment with L-nitro-arginine-methyl ester (L-NAME), unlike meclofenamate and glybenclamide, significantly reduced the pulmonary vasodilator responses to rIMD. rIMD administration induced cross-tachyphylaxis to the pulmonary vasodilator response to CGRP whereas CGRP administration did not alter the ability of rIMD to dilate the IBPR. Pulmonary vasodilator responses to repeated injections of rIMD did not undergo tachyphylaxis. The present data demonstrate rIMD possesses direct vasodilator activity in the rat pulmonary vascular bed. The present data suggest activation of CGRP1 receptors and release of nitric oxide (NO*) mediate the pulmonary vasodilator response to rIMD whereas cyclooxygenase products and KATP channels do not contribute to the pulmonary vasodilator response to rIMD. The ability of rIMD to induce heterologous desensitization of CGRP1 receptor activation, to retain much of its pulmonary vasodilator activity after inhibition of CGRP1 receptors, and to lack homologous desensitization together suggests the pulmonary, unlike the systemic, vasodilator response to rIMD may depend on other vasodilator mechanisms including receptors in the calcitonin-receptor-like-receptor (CRLR) family.  相似文献   

14.
Although the transient receptor potential vanilloid type 1 (TRPV1)-containing afferent nerve fibers are widely distributed in the heart, the relationship between TRPV1 function and cardiac ischemic preconditioning (PC) has not been well defined. Using TRPV1 knockout mice (TRPV1(-/-)), we studied the role of TRPV1 in PC-induced myocardial protection. Hearts of gene-targeted TRPV1-null mutant (TRPV1(-/-)) or wild-type (WT) mice were Langendorffly perfused in the presence or absence of CGRP(8-37), a selective calcitonin gene-related peptide (CGRP) receptor antagonist; or RP-67580, a selective neurokinin-1 receptor antagonist when hearts were subjected to three 5-min periods of ischemia PC followed by 30 min of global ischemia and 40 min of reperfusion (I/R). PC before I/R decreased left ventricular (LV) end-diastolic pressure and increased LV developed pressure, coronary flow (CF), peak-positive maximum rate of rise of LV pressure in WT mice (PC-WT) compared with PC-TRPV1(-/-), TRPV1(-/-), or WT hearts (P < 0.05), and PC also decreased LV end-diastolic pressure in PC-TRPV1(-/-) compared with TRPV1(-/-). CGRP(8-37) or RP-67580 abolished PC-induced protection in WT but not TRPV1(-/-) hearts (P < 0.05). Moreover, PC decreased lactate dehydrogenase release and infarct size in PC-WT compared with PC-TRPV1(-/-), TRPV1(-/-), or WT hearts, and it also lowered these parameters in PC-TRPV1(-/-) compared with TRPV1(-/-) hearts (P < 0.05). Radioimmunoassay showed that the release of substance P and CGRP after PC was higher in WT hearts than in TRPV1(-/-) hearts (P < 0.05), which was attenuated by capsazepine in WT but not TRPV1(-/-) hearts. Thus PC-induced protection of the heart was impaired in TRPV1(-/-) hearts, indicating that TRPV1 contributes to the beneficial effects of preconditioning against I/R injury through release substance P and CGRP.  相似文献   

15.
S Akiyama  H Kawasaki  A Shimogai  Y Kurosaki 《Peptides》2001,22(11):1887-1893
We have reported that the rat mesenteric resistance artery has innervation of calcitonin gene-related peptide (CGRP)-containing vasodilator nerves (CGRPergic nerves). We also demonstrated that adrenomedullin (AM) causes mesenteric vasodilation through activation of CGRP receptors. The present study was designed to examine the effect of AM on neurotransmission of CGRPergic nerves in rat mesenteric arteries. In preconstricted preparations without endothelium, periarterial nerve stimulation (PNS, 1 and 2 Hz) induced a frequency-dependent vasodilation. A bolus injection of CGRP (10 pmol) into the perfusate also caused a vasodilation. AM (0.1 to 10 nM) concentration-dependently caused 40% to 60% inhibition of the PNS-induced vasodilation, but AM did not attenuate vasodilation induced by exogenous CGRP injection. The inhibitory effect of AM (10 nM) on PNS-induced vasodilation was further potentiated by CGRP [8-37] (CGRP receptor antagonist, 50 nM), which attenuated the vasodilator response to the CGRP injection. Combined perfusion of AM [22-52] (AM receptor antagonist, 10 to 100 nM) resulted in further inhibition of PNS-induced neurogenic vasodilation without affecting the vasodilator response to the CGRP injection. CGRP [8-37] but not AM [22-52] antagonized vasodilation induced by AM perfusion. These findings suggest that AM presynaptically inhibits neurotransmission of CGRPergic nerves, probably decreasing CGRP release, via receptors different from CGRP receptors.  相似文献   

16.
Rats with experimental colitis suffer from impaired gastric emptying (GE). We previously showed that this phenomenon involves afferent neurons within the pelvic nerve. In this study, we aimed to identify the mediators involved in this afferent hyperactivation. Colitis was induced by trinitrobenzene sulfate (TNBS) instillation. We determined GE, distal front, and geometric center (GC) of intestinal transit 30 min after intragastric administration of a semiliquid Evans blue solution. We evaluated the effects of the transient receptor potential vanilloid type 1 (TRPV1) antagonists capsazepine (5-10 mg/kg) and N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)carboxamide (BCTC; 1-10 mg/kg) and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP-(8-37) (150 microg/kg). To determine TRPV1 receptor antagonist sensitivity, we examined their effect on capsaicin-induced relaxations of isolated gastric fundus muscle strips. Immunocytochemical staining of TRPV1 and RT-PCR analysis of TRPV1 mRNA were performed in dorsal root ganglion (DRG) L6-S1. TNBS-induced colitis reduced GE but had no effect on intestinal motility. Capsazepine reduced GE in controls but had no effect in rats with colitis. At doses that had no effects in controls, BCTC and CGRP-(8-37) significantly improved colitis-induced gastroparesis. Capsazepine inhibited capsaicin-induced relaxations by 35% whereas BCTC completely abolished them. TNBS-induced colitis increased TRPV1-like immunoreactivity and TRPV1 mRNA content in pelvic afferent neuronal cell bodies in DRG L6-S1. In conclusion, distal colitis in rats impairs GE via sensitized pelvic afferent neurons. We provided pharmacological, immunocytochemical, and molecular biological evidence that this sensitization is mediated by TRPV1 receptors and involves CGRP release.  相似文献   

17.
Zhou ZH  Deng HW  Li YJ 《Life sciences》2001,69(11):1313-1320
Previous investigations have suggested that vasodilator responses to nitroglycerin involve in stimulation of calcitonin gene-related peptide (CGRP) release. Therefore, we tested whether depressor effect of nitroglycerin is mediated by CGRP. A catheter was inserted into the left femoral artery to record blood pressure and drugs were administered through cannulae inserted into the right femoral vein. Nitroglycerin (15, 30, 60, 120 and 150 microg/kg) caused depressor effects in a dose-dependent manner. Nitroglycerin (30 or 150 microg/kg) caused a depressor effect with an increase in plasma concentrations of CGRP. The effects of nitroglycerin were significantly attenuated by methylene blue, an inhibitor of guanylate cyclase, or by pretreatment with capsaicin (50 mg x kg(-1), s.c.), which depletes neurotransmitters in sensory nerves. The present study suggests that the depressor effect of nitroglycerin is related to stimulation of CGRP release in the rat.  相似文献   

18.
The aim was to determine the role CGRP and/or tachykinins released from sensory neural mechanisms in enteric neural vasodilator pathways. These pathways project through the myenteric plexus to submucosal vasodilator neurons. Submucosal arterioles were exposed in the distal portion of an in vitro combined submucosal-myenteric guinea pig ileal preparation, and dilation was monitored with videomicroscopy. Vasodilator neural reflexes were activated by gently stroking the mucosa with a fine brush or by distending a balloon placed beneath the flat-sheet preparation in the proximal portion. Dilations evoked by mucosal stroking were inhibited 64% by the CGRP 8-37 and 37% by NK3 (SR 142801) antagonists. When the two antagonists were combined with hexamethonium, only a small vasodilation persisted. Balloon distension-evoked vasodilations were inhibited by NK3 antagonists (66%) but were not altered by CGRP 8-37. In preparations in which myenteric descending interneurons were directly activated by electrical stimulation, combined application of CGRP 8-37 and the NK antagonists had no effect. Stimulation of capsaicin sensitive nerves in the myenteric plexus did not activate these vasodilator reflexes. These findings suggest that mucosal-activated reflexes result from the release of CGRP and tachykinins from enteric sensory neurons. Distension-evoked responses were significantly blocked by NK3 antagonists, suggesting that stretch activation of myenteric sensory neurons release tachykinins that activate NK3 receptors on myenteric vasodilator pathways.  相似文献   

19.
《Life sciences》1994,55(22):PL433-PL438
Responses to synthetic human adrenomedullin (ADM), a novel hypotensive peptide recently discovered in human pheochromocytoma cells, and calcitonin gene-related peptide (CGRP), a structurally related peptide, were investigated in the hintquarters vascular bed of the rat. Under conditions of controlled hintquarters blood flow, intraarterial injections of ADM (0.01–0.3 nmol) and of CGRP (0.03–0.3 nmol) caused dose-related decreases in hindquarters perfusion pressure and decreases in systemic arterial pressure. Following administration of the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME), hindquarters vasodilator and systemic depressor responses to ADM were significantly decreased, whereas L-NAME did not significantly decrease the vasodilator response to CGRP in either the hindquarters or systemic vascular beds. Following administration of the cyclooxygenase inhibitor, meclofenamate, vasodilator responses to ADM and to CGRP were not significantly decreased. When the relative vasodilator activity of the two peptides was compared on a nmol basis, responses to ADM were similar to responses with CGRP in the hindquarters vascular bed, whereas ADM was 30–100 fold less potent than CGRP in decreasing systemic arterial pressure. The present data demonstrate that ADM has significant vasodilator activity in the hindquarters vascular bed of the rat, that hindquarters vasodilator and systemic vasodepressor responses to ADM, but not to CGRP, are dependent upon the release of nitric oxide from the endothelium.  相似文献   

20.
Calcitonin gene related peptide (CGRP), a 37 amino acid neuropeptide, is the most potent vasodilator known. Participation of CGRP in hypertension and related diseases, such as preeclampsia or vasospasm after subarachnoid haemorrage, is one of the most studied topics. In this review we summarize the published roles of CGRP in pathophysiology of hypertension in humans and in experimental models. We also discuss the effects of direct administration of CGRP in the treatment of hypertension and of anti-hypertensive drugs that enhance the release or response of endogenous calcitonin gene-related peptide: angiotensin converting enzyme inhibitors, selective antagonists for the angiotensin II receptor, beta-blockers, magnesium sulphate for preeclampsia and rutaecarpine, as well as the possibilities using CGRP in gene therapy for prevention of vasospasm after subarachnoid haemorrage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号