首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of synthetic polymers were designed and synthesized for enhancing the rate of the Diels-Alder cycloaddition reaction of 1,3-butadiene carbamic acid benzyl ester (1) and N,N-dimethyl acrylamide (2), to yield the corresponding endo- (3) and exo- (4) reaction products. Putative transition state analogues (TSAs) for the endo- (5) and exo- (6) reaction pathways were used as templates for the synthesis of molecularly imprinted methacrylic acid (MAA)–divinylbenzene (DVB) copolymers. The polymer system utilized was selected based upon a series of 1H NMR studies of complex formation between template and a functional monomer analogue (Kd (app)  70 mM, d8-toluene, 293 K). Batch binding studies revealed that the imprinted polymers were selective for the TSA corresponding to the template used in the polymer synthesis. Studies on the influence of the polymers on the catalysis of the reaction of 1 and 2 demonstrated a 20-fold enhancement of the rate of the reaction relative to the solution reaction. A surprising temperature dependence of the reaction of 1 and 2 in the presence of the polymers was observed, which provides support for the role of template-functional monomer complexes in the catalysis of the Diels-Alder reaction.  相似文献   

2.
Ligation-Mediated Polymerase Chain Reaction (LMPCR) is the most sensitive sequencing technique available to map single-stranded DNA breaks at the nucleotide level of resolution using genomic DNA. LMPCR has been adapted to map DNA damage and reveal DNA–protein interactions inside living cells. However, the sequence context (GC content), the global break frequency and the current combination of DNA polymerases used in LMPCR affect the quality of the results. In this study, we developed and optimized an LMPCR protocol adapted for Pyrococcus furiosus exo DNA polymerase (Pfu exo). The relative efficiency of Pfu exo was compared to T7-modified DNA polymerase (Sequenase 2.0) at the primer extension step and to Thermus aquaticus DNA polymerase (Taq) at the PCR amplification step of LMPCR. At all break frequencies tested, Pfu exo proved to be more efficient than Sequenase 2.0. During both primer extension and PCR amplification steps, the ratio of DNA molecules per unit of DNA polymerase was the main determinant of the efficiency of Pfu exo, while the efficiency of Taq was less affected by this ratio. Substitution of NaCl for KCl in the PCR reaction buffer of Taq strikingly improved the efficiency of the DNA polymerase. Pfu exo was clearly more efficient than Taq to specifically amplify extremely GC-rich genomic DNA sequences. Our results show that a combination of Pfu exo at the primer extension step and Taq at the PCR amplification step is ideal for in vivo DNA analysis and DNA damage mapping using LMPCR.  相似文献   

3.
In order to evaluate the effect of inoculation and co-cultivation media elements on transformation frequency in Petunia hybrida, modified MS media with different elements were tested on Alvan and Large Flower Alvan (LF Alvan), two local cultivars. Leaf explants of both cultivars were inoculated with Agrobacterium tumefaciens strain LBA4404 (pBI121) containing neomycin phosphotransferase (nptII) and an intron-containing β-glucuronidase (gus) genes. When medium lacking KH2PO4, NH4NO3, KNO3, and CaCl2 was used as inoculation and co-cultivation medium, a higher frequency of transformation for Alvan (22%) and LF Alvan (16%) was obtained. Kanamycin resistant plantlets were stained blue by GUS assay. Furthermore, polymerase chain reaction (PCR) analysis revealed the presence of both gus and nptII genes in all putative transformants. Finally, southern blot hybridization confirmed insertion of 1–4 copies of gus gene in transgenic plants.  相似文献   

4.
Two novel photolabile nucleotide triphosphate (NTP) analogues were synthesized through Sonogashira coupling and their enzymatic incorporation into DNA was evaluated with three different DNA polymerases (Taq, Vent exo- and T4) by polymerase chain reaction. Both nucleotide triphosphate analogues were recognized by these DNA polymerases as substrates for primer extension. Light irradiation of PCR products removed the photolabile group and released the amino and carboxyl moieties. Further site-specific dual-labeling for oligodeoxynucleotides (ODNs) and random labeling for a long DNA construct with fluorophores were successfully achieved with incorporation of the photolabile amine modified deoxyuridine triphosphate (dUnTP).  相似文献   

5.
6.
In our previous communication we reported the enzymatic recognition of unnatural imidazopyridopyrimidine:naphthyridine (Im:Na) base pairs, i.e. ImON:NaNO and ImNO:NaON, using the Klenow fragment exo [KF (exo)]. We describe herein the successful results of (i) improved enzymatic recognition for ImNO:NaON base pairs and (ii) further primer extension reactions after the Im:Na base pairs by Deep Vent DNA polymerase exo [Deep Vent (exo)]. Since KF (exo) did not catalyze primer extension reactions after the Im:Na base pair, we carried out a screening of DNA polymerases to promote the primer extension reaction as well as to improve the selectivity of base pair recognition. As a result, a family B DNA polymerase, especially Deep Vent (exo), seemed most promising for this purpose. In the ImON:NaNO base pair, incorporation of NaNOTP against ImON in the template was preferable to that of the natural dNTPs, while incorporation of dATP as well as dGTP competed with that of ImONTP when NaNO was placed in the template. Thus, the selectivity of base pair recognition by Deep Vent (exo) was less than that by KF (exo) in the case of the ImON:NaNO base pair. On the other hand, incorporation of NaONTP against ImNO in the template and that of ImNOTP against NaON were both quite selective. Thus, the selectivity of base pair recognition was improved by Deep Vent (exo) in the ImNO:NaON base pair. Moreover, this enzyme catalyzed further primer extension reactions after the ImNO:NaON base pair to afford a faithful replicate, which was confirmed by MALDI-TOF mass spectrometry as well as the kinetics data for extension fidelity next to the ImNO:NaON base pair. The results presented in this paper revealed that the ImNO:NaON base pair might be a third base pair beyond the Watson–Crick base pairs.  相似文献   

7.
REV1 functions in the DNA polymerase ζ mutagenesis pathway. To help understand the role of REV1 in lesion bypass, we have examined activities of purified human REV1 opposite various template bases and several different DNA lesions. Lacking a 3′→5′ proofreading exonuclease activity, purified human REV1 exhibited a DNA polymerase activity on a repeating template G sequence, but catalyzed nucleotide insertion with 6-fold lower efficiency opposite a template A and 19–27-fold lower efficiency opposite a template T or C. Furthermore, dCMP insertion was greatly preferred regardless of the specific template base. Human REV1 inserted a dCMP efficiently opposite a template 8-oxoguanine, (+)-trans-anti-benzo[a]pyrene-N 2-dG, (–)-trans-anti-benzo[a]pyrene-N 2-dG and 1,N 6-ethenoadenine adducts, very inefficiently opposite an acetylaminofluorene-adducted guanine, but was unresponsive to a template TT dimer or TT (6–4) photoproduct. Surprisingly, the REV1 specificity of nucleotide insertion was very similar in response to different DNA lesions with greatly preferred C insertion and least frequent A insertion. By combining the dCMP insertion activity of human REV1 with the extension synthesis activity of human polymerase κ, bypass of the trans-anti-benzo[a]pyrene-N 2 -dG adducts and the 1,N 6-ethenoadenine lesion was achieved by the two-polymerase two-step mechanism. These results suggest that human REV1 is a specialized DNA polymerase that may contribute to dCMP insertion opposite many types of DNA damage during lesion bypass.  相似文献   

8.
9.
An apparently full-length complementary DNA copy of in vitro polyadenylated MS2 RNA was synthesized with avian myeloblastosis virus RNA-dependent DNA polymerase. After the MS2 RNA template was removed from the complementary DNA strand with T1 and pancreatic RNase digestion, the complementary DNA became a good template for the synthesis of double-stranded MS2 DNA with Escherichia coli DNA polymerase I. We then constructed molecular chimeras by inserting the double-stranded MS2 DNA into the PstI restriction endonuclease cleavage site of the E. coli plasmid pBR322 by means of the poly(dA)· poly(dT) tailing procedure. An E. coli transformant carrying a plasmid with a nearly full-length MS2 DNA insertion, called pMS2-7, was chosen for further study. Correlation between the restriction cleavage site map of pMS2-7 DNA and the cleavage map predicted from the primary structure of MS2 RNA, and nucleotide sequence analysis of the 5′ and 3′ end regions of the MS2 DNA insertion, showed that the entire MS2 RNA had been faithfully copied, and that, except for 14 nucleotides corresponding to the 5′-terminal sequence of MS2 RNA, the fulllength DNA copy of the viral genetic information had been inserted into the plasmid. Restriction endonuclease analysis of the chimera plasmid DNA also revealed the presence of an extra DNA insertion which was identified as the translocatable element IS13 (see following paper).  相似文献   

10.
A novel class of indomethacin analogs were synthesized wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety (5-LOX pharmacophore) was attached at its C-4 or C-5 position via either a CO (14ab) or CH2 (19ab) linker to the indole N1-position. In this regard, replacement of the 4-chlorobenzoyl group present in indomethacin by N-difluoromethyl-1,2-dihydropyrid-2-one-4-(or 5-)carbonyl and N-difluoromethyl-1,2-dihydropyrid-2-one-4-yl(or 5-yl)methylene moieties furnished compounds showing no inhibitory activities against the COX-2/5-LOX enzymes (except for the weak but selective COX-2 inhibitor 19a, COX-2 IC50 = 31 μM), and moderate in vivo anti-inflammatory activities (except for the methylene compound 19a that was inactive). These structure–activity data indicate replacement of the 4-chlorobenzoyl group present in indomethacin by a N-difluoromethyl-1,2-dihydropyrid-2-one ring system connected by a CO or CH2 linker is not a suitable approach for the design of dual COX-2/5-LOX inhibitory analogs of indomethacin.  相似文献   

11.
Eight different polymerases, chosen from evolutionary families A (Taq, Tfl, HotTub and Tth) and B (Pfu, Pwo, Vent and Deep Vent), were examined for their ability to incorporate 5-position modified 2′-deoxyuridine derivatives that carry a protected thiol group appended via different linkers containing either three or four carbon atoms. This represents the first attempt to incorporate the thiol functionality into DNA via enzymatic synthesis. Each polymerase–substrate combination was evaluated using a hierarchy of increasingly more difficult challenges, starting with incorporation of a single derivative, proceeding to incorporation of two derivatives at adjacent sites and non-adjacent sites, then examining the ability of the polymerase to accept the derivative within the template, and concluding with a challenge involving PCR. The evaluation of thiol-bearing 2′-deoxyuridine derivatives was then extended to consider their chemical stabilities. Stability was found to be less than satisfactory when the thiol functionality has a ‘propargylic’ relationship to the unsaturation in the linker. The best polymerase–appendage combination used the polymerase from Pyrococcus woesei (Pwo) and the 5′-tBu-SS-CH2-CH2-CC- linker. This pair supported PCR amplification and therefore should have value in artificial in vitro selection experiments. Indeed, we discovered that Pwo and Pfu preferred the derivative triphosphate over TTP, the natural substrate, in competition studies. These studies confirm an earlier suggestion that membership of an evolutionary family of polymerases is a partial predictor of the ability of the polymerase to accept 5-modified 2′-deoxyuridines. Considerable differences are displayed by different members within a polymerase family, however. This remains curious, as the ability of the polymerase to replicate natural DNA with high fidelity and its propensity to exclude unnatural analogs are presumed to be correlated.  相似文献   

12.
The reaction of [VCl3(PMe2Ph)3] with HSSSSH (where the HS are thiophenolate and the S′ thioether functions, respectively), H21, yields [VCl(μ-SSSS)]2 (3) with one of the thiolate groups of each of the two ligands in the bridging mode. Reaction of Na21 with [VOCl2(thf)2] leads to a polymeric product of composition [VO(SSSS)]x (4). The products obtained from the reaction between [VOCl2(thf)2] and NaSNNSNa, Na22, (S is thiophenolate, N the amine function) depend on subtle changes in the diamine backbone of this ligand: If the amine functions are linked by -CH2CH2– (2a), the tetranuclear VIV complex [V(SNNS)μ-O]4 (5) is formed alongside the VIII complex [VCl(SNNS)]. If the backbone is -CH(Me)CH(Me)- (2b), [VO(SNNS)] (7) and the dinuclear, asymmetrically oxo-bridged VIV complex [{(SNN S)(thf)V}μ-O{V(SNN S)}] (8) are obtained. In 8, one amine of each of the two ligands is deprotonated to the amide group. In either case, the complexation is accompanied by oxidation of the thiolates to disulfides, leading to the generation of teraazatetrathio-cycloeicosanes (6a/b). Compounds 5 and 8·2THF have been structurally characterized by X-ray analyses. The connectivities have further been established for 3·2CH2Cl2 and for 6b, which exhibits the same conformation as formally characterized 6a. The cluster compound 5 is stabilized by an extended intramolecular N-H...O and N-H...S) hydrogen-bonding network. In 7·2THF, one of the THFs of crystallization is hydrogen-bonded to the NH of the penta-coordinated {VO(SNN S)} moiety; further, there is an intramolecular hydrogen bond between one of the thiolates of this tetragonal-pyramidal half of the molecule and the NH of the octahedral {VO(SNN S)thf} half. The generation of the ligand 2b from its precursor compound, the zinc complex [Zn(SNNS)] (9) leads to the structural characterization of 9·CH3OH with a large SZnS bite angle and a strong hydrogen bond between the methanolic OH and one of the thiolate sulfurs. The relevance of these compounds in biological systems is discussed.  相似文献   

13.
The acyclic chiral nucleic acid analogue, Glycol Nucleic Acid (GNA), displayed exceptional structural simplicity and atom economy while forming self-paired duplexes, using canonical Watson–Crick base pairing. We disclose here that the replacement of phosphodiester linker in GNA with somewhat rigid and shorter carbamate linker in Glycol Carbamate Nucleic Acid (GCNA) backbone allows unprecedented stability to the antiparallel self-paired duplexes. The R-GCNA oligomers were further found to form cross-paired antiparallel duplexes with cDNA and RNA following Watson–Crick base pairing. The stability of cross-paired GCNA:DNA and GCNA:RNA duplexes was higher than the corresponding DNA:DNA and DNA:RNA duplexes. The chiral (R) and (S) precursors were easily accessible from naturally occurring l-serine.  相似文献   

14.
15.
Emphasis was placed in this work on the assessment of biological features of 2,2,4-triaminooxazolone, a major one-electron and ·OH-mediated oxidation product of guanine. For this purpose, two oligonucleotides that contain a unique oxazolone residue were synthesized. Herein we report the mutagenic potential of oxazolone during in vitro DNA synthesis and its behavior towards DNA repair enzymes. Nucleotide insertion opposite oxazolone, catalyzed by Klenow fragment exo and Taq polymerase indicates that the oxazolone lesion induces mainly dAMP insertion. This suggests that the formation of oxazolone in DNA may lead to G→T transversions. On the other hand, oxazolone represents a blocking lesion when DNA synthesis is performed with DNA polymerase β. Interestingly, DNA repair experiments carried out with formamidopyrimidine DNA N-glycosylase (Fpg) and endonuclease III (endo III) show that oxazolone is a substrate for both enzymes. Values of kcat/Km for the Fpg-mediated removal of oxidative guanine lesions revealed that 8-oxo-7,8-dihydroguanine is only a slightly better substrate than oxazolone. In the case of endo III-mediated cleavage of modified bases, the present results suggest that oxazolone is a better substrate than 5-OHC, an oxidized pyrimidine base. Finally, MALDI-TOF-MS analysis of the DNA fragments released upon digestion of an oxazolone-containing oligonucleotide by Fpg gave insights into the enzymatic mechanism of oligonucleotide cleavage.  相似文献   

16.
Fluorophores that are conjugated with N-methylpyrrole-N-methylimidazole (Py–Im) polyamides postulates versatile applications in biological and physicochemical studies. Here, we show the design and synthesis of new types of pyrene-conjugated hairpin Py–Im polyamides (15). We evaluated the steady state fluorescence of the synthesized conjugates (15) in the presence and absence of oligodeoxynucleotides 5′-CGTATGGACTCGG-3′ (ODN 1) and 5′-CCGAGTCCATACG-3′ (ODN 2) and observed a distinct increase in emission at 386 nm with conjugates 4 and 5. Notably, conjugate 5 that contains a β-alanine linker had a stronger binding affinity (KD = 1.73 × 10?8 M) than that of conjugate 4 (KD = 1.74 × 10?6 M). Our data suggests that Py–Im polyamides containing pyrene fluorophore with a β-alanine linker at the γ-turn NH2 position can be developed as the competent fluorescent DNA-binding probes.  相似文献   

17.
18.
Abstract

An efficient synthesis of a thymidine nucleoside dimer [T-3′-β-O-N(CH3)-CH2-5′-T] has been accomplished via an intermolecular radical coupling reaction. The novel dimer contains an achiral and neutral backbone linkage which may have potential application in constructing backbone modified antisense oligonucleosides.  相似文献   

19.
The modification of nucleic acids using nucleotides linked to detectable reporter or functional groups is an important experimental tool in modern molecular biology. This enhances DNA or RNA detection as well as expanding the catalytic repertoire of nucleic acids. Here we present the evaluation of a broad range of modified deoxyribonucleoside 5′-triphosphates (dNTPs) covering all four naturally occurring nucleobases for potential use in DNA modification. A total of 30 modified dNTPs with either fluorescent or non-fluorescent reporter group attachments were systematically evaluated individually and in combinations for high-density incorporation using different model and natural DNA templates. Furthermore, we show a side-by-side comparison of the incorporation efficiencies of a family A (Taq) and B (VentR exo) type DNA polymerase using the differently modified dNTP substrates. Our results show superior performance by a family B-type DNA polymerase, VentR exo, which is able to fully synthesize a 300 bp DNA product when all natural dNTPs are completely replaced by their biotin-labeled dNTP analogs. Moreover, we present systematic testing of various combinations of fluorescent dye-modified dNTPs enabling the simultaneous labeling of DNA with up to four differently modified dNTPs.  相似文献   

20.
In addition to their capacity for template-directed 5′ → 3′ DNA synthesis at the polymerase (pol) site, DNA polymerases have a separate 3′ → 5′ exonuclease (exo) editing activity that is involved in assuring the fidelity of DNA replication. Upon misincorporation of an incorrect nucleotide residue, the 3′ terminus of the primer strand at the primer-template (P/T) junction is preferentially transferred to the exo site, where the faulty residue is excised, allowing the shortened primer to rebind to the template strand at the pol site and incorporate the correct dNTP. Here we describe the conformational changes that occur in the primer strand as it shuttles between the pol and exo sites of replication-competent Klenow and Klentaq DNA polymerase complexes in solution and use these conformational changes to measure the equilibrium distribution of the primer between these sites for P/T DNA constructs carrying both matched and mismatched primer termini. To this end, we have measured the fluorescence and circular dichroism spectra at wavelengths of >300 nm for conformational probes comprising pairs of 2-aminopurine bases site-specifically replacing adenine bases at various positions in the primer strand of P/T DNA constructs bound to DNA polymerases. Control experiments that compare primer conformations with available x-ray structures confirm the validity of this approach. These distributions and the conformational changes in the P/T DNA that occur during template-directed DNA synthesis in solution illuminate some of the mechanisms used by DNA polymerases to assure the fidelity of DNA synthesis.Escherichia coli DNA polymerase (DNAP)2 I is a single subunit polymerase that is organized into three functional domains: an N-terminal domain that is associated with 5′ → 3′ exonuclease activity, an intermediate domain that carries the 3′ → 5′ proofreading activity, and a C-terminal domain that is associated with the 5′ → 3′ template-directed polymerization activity. An important role of DNAP I is to remove the RNA primers of the Okazaki fragments formed during lagging strand DNA synthesis in E. coli replication and to fill in the resulting gaps by template-directed DNA synthesis (1). An N-terminal deletion mutant of DNAP I, known as the “large fragment” or Klenow form of the enzyme, contains only the polymerase (pol) and the 3′ → 5′ exonuclease (exo) domains. The Klenow polymerase has served and continues to serve as an excellent model system for isolating and defining general structure-function relationships in polymerases and in the supporting machinery of DNA replication.The main function of the 3′ → 5′ exonuclease activity of DNAP I is to remove misincorporated nucleotide residues from the 3′-end of the primer (2), thus contributing significantly to the overall fidelity of DNA replication (3). Contrary to initial expectations, crystallographic studies showed that the pol and exo active sites are quite far apart in replication polymerases, about 30 Å in Klenow (4). As a consequence, the ability of polymerases to “shuttle” the 3′-end of the primer strand efficiently between the pol and the exo sites in order to rectify misincorporation events during polymerization is critical to maintaining the overall accuracy of template-directed replication. Elucidation of the mechanisms of this shuttling and determination of the factors that control the rates (and equilibria) of the active site switching reaction will certainly increase our understanding of fidelity control by DNA polymerases.An early crystallographic study of the Klenow polymerase complexed with fully paired primer-template (P/T) DNA revealed that 3–4 nt of the 3′-primer terminus had been unwound from the template stand and partitioned into the exo site and that an extended single-stranded DNA (ssDNA) binding pocket of the exo site appeared to make position-specific hydrophobic contacts with the unstacked bases at the 3′-end of the primer (4). A separate crystallographic study of an editing complex confirmed that an ssDNA fragment 4 nt in length was bound at the exo site in the same conformation as seen for the single-stranded 3′-primer sequence unwound from P/T DNA (5). A structure of Klenow polymerase with the DNA bound at the pol site has not yet been reported, although such structures have been obtained for other homologous polymerases, including Klentaq (the “large fragment” of Thermus aquaticus (Taq) DNAP), Bacillus stearothermophilus (Bst) “large fragment” polymerase, and the T7 DNAP (68), all of which are members of the polymerase family that includes Klenow.The amino acid residues involved in the binding of DNA at the pol site in these polymerases (determined from co-crystal structures) and those of Klenow (determined by site-directed mutagenesis studies (9, 10)) are highly conserved, suggesting that a similar DNA binding mode at the pol site may apply to all of the DNAP I polymerases. The crystal structure of Klenow revealed that the polymerization domain has a shape reminiscent of a right hand in which the palm, fingers, and thumb domains form the DNA-binding crevice. Structural studies with various DNAP I polymerases in the presence of P/T DNA constructs yielded an “open” binary complex, whereas the addition of the next correct dNTP (as a chain-terminating dideoxy-NTP) resulted in the formation of a catalytically competent “closed” ternary complex (68). In the latter complex, the 3′-primer terminus was base-paired with the template DNA, and the templating base was poised for incorporation of the next correct nucleotide. These structures showed that the conformation of the DNA primer terminus bound at the pol site is markedly different from that of the “frayed open” primer observed at the exo site in Klenow (4, 5).Although crystallographic studies have provided a wealth of information about the conformations of the DNA substrates bound at the active sites of DNAP, replication itself is a dynamic process (reviewed in Ref. 11), and it is critical to be able to distinguish between various forms of DNA-polymerase complexes in solution in order to fully understand the mechanistic details of the replication process. A solution approach used by Millar and co-workers (reviewed in Ref. 12) for studying the conformation of DNA in these complexes involved measuring the time-resolved fluorescence anisotropy properties of a dansyl fluorophore attached to a DNA base located 8 bp upstream of the P/T DNA junction. The changes in the lifetime of the fluorophore, which appeared to depend mostly on the local environment occupied by the probe within the protein (i.e. buried versus partially exposed), were correlated with specific binding conformations of the primer to provide an estimate of the fractional occupancy of the pol and the exo sites. Reha-Krantz and co-workers (13) more recently used a related approach, here involving the monitoring of changes in the fluorescent lifetimes of a single 2-aminopurine (2-AP) base (a fluorescent analogue of adenine) site-specifically substituted in the template strand at the P/T junction, to make similar fractional occupancy measurements. However, we note that structural interpretations of these fluorescence experiments relied heavily on the available crystal structures, and it remained to be shown directly that the 3′-end of the primer in P/T DNA constructs assumes the same distribution of conformations when bound to the protein in solution.To get around this problem, as well as to directly investigate the conformations of the primer DNA in both active sites of the Klenow and Klentaq polymerases, we have used a novel CD spectroscopic approach to characterize the solution conformations of primer DNA bound to Klenow and Klentaq DNAPs. Previously, we had shown that CD spectroscopy, in conjunction with fluorescence measurements, can be used to examine changes in local DNA and RNA conformations at 2-AP dimer probes inserted at specified positions within the nucleic acid frameworks of a variety of macromolecular machines functioning in solution (1416). 2-AP is a structural isomer of adenine that forms base pairs with thymine in DNA (and uridine in RNA), and the substitution of 2-AP for adenine in such bp does not significantly perturb the structure or stability of the resultant double helix. Furthermore, when these probes are used as dimer pairs, the CD spectrum primarily reflects the interaction of the transition dipoles of the two probes themselves and thus the local conformation of the DNA at those positions within the P/T DNA. The characteristic CD and fluorescence signals for 2-AP probes in nucleic acids occur at wavelengths of >300 nm, a spectral region in which the protein and the canonical nucleic acid components of the “macromolecular machines of gene expression” are otherwise transparent. In this study, we have examined the binding of Klenow and Klentaq polymerases to P/T DNA constructs that were designed to be comparable with the nucleic acid components of functioning replication complexes. By examining the low energy CD spectra of site-specifically placed 2-AP probes, we have been able to characterize base conformations at defined positions within the DNA to reveal conformational features of specific DNA bases bound at and near both the pol and the exo active sites of these polymerases. These measurements, in that they directly reflect the actual conformations of the DNA chains bound within the active sites of the functioning polymerase, have also provided a direct means to estimate the equilibrium distributions of primer ends between the two active sites for various P/T DNA constructs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号