首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biogeography of fungi is poorly understood and a species in a novel location may be an introduction or an endemic newly identified within its native range. Using the literature of Amanita phalloides as a case study, we aim to illustrate both the limited utility of the historical record in establishing ectomycorrhizal (EM) species as introduced or invasive, and the difficulty of using modern records to establish a current biogeography. Amantia phalloides, the death cap mushroom, is deadly. It is a notorious fungus with a rich literature. Historical records can be used to explore the species’ distribution in North America, where the earliest publication on A. phalloides dates to 1834, and four different authors identified it as growing in California, Minnesota, Pennsylvania, North Carolina, and Maryland before 1910. In contrast, by mid-century field guides listed A. phalloides as rare on the West Coast and absent from the East Coast. In modern literature A. phalloides is described as a recently introduced and currently invasive species. The contradictions raise two questions: First, is A. phalloides an exotic to North America, and second, can early records be used to delineate the native distribution of any other less infamous EM fungus? We argue that confusion on the introduced status and biogeography of A. phalloides, and perhaps other fungi, is the direct result of shifting species concepts. When publications include an explicit species concept they can be used to establish A. phalloides as an introduction, for example on the East Coast of North America and in Australia. When species concepts are vague the literature is not useful and cannot be used to determine A. phalloides as an introduction, for example on the West Coast of North America or in Asia.  相似文献   

2.
The deadly poisonous Amanita phalloides is common along the west coast of North America. Death cap mushrooms are especially abundant in habitats around the San Francisco Bay, California, but the species grows as far south as Los Angeles County and north to Vancouver Island, Canada. At different times, various authors have considered the species as either native or introduced, and the question of whether A. phalloides is an invasive species remains unanswered. We developed four novel loci and used these in combination with the EF1α and IGS loci to explore the phylogeography of the species. The data provide strong evidence for a European origin of North American populations. Genetic diversity is generally greater in European vs. North American populations, suggestive of a genetic bottleneck; polymorphic sites of at least two loci are only polymorphic within Europe although the number of individuals sampled from Europe was half the number sampled from North America. Endemic alleles are not a feature of North American populations, although alleles unique to different parts of Europe were common and were discovered in Scandinavian, mainland French, and Corsican individuals. Many of these endemic European haplotypes were found together at single sites in California. Early collections of A. phalloides dated prior to 1963 and annotated using sequences of the ITS locus proved to be different species of Amanita. The first Californian collections that we confirmed as A. phalloides were made from the Del Monte Hotel (now the Naval Postgraduate School) in Monterey, and on the campus of the University of California, Berkeley, in 1938 and in 1945. These historical data are used in combination with data on A. phalloides’ current distribution to estimate a rate of spread for A. phalloides in California. Many species of ectomycorrhizal (EM) fungi have been introduced across and among continents, but with this evidence, the death cap becomes the only known invasive EM fungus in North America.  相似文献   

3.
The role of ectomycorrhizal fungi in modulating host susceptibility to fungal pathogens is poorly known. Pinus sylvestris susceptibility to two congeneric fungal pathogens was compared between mycorrhizal and non-mycorrhizal plants. The ectomycorrhizal fungus was Suillus luteus, while the pathogens were Heterobasidion irregulare and H. annosum. H. irregulare is native to North-America and invasive to Europe, whereas S. luteus and H. annosum are native to Eurasia. Non-mycorrhizal plants were equally susceptible to both pathogens. Mycorrhizal plants were significantly less susceptible to H. annosum than non-mycorrhizal plants, whereas there were no differences when considering H. irregulare. The abundance of ectomycorrhizas was negatively and significantly correlated to the level of host susceptibility only to H. annosum. This study shows that the protective role of ectomycorrhizal fungi may differ when the host is challenged by congeneric fungal pathogens. Results add a further clue to explain and predict the invasiveness of H. irregulare in Europe.  相似文献   

4.
The Edible Mushrooms of Madagascar: An Evolving Enigma. This paper on the most significant edible wild mushrooms of Madagascar is organized in the following four categories: (1) mushrooms of introduced eucalypt plantations, (2) mushrooms of introduced pine plantations, (3) mushrooms of native forests and woodlands, and (4) mushrooms found in fields, agricultural waste and other altered, non–forest habitats. Eucalyptus robusta plantations yield by far the bulk of edible mushrooms that are sold, especially species of Russula and Cantharellus. Some Suillus species of northern hemisphere origin have been introduced with pine plantations and are locally important, forming the basis of a small canning industry. In native woodland areas on the central plateau, several ectomycorrhizal mushrooms—very similar to those on the African mainland—are collected and consumed. With the exception of the widely marketed Cantharellus platyphyllus ssp. bojeriensis, these are only of local importance in the villages and smaller markets of the area. Denser forests in the mountains or on the east coast as well as manmade habitats such as fields, pastures, and agricultural wastes are searched for saprobic mushrooms of various types. Some of these saprobic mushrooms show considerable potential for cultivation. The variety of ectomycorrhizal mushrooms found in eucalypt plantations is unprecedented outside of Australia and, for the most part, do not appear to be of Australian origin. Possible reasons for this are briefly discussed. Two economically important species, Russula prolifica sp. nov. and R. edulis sp. nov., are newly described.  相似文献   

5.
We must consider the role of multitrophic interactions when examining species' responses to climate change. Many plant species, particularly trees, are limited in their ability to shift their geographic ranges quickly under climate change. Consequently, for herbivorous insects, geographic mosaics of host plant specialization could prohibit range shifts and adaptation when insects become separated from suitable host plants. In this study, we examined larval growth and survival of an oak specialist butterfly (Erynnis propertius) on different oaks (Quercus spp.) that occur across its range to determine if individuals can switch host plants if they move into new areas under climate change. Individuals from Oregon and northern California, USA that feed on Q. garryana and Q. kelloggii in the field experienced increased mortality on Q. agrifolia, a southern species with low nutrient content. In contrast, populations from southern California that normally feed on Q. agrifolia performed well on Q. agrifolia and Q. garryana and poorly on the northern, high elevation Q. kelloggii. Therefore, colonization of southern E. propertius in higher elevations and some northern locales may be prohibited under climate change but latitudinal shifts to Q. garryana may be possible. Where shifts are precluded due to maladaptation to hosts, populations may not accrue warm‐adapted genotypes. Our study suggests that, when interacting species experience asynchronous range shifts, historical local adaptation may preclude populations from colonizing new locales under climate change.  相似文献   

6.
Mycosphaerella species are well-known causal agents of leaf diseases on many economically and ecologically important plant species. In Uruguay, a relatively large number of Mycosphaerellaceae and Teratosphaeriaceae are found on Eucalyptus, but nothing is known of these fungi on native Myrtaceae. The aim of this study was to identify Mycosphaerellaceae and Teratosphaeriaceae species associated with leaf diseases on native Myrtaceae in Uruguay and to consider whether host jumps by the pathogen from introduced Eucalyptus to native Myrtaceae have occurred. Several native forests throughout the country were surveyed with special attention given to those located close to Eucalyptus plantations. Five species belonging to the Mycosphaerellaceae and Teratosphaeriaceae clades were found on native Myrtaceous trees and three of these had previously been reported on Eucalyptus in Uruguay. Those occurring both on Eucalyptus and native Myrtaceae included Pallidocercospora heimii, Pseudocercospora norchiensis, and Teratosphaeria aurantia. In addition, Mycosphaerella yunnanensis, a species known to occur on Eucalyptus but not previously recorded in Uruguay, was found on leaves of two native Myrtaceous hosts. Because most of these species occur on Eucalyptus in countries other than Uruguay, it appears that they were introduced in this country and have adapted to be able to infect native Myrtaceae. These apparent host jumps have the potential to result in serious disease problems and they should be carefully monitored.  相似文献   

7.
Following a host shift, repeated co‐passaging of a mutualistic pair is expected to increase fitness over time in one or both species. Without adaptation, a novel association may be evolutionarily short‐lived as it is likely to be outcompeted by native pairings. Here, we test whether experimental evolution can rescue a low‐fitness novel pairing between two sympatric species of Steinernema nematodes and their symbiotic Xenorhabdus bacteria. Despite low mean fitness in the novel association, considerable variation in nematode reproduction was observed across replicate populations. We selected the most productive infections, co‐passaging this novel mutualism nine times to determine whether selection could improve the fitness of either or both partners. We found that neither partner showed increased fitness over time. Our results suggest that the variation in association success was not heritable and that mutational input was insufficient to allow evolution to facilitate this host shift. Thus, post‐association costs of host switching may represent a formidable barrier to novel partnerships among sympatric mutualists.  相似文献   

8.
The risks of gene flow between interfertile native and introduced plant populations are greatest when there is no spatial isolation of pollen clouds and phenological patterns overlap completely. Moreover, invasion probabilities are further increased if introduced populations are capable of producing seeds by selfing. Here we investigated the mating system and patterns of pollen-mediated gene flow among populations of native ash (Fraxinus excelsior) and mixed plantations of non-native ash (F. angustifolia and F. excelsior) as well as hybrid ash (F. excelsior × F. angustifolia) in Ireland. We analysed the flowering phenology of the mother trees and genotyped with six microsatellite loci in progeny arrays from 132 native and plantation trees (1493 seeds) and 444 potential parents. Paternity analyses suggested that plantation and native trees were pollinated by both native and introduced trees. No signs of significant selfing in the introduced trees were observed and no evidence of higher male reproductive success was found for introduced trees compared with native ones either. A small but significant genetic structure was found (φft=0.05) and did not correspond to an isolation-by-distance pattern. However, we observed a significant temporal genetic structure related to the different phenological groups, especially with early and late flowering native trees; each phenological group was pollinated with distinctive pollen sources. Implications of these results are discussed in relation to the conservation and invasiveness of ash and the spread of resistance genes against pathogens such as the fungus Chalara fraxinea that is destroying common ash forests in Europe.  相似文献   

9.
In California and Oregon, two recently described oomycete forest pathogens, Phytophthora nemorosa and P. pseudosyringae, overlap in their host and geographic ranges with the virulent P. ramorum, causal agent of “sudden oak death.” Epidemiological observations, namely broader geographic distribution and lack of landscape-level mortality, led to the hypothesis they are native to this region, whereas multiple lines of evidence indicate P. ramorum is exotic to North America. We used AFLP analysis to measure genetic variability in the homothallic P. nemorosa and P. pseudosyringae and to evaluate the hypothesis of endemism. We analysed 39 P. nemorosa and 48 P. pseudosyringae isolates (29 American and 19 European) from throughout their geographic and host ranges. In the US, both P. nemorosa and P. pseudosyringae have a dominant AFLP clone with several closely related variants. There is no evidence that genetic diversity is partitioned by host or location in P. nemorosa, but the US P. pseudosyringae clonal lineage is largely nested within a more genetically variable European group. Though the absence of highly variable sampled source populations does not allow us to determine whether each species is native or introduced in the western US with certainty, the results are most consistent with the hypothesis that both are introduced — P. pseudosyringae perhaps from Europe. Invasive Phytophthora species are increasingly being implicated in emergent forest diseases, highlighting the need to identify and characterize both native and previously unknown introduced forest Phytophthoras.  相似文献   

10.
The genus Hebeloma has a number of species highly specific to Cistus and others that occur with several host genera. This paper discusses the species of Hebeloma that appear to be ectomycorrhizal with Cistus, judging from their occurrence when Cistus is the only available host. The previously unknown species H. plesiocistum spec. nov. is described. We also provide a key to the known Hebeloma associates of Cistus. Molecular analyses based on ITS sequence data further illustrate the distinctness of the newly described species and difficulties in the species delimitation with view to H. erumpens. Specific associations with Cistus may have evolved more than once within the genus Hebeloma.  相似文献   

11.
The ectomycorrhizal fungus Laccaria sp. A is restricted to temperate rainforest of southeast Australia, associated with its host tree Nothofagus cunninghamii. Eight mitochondrial microsatellite markers were used to investigate the population genetic structure of L. sp. A across its distribution in Tasmania and Victoria. The highest allelic diversity was found in Tasmania, which appeared to contain a panmictic population, whereas the more fragmented Victorian populations were characterized by low allelic diversity and differentiation between east and west. There is evidence of glacial refugia in the west and the northeast of Tasmania, and in Victoria in the Otway Ranges and Central Highlands, with postglacial migration into the Strzelecki Ranges. Narrow host-specificity may have contributed to the presence of population structure in this fungus. Allelic diversity patterns in L. sp. A are largely congruent with diversity patterns already established in populations of its host, N. cunninghamii.  相似文献   

12.
The ‘dilution effect’ (DE) hypothesis predicts that diverse host communities will show reduced disease. The underlying causes of pathogen dilution are complex, because they involve non-additive (driven by host interactions and differential habitat use) and additive (controlled by host species composition) mechanisms. Here, we used measures of complementarity and selection traditionally employed in the field of biodiversity–ecosystem function (BEF) to quantify the net effect of host diversity on disease dynamics of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd). Complementarity occurs when average infection load in diverse host assemblages departs from that of each component species in uniform populations. Selection measures the disproportionate impact of a particular species in diverse assemblages compared with its performance in uniform populations, and therefore has strong additive and non-additive properties. We experimentally infected tropical amphibian species of varying life histories, in single- and multi-host treatments, and measured individual Bd infection loads. Host diversity reduced Bd infection in amphibians through a mechanism analogous to complementarity (sensu BEF), potentially by reducing shared habitat use and transmission among hosts. Additionally, the selection component indicated that one particular terrestrial species showed reduced infection loads in diverse assemblages at the expense of neighbouring aquatic hosts becoming heavily infected. By partitioning components of diversity, our findings underscore the importance of additive and non-additive mechanisms underlying the DE.  相似文献   

13.
Rhizopogon (Boletales) is an ectomycorrhizal fungal genus that exhibits a strong specificity to Pinaceae. This strict association occurs almost exclusively with Pinus and Pseudotsuga, while associations with other genera in Pinaceae are inconclusive. Here, we describe Rhizopogon laricinus sp. nov. associated with Larix cajanderi distributed in northeastern Siberia, where forest fires are frequent. We confirmed the host identity by comparing rDNA internal transcribed spacer (ITS) sequences obtained from basidiomata and ectomycorrhizal root tips collected at the same sites. Morphological characteristics and molecular identification revealed that R. laricinus is a new species associated with Larix unequivocally. The molecular phylogeny based on ITS sequences placed this species sister to the subgenus Roseoli, which is specific to Pinus, and not to the Pseudotsuga-specific subgenus Villosuli. Thus, R. laricinus evolution does not correspond to host phylogeny as Larix and Pseudotsuga form a monophyletic clade. Instead, ecological traits of Rhizopogon for adapting to disturbed habitats may have driven the host shift to Larix under high-frequency fire ecosystems.  相似文献   

14.
Pleurotus eryngii is a popular mushroom due to its excellent consistency of cap and stem, culinary qualities and longer shelf life. In Bangladesh, where Pleurotus mushrooms are very popular, P. eryngii may take position among the consumers, but currently this mushroom is not cultivated in large scale there. In this study, 3 strains of P. eryngii such as Pe-1 (native to Bangladesh), Pe-2 (germplasm collected from China) and Pe-3 (germplasm collected from Japan) were cultivated on saw dust and rice straw and their growth and yield parameters were investigated. Pe-1 on saw dust showed the highest biological yield and efficiency (73.5%) than other strains. Also, the mycelium run rate and number of fruiting bodies were higher in Pe-1 than other two strains. The quality of mushroom strains was near about similar. On saw dust, the yield and efficiency were better than those cultivated on rice straw, however, on straw; the mushroom fruiting bodies were larger in size. This study shows the prospects of P. eryngii cultivation in Bangladesh and suggests further study in controlled environment for higher yield and production.  相似文献   

15.
16.

Background

The white mold fungus Sclerotinia sclerotiorum is a devastating necrotrophic plant pathogen with a remarkably broad host range. The interaction of necrotrophs with their hosts is more complex than initially thought, and still poorly understood.

Results

We combined bioinformatics approaches to determine the repertoire of S. sclerotiorum effector candidates and conducted detailed sequence and expression analyses on selected candidates. We identified 486 S. sclerotiorum secreted protein genes expressed in planta, many of which have no predicted enzymatic activity and may be involved in the interaction between the fungus and its hosts. We focused on those showing (i) protein domains and motifs found in known fungal effectors, (ii) signatures of positive selection, (iii) recent gene duplication, or (iv) being S. sclerotiorum-specific. We identified 78 effector candidates based on these properties. We analyzed the expression pattern of 16 representative effector candidate genes on four host plants and revealed diverse expression patterns.

Conclusions

These results reveal diverse predicted functions and expression patterns in the repertoire of S. sclerotiorum effector candidates. They will facilitate the functional analysis of fungal pathogenicity determinants and should prove useful in the search for plant quantitative disease resistance components active against the white mold.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-336) contains supplementary material, which is available to authorized users.  相似文献   

17.
《Mycoscience》2014,55(1):27-34
Tricholoma matsutake produces commercially valuable yet uncultivable matsutake mushrooms during an ectomycorrhizal association with coniferous trees. In the Far East, most matsutake are harvested in managed Pinus densiflora forests. To determine whether T. matsutake has host plant specificity, we synthesized mycorrhiza in vitro between T. matsutake Y1 that originated from a P. densiflora forest and various Pinaceae and oak hosts. The strain Y1 formed a continuous Hartig net, a sign of ectomycorrhization, in the lateral roots of Pinus sylvestris, Pinus koraiensis, Pinus parviflora var. pentaphylla, Picea glehnii, Picea abies, and Tsuga diversifolia seedlings in vitro, which resembled those formed with the natural host Pinus densiflora. The strain conferred a discontinuous Hartig net with Pinus thunbergii, Picea yezoensis, Abies veitchii, and Larix kaempferi. However, no such development by this strain was observed on the roots of Quercus serrata, unlike T. bakamatsutake B1, a false matsutake that is symbiotic with oak trees. The data suggest that T. matsutake can be associated with diverse conifers but may establish ectomycorrhizal relationships only with specific host plant species.  相似文献   

18.
The association of phytoplankton with bacteria is ubiquitous in nature and the bacteria that associate with different phytoplankton species are very diverse. The influence of these bacteria in the physiology and ecology of the host and the evolutionary forces that shape the relationship are still not understood. In this study, we used the Pseudo-nitzschia–microbiota association to determine (1) if algal species with distinct domoic acid (DA) production are selection factors that structures the bacterial community, (2) if host-specificity and co-adaptation govern the association, (3) the functional roles of isolated member of microbiota on diatom–hosts fitness and (4) the influence of microbiota in changing the phenotype of the diatom hosts with regards to toxin production. Analysis of the pyrosequencing-derived 16S rDNA data suggests that the three tested species of Pseudo-nitzschia, which vary in toxin production, have phylogenetically distinct bacterial communities, and toxic Pseudo-nitzschia have lower microbial diversity than non-toxic Pseudo-nitzschia. Transplant experiments showed that isolated members of the microbiota are mutualistic to their native hosts but some are commensal or parasitic to foreign hosts, hinting at co-evolution between partners. Moreover, Pseudo-nitzschia host can gain protection from algalytic bacteria by maintaining association with its microbiota. Pseudo-nitzschia also exhibit different phenotypic expression with regards to DA production, and this depends on the bacterial species with which the host associates. Hence, the influences of the microbiota on diatom host physiology should be considered when studying the biology and ecology of marine diatoms.  相似文献   

19.
《Mycoscience》2014,55(4):275-279
Tricholoma matsutake is an ectomycorrhizal basidiomycete that associates with Pinaceae plants, forming a rhizospheric mycelial aggregate called “shiro” from which the prized “matsutake” mushrooms form. Here we document that T. matsutake associates in vitro with Andean Cedrela herrerae (Meliaceae) via root endophyte interactions and efficiently forms shiro. C. herrerae produces many branches, leaves, and lateral roots in association with T. matsutake, unlike C. odorata, which grows in the tropics and produces few leaves and branches in association with the symbiont. This symbiosis may be a unique approach to culturing matsutake as well as to cultivating endangered plant species in vitro.  相似文献   

20.
Tricholoma matsutake is an ectomycorrhizal basidiomycete that produces prized, yet uncultivable, “matsutake” mushrooms along densely developed mycelia, called “shiro,” in the rhizosphere of coniferous forests. Pinus densiflora is a major host of this fungus in Japan. Measuring T. matsutake biomass in soil allows us to determine the kinetics of fungal growth before and after fruiting, which is useful for analyzing the conditions of the shiro and its surrounding mycorrhizosphere, predicting fruiting timing, and managing forests to obtain better crop yields. Here, we document a novel method to quantify T. matsutake mycelia in soil by quantifying a single-copy DNA element that is uniquely conserved within T. matsutake but is absent from other fungal species, including close relatives and a wide range of ectomycorrhizal associates of P. densiflora. The targeted DNA region was amplified quantitatively in cultured mycelia that were mixed with other fungal species and soil, as well as in an in vitro co-culture system with P. densiflora seedlings. Using this method, we quantified T. matsutake mycelia not only from shiro in natural environments but also from the surrounding soil in which T. matsutake mycelia could not be observed by visual examination or distinguished by other means. It was demonstrated that the core of the shiro and its underlying area in the B horizon are predominantly composed of fungal mycelia. The fungal mass in the A or A0 horizon was much lower, although many white mycelia were observed at the A horizon. Additionally, the rhizospheric fungal biomass peaked during the fruiting season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号