首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flemingia philippinensis is used as a foodstuff or medicinal plant in the tropical regions of China. The methanol (95%) extract of the roots of this plant showed potent tyrosinase inhibition (80% inhibition at 30 μg/ml). Activity-guided isolation yielded six polyphenols that inhibited both the monophenolase (IC50 = 1.01–18.4 μM) and diphenolase (IC50 = 5.22–84.1 μM) actions of tyrosinase. Compounds 16 emerged to be three new polyphenols and three known flavanones, flemichin D, lupinifolin and khonklonginol H. The new compounds (13) were identified as dihydrochalcones which we named fleminchalcones (A–C), respectively. The most potent inhibitor, dihydrochalcone (3) showed significant inhibitions against both the monophenolase (IC50 = 1.28 μM) and diphenolase (IC50 = 5.22 μM) activities of tyrosinase. Flavanone (4) possessing a resorcinol group also inhibited monophenolase (IC50 = 1.79 μM) and diphenolase (IC50 = 7.48 μM) significantly. In kinetic studies, all isolated compounds behaved as competitive inhibitors. Fleminchalcone A was found to have simple reversible slow-binding inhibition against monophenolase.  相似文献   

2.
Tyrosinase inhibition may be a means to alleviate not only skin hyperpigmentation but also neurodegeneration associated with Parkinson’s disease. In the course of metabolite analysis from tyrosinase inhibitory methanol extract (80% inhibition at 20 μg/ml) of Campylotropis hirtella, we isolated fourteen phenolic compounds, among which neorauflavane 3 emerged as a lead structure for tyrosinase inhibition. Neorauflavane 3 inhibited tyrosinase monophenolase activity with an IC50 of 30 nM. Thus this compound is 400-fold more active than kojic acid. It also inhibited diphenolase (IC50 = 500 nM), significantly. Another potent inhibitor 1 (IC50 = 2.9 μM) was found to be the most abundant metabolite in C. hirtella. In kinetic studies, compounds 3 showed competitive inhibitory behavior against both monophenolase and diphenolase. It manifested simple reversible slow-binding inhibition against monophenolase with the following kinetic parameters: Kiapp = 1.48 nM, k3 = 0.0033 nM−1 min−1 and k4 = 0.0049 min−1. Neorauflavane 3 efficiently reduced melanin content in B16 melanoma cells with 12.95 μM of IC50. To develop a pharmacophore model, we explored the binding mode of neuroflavane 3 in the active site of tyrosinase. Docking results show that resorcinol motif of B-ring and methoxy group in A-ring play crucial roles in the binding the enzyme.  相似文献   

3.
In the present article, we have synthesized a combinatorial library of 3,5-diaryl pyrazole derivatives using 8-(2-(hydroxymethyl)-1-methylpyrrolidin-3-yl)-5,7-dimethoxy-2-phenyl-4H-chromen-4-one (1) and hydrazine hydrate in absolute ethyl alcohol under the refluxed conditions. The structures of the compounds were established by IR, 1H NMR and mass spectral analysis. All the synthesized compounds were evaluated for their anticancer activity against five cell lines (breast cancer cell line, prostate cancer cell line, promyelocytic leukemia cell line, lung cancer cell line, colon cancer cell line) and anti-inflammatory activity against TNF-α and IL-6. Out of 15 compounds screened, 2a and 2d exhibited promising anticancer activity (61–73% at 10 μM concentration) against all selected cell lines and IL-6 inhibition (47% and 42% at 10 μM concentration) as in comparison to standard flavopiridol (72–87% inhibition at 0.5 μM) and dexamethasone (85% inhibition at 1 μM concentration), respectively. Cytotoxicity of the compounds checked using CCK-8 cell lines and found to be nontoxic to slightly toxic. Out of 15, four 3,5-diaryl pyrazole derivatives exhibiting potent inhibitory activities against both the monophenolase and diphenolase actions of tyrosinase. The IC50 values of compounds (2a, 2d, 2h and 2l) for monophenolase inhibition were determined to range between 1.5 and 30 μM. Compounds 2a, 2d, 2h and 2l also inhibited diphenolase significantly with IC50 values of 29.4, 21.5, 2.84 and 19.6 μM, respectively. All four 3,5-diaryl pyrazole derivatives were active as tyrosinase inhibitors (2a, 2d, 2h and 2l), and belonging to competitive inhibitors. Interestingly, they all manifested simple reversible slow-binding inhibition against diphenolase.  相似文献   

4.
Tyrosinase is a key enzyme during the production of melanins in plants and animals. A class of novel N-aryl-N′-substituted phenylthiourea derivatives (3a–i, 6ak) were designed, synthesized and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed some 4,5,6,7-tetrahydro-2-[[(phenylamino)thioxomethyl]amino]-benzo[b]thiophene-3-carboxylic acid derivatives (3a–i) exhibited moderate inhibitory potency on diphenolase activity of tyrosinase. When the scaffold of 4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid was replaced with 2-(1,3,4-thiadiazol-2-yl)thio acetic acid, the inhibitory activity of compounds (6ak) against tyrosinase was improved obviously; especially, the inhibitory activity of compound 6h (IC50 = 6.13 μM) is significantly higher than kojic acid (IC50 = 33.3 μM). Moreover, the analysis on inhibition mechanism revealed that compound 6h might plays the role as a noncompetitive inhibitor.  相似文献   

5.
Tyrosinase is known as the key enzyme for melanin biosynthesis, which is effective in preventing skin injury by ultra violet (UV). In past decades, tyrosinase has been well studied in the field of cosmetics, medicine, agriculture and environmental sciences, and a lot of tyrosinase inhibitors have been developed for their needs. Here, we searched for new types of tyrosinase inhibitors and found phenylbenzoic acid (PBA) as a unique scaffold. Among three isomers of PBA, 3-phenylbenzoic acid (3-PBA) was revealed to be the most potent inhibitor against mushroom tyrosinase (IC50 = 6.97 μM, monophenolase activity; IC50 = 36.3 μM, diphenolase activity). The kinetic studies suggested that the apparent inhibition modes for the monophenolase and diphenolase activities were noncompetitive and mixed type inhibition, respectively. Analyses by in silico docking studies using the crystallographic structure of mushroom tyrosinase indicated that the carboxylic acid group of the 3-PBA could adequately bind to two cupric ions in the tyrosinase. To prove this hypothesis, we examined the effect of modification of the carboxylic acid group of the 3-PBA on its inhibitory activity. As expected, the esterification abrogated the inhibitory activity. These observations suggest that 3-PBA is a useful lead compound for the generation of novel tyrosinase inhibitors and provides a new insight into the molecular basis of tyrosinase catalytic mechanisms.  相似文献   

6.
Here a new class of hydroxy- or methoxy-substituted 5-benzylidene(thio)barbiturates were designed, synthesized and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed that several compounds had more potent tyrosinase inhibitory activities than the widely used tyrosinase inhibitor kojic acid (IC50 = 18.25 μM). In particular, 3′,4′-dihydroxylated 1e was found to be the most potent inhibitor with IC50 value of 1.52 μM. The inhibition mechanism analysis revealed that the potential compounds 1e and 2e exhibited such inhibitory effects on tyrosinase by acting as the irreversible inhibitors. Structure–activity relationships’ (SARs) analysis also suggested that further development of such compounds might be of interest.  相似文献   

7.
2-(4-Fluorophenyl)-quinazolin-4(3H)-one (FQ) was synthesized, and its structure was identified with 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), fourier transform infrared spectroscopy (FTIR), and high resolution mass spectrometry (HRMS). From the enzyme analysis, the results showed that it could inhibit the diphenolase activity of tyrosinase (IC50 = 120 ± 2 μM). Furthermore, the results of kinetic studies showed that the compound was a reversible mixed-type inhibitor, and that the inhibition constants were determined to be 703.2 (KI) and 222.1 μM (KIS). The results of fluorescence quenching experiment showed that the compound could interact with tyrosinase and the substrates (tyrosine and l-DOPA). Molecular docking analysis revealed that the mass transfer rate was affected by FQ blocking the enzyme catalytic center. In brief, current study identified a novel tyrosinase inhibitor which deserved further study for hyperpigmentation drugs.  相似文献   

8.
The diterpenoids (+)-ferruginol (1), ent-kaur-16-en-15-one (2), ent-8(14),15-sandaracopimaradiene-2α,18-diol (3), 8(14),15-sandaracopimaradiene-2α,18,19-triol (4), and (+)-sugiol (5) and the triterpenoids 3β-methoxycycloartan-24(241)-ene (6), 3β,23β-dimethoxycycloartan-24(241)-ene (7), 3β,23β-dimethoxy-5α-lanosta-24(241)-ene (8), and 23(S)-23-methoxy-24-methylenelanosta-8-en-3-one (9), isolated from Amentotaxus formosana, showed inhibitory effects on xanthine oxidase (XO). Of the compounds tested, compound 5 was a potent inhibitor of XO activity, with an IC50 value of 6.8 ± 0.4 μM, while displaying weak ABTS radical cation scavenging activity. Treatment of the bladder cancer cell line, NTUB1, with 3–10 μM of compound 5 and 10 μM cisplatin, and immortalized normal human urothelial cell line, SV-HUC1, with 0.3–1 μM and 10–50 μM of compound 5 and 10 μM cisplatin, respectively, resulted in increased viability of cells compared with cytotoxicity induced by cisplatin. Treatment of NTUB1 with 20 μM cisplatin and 10 or 30 μM of compound 5 resulted in decreased ROS production compared with ROS production induced by cisplatin. These results indicate that 10 or 30 μM of compound 5 in NTUB1 cells may mediate through the suppression of XO activity and reduction of reactive oxygen species (ROS) induced by compound 5 cotreated with 20 μM cisplatin and protection of subsequent cell death.  相似文献   

9.
Bioassay guided fractionation of the roots of Lantana montevidensis (Verbenaceae) has resulted in the isolation and identification of three new triterpenoids; 13β-hydroxy-3-oxo-olean-11-en-28-oic acid (1), 12β,13β-dihydroxyolean-3-oxo-28-oic acid (2) and 12β,13β,22β-trihydroxyolean-3-oxo-28-oic acid (3) in addition to nine known compounds: oleanonic acid (4), oleanolic acid (5), 3β,25β-dihydroxy-olean-12-en-28-oic acid (6), lantadene A (7), 19α-hydroxy-3-oxo-olean-12-en-28-oic acid (8) pomolic acid (9), camaric acid (10) together with β-sitosterol (11) and β-sitosterol-3-O-β-d-glucoside (12). The structures of the isolated metabolites were elucidated based on comprehensive 1D and 2D NMR spectroscopic data as well as HR-ESI–MS. The extracts and the isolated metabolites were evaluated for their antiprotozoal and antimicrobial activities. Compound 2 showed antibacterial activity against Staphylococcus aureus and methicillin resistant S. aureus with IC50 values against both organisms of 2.1 μM and compound 10 showed activity against same organisms with IC50 values 8.74 and 8.09 μM, respectively, compared to the positive control ciprofloxacin (IC50 = 0.3 μM against S. aureus and MRSA). Compounds 1, 4, 5, 6, and 10 showed moderate antileishmanial activity with IC50 values ranging between (2.54–14.95 μM) and IC90 values ranging between (11.90–19.47 μM), using pentamidine as a control (IC50 values 2.09  16.8 μM) and IC90 values ranging between (4.72  16.8 μM). These compounds also showed highly potent antitrypanosomal activity with IC50 values ranging between (0.39–7.12 μM) and IC90 values ranging between (1.91–10.51 μM), which are more efficient than the DFMO, the antitrypanosomal drug employed as positive control (IC50 and IC90values 11.82 and 30.82 μM).  相似文献   

10.
Nine acylated iridoid glycosides (19), five acylated rhamnopyranoses (1014) and verbascoside (15) were isolated from Gmelina arborea flowers, including 5 new compounds (1, 2, and 1012). The cytoprotective activity of 11 selected compounds (18, 10, 11, and 15) against CCl4-induced cytotoxicity on liver was determined. Compounds 1, 2, 4, 7, 8 and 15 displayed hepatoprotective activity. 6-O-α-l-(2″, 3″-di-O-trans-p-hydroxycinnamoyl)rhamnopyranosylcatalpol (2) exhibited the most potent cytoprotective effect with an EC50 value of 42.5 μM (SI = 19.3) compared with biphenyldimethylesterate (DDB, EC50 = 277.3 μM, SI = 9.8) and bicylo-ethanol (EC50 = 279.2 μM, SI = 12.2). Among the acylated iridoid glycosides, the compounds (2 and 8) containing phenolic hydroxy groups were more active than were those lacking them.  相似文献   

11.
Three series of homologous dendritic amphiphiles—RCONHC(CH2CH2COOH)3, 1(n); ROCONHC(CH2CH2COOH)3, 2(n); RNHCONHC(CH2CH2COOH)3, 3(n), where R = n-CnH2n+1 and n = 13–22 carbon atoms—were assayed for their potential to serve as antimicrobial components in a topical vaginal formulation. Comparing epithelial cytotoxicities to the ability of these homologues to inhibit HIV, Neisseria gonorrhoeae, and Candida albicans provided a measure of their prophylactic/therapeutic potential. Measurements of the ability to inhibit Lactobacillus plantarum, a beneficial bacterium in the vagina, and critical micelle concentrations (CMCs), an indicator of the potential detergency of these amphiphiles, provided additional assessments of safety. Several amphiphiles from each homologous series had modest anti-HIV activity (EC50 = 110–130 μM). Amphiphile 2(18) had the best anti-Neisseria activity (MIC = 65 μM), while 1(19) and 1(21) had MICs against C. albicans of 16 and 7.7 μM, respectively. Two measures of safety showed promise as all compounds had relatively low cytotoxic activity (EC50 = 210–940 μM) against epithelial cells and low activity against L. plantarum, 1(n), 2(n), and 3(n) had MICs ? 490, 1300, and 940 μM, respectively. CMCs measured in aqueous triethanolamine and in aqueous potassium hydroxide showed linear dependences on chain length. As expected, the longest chain in each series had the lowest CMC—in triethanolamine: 1(21), 1500 μM; 2(22), 320 μM; 3(22), 340 μM, and in potassium hydroxide: 1(21), 130 μM; 3(22), 40 μM. The CMC in triethanolamine adjusted to pH 7.4 was 400 μM for 1(21) and 3900 μM for 3(16). The promising antifungal activity, low activity against L. plantarum, relatively high CMCs, and modest epithelial cytotoxicity in addition to their anti-Neisseria properties warrant further design studies with dendritic amphiphiles to improve their safety indices to produce suitable candidates for antimicrobial vaginal products.  相似文献   

12.
Polyphenol oxidases (PPO) are very important enzymes group in many industrial applications, especially in food, medicine and cosmetics. PPO from Macrolepiota gracilenta, a wild edible mushroom, was purified using a Sepharose 4B-l-tyrosine-p-amino benzoic acid affinity column and characterized in terms of mono- and diphenolase activity. The highest activities for pure enzyme were observed in the presence of PHPPA and DHPPA for monophenolase and diphenolase, respectively. The enzyme showed pH optimum values at 7.0 and 5.0, respectively, for monophenolase and diphenolase activities. Km values calculated as 0.8 mM for monophenolase and 1 mM for diphenolase activity at the presence of PHPPA and DHPPA as substrate, respectively. Vmax values were calculated as 2000 U/mg protein for both activity. Monophenolase and diphenolase activities were conserved approximately 40% and 60%, respectively, in their optimum pH at 4 °C after 5 day incubation. The activities were inhibited most effectively by thiourea. The data obtained from this study showed that this enzyme could be useful for some industrial purposes.  相似文献   

13.
The synthesis, crystallographic analysis and magnetic studies of six new copper(II) complexes of formulae [Cu(μ-ala)(im)(H2O)]n(ClO4)n (1), [Cu(μ-ala)(pz)(μ-ClO4)] (2), [Cu(μ-phe)(im)(H2O)]n(ClO4)n (3), [Cu(μ-gly)(H2O)(ClO4)]n (4), [Cu(μ-gly)(pz)(ClO4)]n(5) and [Cu(μ-pro)(pz)(ClO4)]n (6) have been carried out (ala = alanine; phe = phenylalanine; gly = glycine; pro = proline; im = imidazole; pz = pyrazole). In all cases, the deprotonated aminoacid ligand acts as chelate through the N(amine) and one O(carboxylato), whereas the second O atom of the same carboxylato acts as a bridge to the neighbouring copper(II) ion. The coordination of copper(II) ions is square-pyramidal in all complexes but 2 (elongated Oh). All complexes (16) are uniform chains with syn–anti (equatorial–equatorial) coordination mode of the carboxylato bridging ligand, exhibiting intrachain ferromagnetic interactions.  相似文献   

14.
《Inorganica chimica acta》2006,359(7):2029-2040
Two μ-alkoxo-μ-carboxylato bridged dinuclear copper(II) complexes, [Cu2(L1)(μ-HCO2)] (1) ((H3L1 = 1,3-bis(5-bromosalicylideneamino)-2-propanol)), [Cu2(L2)(μ-HCO2)] · dmf (2) (H3L2 = 1,3-bis(3,5-chlorosalicylideneamino-2-propanol)), and two μ-alkoxo-μ-dicarboxylato doubly bridged tetranuclear copper(II) complexes, [{Cu2(L3)}2(μ-O2C–C(CH3)2–CO2)] · 5H2O · 3CH3OH (3) ((H3L3 = 1,3-bis(salicylid-deneamino)-2-propanol)) and [{Cu2(L3)}2(μ- O2CCH2–C6H4–CH2CO2)] · 2H2O (4) have been prepared and characterized. The single crystal X-ray analysis shows that the structures of complexes 1 and 2 are dimeric with two adjacent copper(II) atoms bridged by μ-alkoxo-μ-carboxylato ligands with the Cu⋯Cu distances and Cu–O(alkoxo)–Cu angles are 3.511 Å and 132.85° for 1, 3.517 Å and 131.7° for 2, respectively. Complexes 3 and 4 consist of μ-alkoxo-μ-dicarboxylato doubly bridged tetranuclear Cu(II) complexes with mean Cu–Cu distances and Cu–O–Cu angles of 3.158 Å and 108.05° for 3 and 3.081 Å and 104.76° for 4, respectively. Magnetic measurements reveal that 1 and 2 are strong antiferromagnetically coupled with 2J = −156 and −152 cm−1, respectively, while 3 and 4 exhibit ferromagnetic coupling with 2J = 86 and 155.2 cm−1, respectively. The 2J values of 14 are linearly correlated to the Cu–O–Cu angles. Dependence of the pH at 25 °C on the reaction rate of oxidation of 3,4-di-tert-butylcatechol (3,5-dtbc) to the corresponding quinone catalyzed by 14 was studied. Complexes 14 exhibit high catecholase-like activity at pH 9.0 and 25 °C for oxidation of 3,5-di-tert-butylcatechol.  相似文献   

15.
Six diphenolic compounds containing adamantane moiety were synthesized and evaluated as potent inhibitors on tyrosinase activity and melanin formation in melan-a cells. The inhibitory activity of 4-adamantyl resorcinol 1 was similar to that of 4-n-butyl resorcinol in both assays. However, dihydroxyl benzamide derivatives 6a–e showed different inhibitory patterns. All derivatives significantly suppressed the cellular melanin formation without tyrosinase inhibitory activities. These behaviors indicated that the introduction of amide bond changes the binding mode of dihydroxyl groups to tyrosinase. Among derivatives, 6d (3,4-dihydroxyl compound) and 6e (2,3-dihydroxyl compound) showed stronger inhibitory activities (IC50 = 1.25 μM and 0.73 μM, respectively) as compared to 4-n-butyl resorcinol (IC50 = 21.64 μM) and hydroquinone (IC50 = 3.97 μM). This study showed that the position of dihydroxyl substituent at aromatic ring is important for the intercellular inhibition of melanin formation, and also amide linkage and adamantane moiety enhance the inhibition.  相似文献   

16.
An efficient solvent-free procedure for the synthesis of thiomorpholides in the presence of a catalytic amount of solid-supported fluoroboric acid (HBF4–SiO2) is described. The advantages of this method are high yields, short reaction times, ease of product isolation, low cost, and the catalyst can be recycled for a number of times without significant loss of activity. Three thiomorpholides possessing electron-donating group (4c, 4g, and 4h) were exhibiting excellent stimulatory activities against Erwinia carotovora l-asparaginase. The most potent activator, compound 4h displayed the following kinetic parameters, Km = 75 μM and Vmax = 1000 μmol mg?1 min?1 and KA = 0.985 μM. Furthermore, these compounds (4g, 4h, 4c, 4f, 4a, and 4d) have also shown promising 2,2′-diphenyl-1-picrylhydrazyl (DPPH) reducing antioxidant activity (21–36%) at 1 mM concentration as compared to standard butylated hydroxyl anisole (72% at 1 mM).  相似文献   

17.
A new series of chalcone derivatives 118, bearing isoxazole moieties were designed and synthesized, and biologically evaluated for their activity on mushroom tyrosinase and melanin synthesis in murine B16 cells. The result indicated that most of prepared compounds 118 showed potent activating effect on tyrosinase, especially for 12, 4, 67, 9 and 15. Among them, compounds 2, 4 and 9 demonstrated the best activity with EC50 = 1.3, 2.5 and 3.0 μmol·L−1 respectively, much better than the positive control 8-methoxypsoralan (8-MOP, EC50 = 14.8 μmol·L−1); In B16 cells, all the tested compounds exhibited a stronger activity on melanogenesis than 8-MOP (with the value of 115%). It was interesting that derivatives substituted with halogen (1, 2, 4, 5, 7, 9) were generally more potent. Compounds 2 (463%) and 18 (438%) with 3 and 4-fold potency compared with 8-MOP respectively, were recognized as the most promising candidate hits for further pharmacological study of anti-vitiligo.  相似文献   

18.
Cyclic tetrapeptide c[Phe-pro-Phe-trp] 2, a diastereomer of CJ-15,208 (1), was identified as a potent dual κ/μ opioid receptor antagonist devoid of δ opioid receptor affinity against cloned human receptors: Ki (2) = 3.8 nM (κ), 30 nM (μ); IC50 ([35S]GTPγS binding) = 140 nM (κ), 21 nM (μ). The d-tryptophan residue rendered 2 ca. eightfold and fourfold more potent at κ and μ, respectively, than the corresponding l-configured tryptophan in the natural product 1. Phe analogs 3–10, designed to probe the effect of substituents on receptor affinity and selectivity, possessed Ki values ranging from 14 to 220 nM against the κ opioid receptor with μ/κ ratios of 0.45–3.0. An alanine scan of 2 yielded c[Ala-pro-Phe-trp] 12, an analog equipotent to 2. Agents 2 and 12 were pure antagonists in vitro devoid of agonist activity. Ac-pro-Phe-trp-Phe-NH2 16 and Ac-Phe-trp-Phe-pro-NH2 17 two of the eight possible acyclic peptides derived from 1 and 2, were selective, modestly potent μ ligands: Ki (16) = 340 nM (μ); Ki (17) = 360 nM (μ).  相似文献   

19.
We isolated 18 polyphenols with neuraminidase inhibitory activity from methanol extracts of the roots of Glycyrrhiza uralensis. These polyphenols consisted of four chalcones (14), nine flavonoids (513), four coumarins (1417), and one phenylbenzofuran (18). When we tested the effects of these individual compounds and analogs thereof on neuraminidase activation, we found that isoliquiritigenin (1, IC50 = 9.0 μM) and glycyrol (14, IC50 = 3.1 μM) had strong inhibitory activity. Structure–activity analysis showed that the furan rings of the polyphenols were essential for neuraminidase inhibitory activity, and that this activity was enhanced by the apioside group on the chalcone and flavanone backbone. In addition, the presence of a five-membered ring between C-4 and C-2′ in coumestan was critical for neuraminidase inhibition. All neuraminidase inhibitors screened were found to be reversible noncompetitive inhibitors.  相似文献   

20.
Three new compounds, 3β,6β,23-trihydroxyolean-12-en-28-oic acid 3-O-α-l-arabinopyranoside (1), kalopanaxsaponin L (2), and kalopanaxsaponin M (13), as well as eleven known compounds (312 and 14), were isolated from the stem bark of Kalopanax pictus. Their structures were determined on the basis of extentive spectroscopic analyses and acid hydrolysis. The cytotoxicity of the compounds was evaluated in three human carcinoma cell lines, including HL-60, HCT-116, and MCF-7. Compounds 1, 58, 10, and 11 exhibited significantly cytotoxic activity toward HL-60 cells, with IC50 values ranging from 0.1 to 6.9 μM. Compounds 47 and 14 showed significant cytotoxicity against HCT-116 cells, with IC50 values ranging from 0.4 to 9.2 μM. Remarkably, the cytotoxic activities of compounds 57 against HCT-116 cells were greater than that of the anticancer chemotherapy drug, mitoxantrone (IC50 = 3.7 μM). Compounds 1, 3, 5, and 14 were cytotoxic toward MCF-7 cells with IC50 values in a range of 7.4–14.5 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号