首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study has been made of the configurational effects on the conformational properties of α- and β-anomers of purine and pyrimidine nucleoside 3′,5′,-cyclic monophosphates and their 2′-arabino epimers. Correlation between orientation of the base and the 2′-hydroxyl group have been studied theoretically using the PCILO (Perturbative Configuration Interaction using Localized Orbitals) method. The effect of change in ribose puckering on the base-hydroxyl interaction has also been studied. The result show that steric repulsions and stabilizing effects of intramolecular hydrogen bonding between the base and the 2′-hydroxyl (OH) group are of major importance in determining configurations of α-anomers and 2′-arabino-β-epimers. For example, hydrogen bonding between the 2′-hydroxyl group and polar centers on the base ring is clearly implicated as a determinant of syn-anti preferences of the purine (adenine) or pyrimidine (uracil) bases in α-nucleoside 3′,5′-cyclic monophosphates. Moreover, barrier heights for interconversion between conformers are sensitive to ribose pucker and 2′-OH orientations. The result clearly show that a change in ribose-ring pucker plays an essential role in relieving repulsive interaction between the base and the 2′-hydroxyl group. Thus a C2′-exo-C3′-endo (2T3) pucker is favored for α-anomers in contrast with the C4′-exo-C3′-endo (4T3) from found in β-compounds.  相似文献   

2.
Gentamicin is an aminoglycoside antibiotic obtained from cultures of Micromonospora as the important anti-infective agents. Gentamicin which lacks 3′-hydroxyl group can avoid the attack from the modification enzymes of antibiotic-resistant bacteria in clinic. Consequently, C-3′ dehydroxylation is the key step in gentamicins biosynthesis. We suppose that there are some enzymes responsible for converting intermediate JI-20A to 3′,4′-bisdehydroxylated final product gentamicin C1a, while phosphorylation of 3′-OH is possibly the first step for C-3′ dehydroxylation. The gentamicin biosynthetic gene gntI, encoding an aminoglycoside phosphotransferase, was cloned from Micromonospora echinospora ATCC15835 and overexpressed in Escherichia coli. The resulting phosphotransferase was purified, and the kinetic parameters for Kanamycin A, Kanamycin B, Neomycin B and Amikacin were determined. Elucidation of NMR data of phosphorylated kanamycin B has unambiguously demonstrated a regiospecific phosphorylation of 3′-hydroxyl of the 6-aminohexose ring. The results described here partly confirm that the 3′-dehydroxylation step is preceded by a 3′ phosphorylation step. It is predicted that GntI belongs to a new aminoglycoside phosphotransferase group involved with aminoglycoside antibiotics biosynthesis pathway.  相似文献   

3.
Nuclease P1 was found to attack RNA and heat-denatured DNA in endo- and exonucleolytic manners. The evidence was as follows: (1) In the early stage of digestion both mononucleotides and oligonucleotides with various sizes were formed simultaneously with rapid fragmentation of polynucleotides. (2) The relative amount of the monomer was larger than that of any class of oligomers throughout the process of digestion. Nuclease P1 showed a preference for the linkages between 3′-hydroxyl group of adenosine or deoxyadenosine and the 5′-phosphoryl group of the adjacent nucleotides. p-Nitrophenyl ester of 3′-dTMP was hydrolyzed to thymidine and p-nitrophenyl phosphate, while p-nitrophenyl ester of 5′-dTMP was not attacked. It is concluded from these findings that the basic structure required for the substrate of nuclease P1 is a nucleoside 3′-phosphate-containing structure and the enzyme cleaves the diester bond between the phosphate and the 3′-hydroxyl group of the sugar.  相似文献   

4.
A simple and stable RNA aptamer-based colorimetric sensor for the detection of vitamin B12 using gold nanoparticles (AuNPs) has been proposed. Vitamin B12 belongs to the B vitamin group and prevents pernicious anemia, which is caused by vitamin B12 deficiency. A highly stable RNA aptamer that binds to vitamin B12 was employed by structural modification of 2′-hydroxyl group of ribose to 2′-flouro in all pyrimidines indicated in lowercase in 35-mer aptamer (5′ GGA Acc GGu GcG cAu AAc cAc cuc AGu GcG AGc AA 3′). Aggregation of AuNPs was specifically induced by desorption of the vitamin B12 binding RNA aptamer from the surface of AuNPs as a result of the aptamer–target interaction, leading to the color change from red to purple. The level of detection of vitamin B12 was 0.1 μg/ml by successful optimization of the amount of the aptamer, AuNPs, salts, and stability of the aptamer. Analysis of vitamin B12 was carried out, and the observed recovery was 92 to 95.3% with a relative standard deviation in the range of 2.08 to 8.27%. The results obtained were compared with those of the ultraviolet–visible (UV–vis) spectrometry method. This colorimetric aptasensor is advantageous for on-site detection with the naked eye.  相似文献   

5.
Abstract

The four (2′S)-[2′-2H]-2′-deoxynucleosides (>90 atom % 2H), were synthesized from the corresponding ribonucleosides involving six steps of reactions, i.e., oxidation of their 2′-hydroxyl group, stereoselective reductive deuteration of the resulting 2′-ketonucleoside intermediates with NaB2H4 in EtOH-H2O or EtOH, triflation, bromination with LiBr, highly stereoselective Bu3SnH-Et3B reduction of the resulting bromide, and, finally, unmasking.  相似文献   

6.
Steroid sulfotransferase activity is present in the cytosol fraction of hamster epididymis. The activity of this enzyme is increased by magnesium ion. Cysteine is essential to assure optimal activity. Adenosine-3′-phosphate-5′-phosphosulfate is required as sulfate donor and an apparent Km of 62 μM was calculated. Inhibition studies suggest that this enzyme preferentially catalyzes the sulfurylation of the 3β-hydroxyl group of Δ5-steroids. An unusual feature of the enzyme is a pH optimum at pH 10.  相似文献   

7.
The structural requirements for the interaction of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] with an anti-1,25(OH)2D3 antiserum and with the natural cytosolic receptor for 1,25(OH)2D3 isolated from chick intestine have been evaluated quantitatively. The antiserum was raised in a rabbit against a 1,25(OH)2D3-hemisuccinate derivative which was linked to bovine serum albumin at the C-3 position of the steroid. For these cross-reaction studies structural analogs of 1,25(OH)2D3 were used in competitive protein binding assays; their ability to interact with the binding proteins was expressed as relative competitive index (RCI) values where the RCI of 1,25(OH)2D3 is defined to be 100. The results indicate that the 25-hydroxyl group is the most important hydroxyl for the interaction of 1,25(OH)2D3 with this antiserum. The absence of this hydroxyl group decreases the RCI value to 0.2. Lack of the hydroxyl at carbon-3 or carbon-1 decreases the RCI value to 33 or 25, respectively, indicating that the specificity of this antiserum for the A ring is much lower than for the side chain. The high specificity for the side chain is underlined by the fact that insertion of an additional hydroxyl group at C-24 or C-26 of 1,25(OH)2D3 decreases the binding affinity to the antiserum markedly. The chick intestinal mucosal receptor shows a comparable high specificity for the side chain of 1,25(OH)2D3, but an even higher specificity for the A ring in comparison to the antiserum. With the intestinal receptor, the 3-hydroxyl is only 1/ 10th as important as the 1-hydroxyl group and the 25-hydroxyl group for the binding process. Scatchard analysis showed a KD value of 1.7 × 10?10m for the antiserum and 2.3 × 10?10m for the chick intestinal mucosal receptor for the equilibrium binding of 1,25(OH)2D3 at 2 °C. The association rate constant at 2 °C was determined to be 5.8 × 107 M?1 min?1 for the antiserum and 0.55 × 107 M?1 min?1 for the receptor, indicating a 10-fold more rapid association of 1,25(OH)2D3 to the antiserum in comparison to the receptor. Furthermore, the dissociation process was found to be slower for the chick intestinal receptor (dissociation rate constant 3.6 × 10?5 min?1 versus 21.0 × 10?5 min?1).  相似文献   

8.
Abstract

Reaction of isatoic anhydride with adenosine, adenosine 5′-phosphate, oligoribonucleotides or with the E. coli tRNAVal led to attachment of an anthraniloyl residue at 2′-or 3′-OH groups of 3′-terminal ribose residue. No protection of the S'-hydroxyl group or internal 2′-hydroxyl groups is required for this specific reaction. Anthraniloyl-tRNA which is an analogue of aminoacyl-tRNA forms a ternary complex with EF-Tu*GTP. The anthraniloyl-residue is used as a fluorescent reporter group to monitor interactions with proteins.

  相似文献   

9.
Abstract

The structure of 2′,3′-didehydro-2′,3′-dideoxyguanosine was determined by X-ray crystallographic analysis of the complex with pyridine. The two independent nucleoside molecules have similar, commonly observed glycosyl link (x = -102.3° and -94.2°) and 5′-hydroxyl (y = 54.0° and 47.6°) conformations. The five-membered rings are very planar with r.m.s. deviations from planarity of less than 0.015 A. 2′,3′-Didehydro-2′,3′-dideoxyadenosine has a similar glycosyl link conformation but a different 5′-hydroxyl group orientation and a slightly less planar 5-membered ring.  相似文献   

10.
Ligase MurM catalyses the addition of Ala from alanyl-tRNAAla, or Ser from seryl-tRNASer, to lipid intermediate II in peptidoglycan biosynthesis in Streptococcus pneumoniae, and is a determinant of high-level penicillin resistance. Phosphorus-based transition state analogues were designed as inhibitors of the MurM-catalysed reaction. Phosphonamide analogues mimicking the attack of a lysine nucleophile upon Ala-tRNAAla showed no inhibition of MurM, but adenosine 3′-phosphonate analogues showed inhibition of MurM, the most active being a 2′-deoxyadenosine analogue (IC50 100 μM). Structure/function studies upon this analogue established that modification of the amino group of the aminoalkylphosphonate resulted in loss of potency, and modification of the adenosine 5′-hydroxyl group with either a t-butyl dimethyl silyl or a carbamate functional group resulted in loss of activity. A library of 48 aryl sulfonamides was also screened against MurM using a radiochemical assay, and two compounds showed sub-millimolar inhibition. These compounds are the first small molecule inhibitors of the Fem ligase family of peptidyltransferases found in Gram-positive bacteria.  相似文献   

11.
A series of novel 9-O-acetyl-4′-substituted 16-membered macrolides derived from josamycin has been designed and synthesized by cleavage of the mycarose of josamycin and subsequent modification of the 4′-hydroxyl group. These derivatives were evaluated for their in vitro antibacterial activities against a panel of Staphylococcus aureus and Staphylococcus epidermidis. 15 (4′-O-(3-Phenylpropanoyl)-9-O-acetyl-desmycarosyl josamycin) and 16 (4′-O-butanoyl-9-O-acetyl-desmycarosyl josamycin) exhibited comparable activities to josamycin against S. aureus (MSSA) and S. epidermidis (MSSE).  相似文献   

12.
Abstract

The 2-5A antisense compound RBI 011 targeting telomerase RNA was synthesized using the triisopropylsilyl-oxymethyl (TOM) group for the 3′-hydroxyl protection of 2′,5′-linked RNA.  相似文献   

13.
Abstract

Reaction of 5′-0-(4,4′-dimethoxytriphenylmethyl)-3′-deoxythy-midine with triphenylphosphine/carbon tetrachloride, followed by deprotection of the 5′-hydroxyl group, afforded the 4-chloro derivative 3 from which some 4-substituted pyrimidin-2(1H)one-2′, 3′-dideoxyribosides were obtained by nucleo-philic substitution under very mild conditions.  相似文献   

14.
Among the 27 cytochrome P450s (CYPs) of Nocardia farcinica IFM10152, three CYPs have been identified as having O-dealkylation catalytic activity. Of the two that encode CYP154 subfamilies, the one encoded by the nfa22930 gene showed distinct O-dealkylation and subsequent hydroxylation of formononetin. Firstly, formononetin was O-dealkylated into daidzein, which was subsequently mono-hydroxylated at the 3′-position of the B-ring into ortho-dihydroxy-isoflavone. Apparent kcat/Km values of CYP154 for the O-dealkylation of formononetin and the hydroxylation of daidzein were 3.57 and 1.84 μM−1 min−1, respectively. The dissociation constants of CYP154 based on spectral changes upon binding to each substrate were 5.16 and 3.11 μM, respectively. Homology modeling and docking simulation found that Thr247 is responsible for the 3′-position hydroxylation reaction by forming a hydrogen bond with the 4′-hydroxyl group of daidzein that forces the proton at the 3′-position to face the heme center. Site-directed mutagenesis of Thr247 to alanine drastically decreased the binding affinity for daidzein (9.73 μM) as well as 3′-position hydroxylation catalytic activity by 3 fold (0.48 μM−1 min−1).  相似文献   

15.
Abstract

The 3′-hydroxyl groups of each of the adenosines of 2–5A triraer (ppp5′A2′p5′A2′p5′A) were sequentially replaced by hydrogen through a phosphotriester synthetic approach. Biochemical evaluation of these analogs led to the conclusion that only the 3′-hydroxy group of the second adenosine is required for activation of RNase L.  相似文献   

16.
This work probes the relationship between stilbene functional group and biological activity. The biological activity of synthesized stilbenes (E)-4,4′-dicyanostilbene, (E)-4,4′-diacetylstilbene, (E)-4,4′-diaminostilbene, a novel stilbene, 1,1′-(vinylenedi-p-phenylene)diethanol, and (E)-stilbene was assessed at biologically relevant nanomolar concentrations using the MTS cell viability assay in differentiated PC-12 cells under optimal culture conditions and conditions of oxidative stress. Under optimal culture conditions the synthesized stilbene derivatives were found to be non-toxic to cells at concentrations up to 10 μg/ml. To mimic oxidative stress, the activity of these stilbene derivatives in the presence of 0.03% H2O2 was investigated. Stilbene derivatives with electron-withdrawing functional groups were 2–3 times more toxic than the H2O2 control, indicating that they may form toxic metabolites in the presence of H2O2. Fluorescence data supported that stilbene derivatives with electron-withdrawing functional groups, (E)-4,4′-dicyanostilbene and (E)-4,4′-diacetylstilbene, may react with H2O2. In contrast, the stilbene derivative with a strong electron-donating functional group, (E)-4,4′-diaminostilbene, rescued neurons from H2O2-induced toxicity. The DPPH assay confirmed that (E)-4,4′-diaminostilbene is able to scavenge free radicals. These data indicate that the Hammett value of the functional group correlates with the biological activity of (E)-4,4′-disubstituted stilbenes in differentiated PC-12 cells.  相似文献   

17.
Carcinogenesis is believed to be induced through the oxidative damage of DNA, and antioxidants are expected to suppress it. So, the polyphenolic antioxidants in daily foods were investigated to see whether they protect against genetic damage by active oxygen. In the evaluation, we used a bioassay and a chemical determination, a Salmonella mutagenicity test for mutation by a N-hydroxyl radical from one of the dietary carcinogens 3-amino-1-methyl-5H-pyrido[4,3-b]indole and the formation of 8-hydroxyl (8-OHdG) from 2′-deoxyguanosine (2′-dG) in a Fenton OH-radical generating system. Thirty-one antioxidants including flavonoids were compared in terms of radical-trapping activity with bacterial DNA and 2′-dG. Antioxidants inhibited the mutation but the IC50 values were in the mM order. Against 8-OHdG formation, only α-tocopherol had a suppressive effect with an IC50 of 1.5 μM. Thus, except α-tocopherol, the dietary antioxidants did not scavenge the biological radicals faster than bacterial DNA and intact 2′-dG, indicating that they failed to prevent oxidative gene damage and probably carcinogenesis.  相似文献   

18.
Mitsunobu reaction of partially acylated uridine proceeds with high regioselectivity for intramolecular SN2 anhydro linkage closuring. Under the reaction conditions, an isomeric mixture of diacyl uridine derivatives with either free 2′- or 3′-hydroxyl group was transformed into a single cyclonucleosidic product, 2,2′-anhydro-3′,5′-di-O-acyluridine. This paper presents a possible mechanism of the reactions, the explanation of observed phenomenon based on semiempirical and density functional theory (DFT) calculations and possible utility of this synthetic pathway.  相似文献   

19.
In petals of Silene dioica, gene P controls the 3′-hydroxylation of the anthocyanin B-ring and the hydroxylation pattern of the hydroxycinnamoyl acyl group bound to the 4″'-hydroxyl group of rhamnose of anthocyanidin 3-rhamnosyl(1→6)glucoside-5-glucoside. In this paper, experiments are presented which show that gene P is involved in the hydroxylation of p-coumaroyl-CoA to caffeoyl-CoA, which is then used both as a precursor in anthocyanin biosynthesis and as a substrate for the final acylation.  相似文献   

20.
The crystal and molecular structure of 6-deoxy-l-sorbose have been determined by the application of multisolution methods and refined to an R-index of 0.063 for 560 reflections, using three-dimensional intensity data collected on a Picker automatic diffractometer. The compound crystallizes in the space group P212121 with unit-cell dimensions a = 18.470 (10), b = 7.636 (10), and c = 5.371 (8) Å; Z = 4. The molecule occurs as the α-furanose form, which is also the preponderant tautomer in solution. The puckering of the furanoid ring is C-3′-exo-C-4′-endo (3T4) [equivalent to C-2′-exo-C-3′-endo (2T3) in the numbering for d-ribose], with P and τm angles of -6.5 and 42.7° respectively. Conformational analysis of the known ketofuranosides shows that the 3T4 (2T3 in d-ribose numbering) puckering mode, which is typical of α-nucleosides, is favored, in contrast to the favored 3T2 or 2T3 puckering mode for the β-d-ribonucleosides and β-d-arabinonucleosides. The conformational differences among furanoid rings are mainly influenced by the configuration at the anomeric carbon atom. The favored orientation about the C-2′-C-1′ bond (O-5′-C-2′-C-1′-O-1′)of the ketofuranosidesis — gauche. All four hydroxyl groups are involved in donor-acceptor hydrogen bonding, and O-4′-8 appears to be involved in a bifurcated hydrogen bond to O-2′ and O-3′ of neighboring molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号