首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclear magnetic resonance study of G-quadruplex structures formed by d(TG3T) and its modified analogs containing a 5′-5′ or 3′-3′ inversion of polarity sites, namely d(3′TG5′-5′G2T3′), d(3′T5′-5′G3T3′) and d(5′TG3′-3′G2T5’) demonstrates formation of G-quadruplex structures with tetrameric topology and distinct cation-binding preferences. All oligonucleotides are able to form quadruplex structures with two binding sites, although the modified oligonucleotides also form, in variable amounts, quadruplex structures with only one bound cation. The inter-quartet cavities at the inversion of polarity sites bind ammonium ions less tightly than a naturally occurring 5′-3′ backbone. Exchange of 15 ions between G-quadruplex and bulk solution is faster at the 3′-end in comparison to the 5′-end. In addition to strand directionality, cation movement is influenced by formation of an all-syn G-quartet. Formation of such quartet has been observed also for the parent d(TG3T) that besides the canonical quadruplex with only all-anti G-quartets, forms a tetramolecular parallel quadruplex containing one all-syn G-quartet, never observed before in unmodified quadruplex structures.  相似文献   

2.
Recently we reported a preliminary study on the structure of two novel quadruplex structures, Q33 and Q55, formed by the oligodeoxynucleotides (5)'TGG(3)'-(3)'GGT(5)' and (3)'TGG(5)'-(5)'GGT(3)', respectively. Here we report their solution structures at the atomic level. The obtained structures reveal that Q55 and Q33 possess a different stacking among G-quartets and different twist angle (and therefore different helical winding) at the inversion of polarity level.  相似文献   

3.
The paramagnetic metal ion Mn2+ has been used to probe the electrostatic potentials of a DNA quadruplex that has two quartets with an overall fold of the chair type. A quadruplex with a basket type structure has also been examined. The binding of the paramagnetic ion manganese to these quadruplex DNAs has been investigated by solution state electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies. The EPR results indicate that the DNA aptamer, d(GGTTGGTGTGGTTGG), binds two manganese ions and that the binding constants for each of these sites is approximately 10(5) M-1. The NMR results indicate that the binding sites of the manganese are in the narrow grooves of this quadruplex DNA. The binding sites of the DNA quadruplex formed by dimers of d(GGGGTTTTGGGG) which forms a basket structure are also in the narrow groove. These results indicate that the close approach of phosphates in the narrow minor grooves of the quadruplex structures provide strong binding sites for the manganese ions and that EPR and NMR monitoring of manganese binding can be used to distinguish between the different types of quadruplex structures.  相似文献   

4.
8-Oxoguanine is a ubiquitous oxidative base lesion. We report here on the effect of this lesion on the structure and stability of quadruplexes formed by the human telomeric DNA sequence 5'-dG(3)(TTAG(3))(3) in NaCl and KCl. CD, PAGE and absorption-based thermodynamic stability data showed that replacement of any of the tetrad-forming guanines by 8-oxoguanine did not hinder the formation of monomolecular, antiparallel quadruplexes in NaCl. The modified quadruplexes were, however, destabilized in both salts, the extent of this depending on the position of the lesion. These results and the results of previous studies on guanine-to-adenine exchanges and guanine abasic lesions in the same quadruplex show a noticeable trend: it is not the type of the lesion but the position of the modification that determines the effect on the conformation and stability of the quadruplex. The type of lesion only governs the extent of changes, such as of destabilization. Most sensitive sites were found in the middle tetrad of the three-tetrad quadruplex, and the smallest alterations were observed if guanines of the terminal tetrad with the diagonal TTA loop were substituted, although even these substitutions brought about unfavorable enthalpic changes. Interestingly, the majority of these base-modified quadruplexes did not adopt the rearranged folding induced in the unmodified dG(3)(TTAG(3))(3) by potassium ions, an observation that could imply biological relevance of the results.  相似文献   

5.
Tetramolecular G-quadruplexes result from the association of four guanine-rich strands. Modification of the backbone strand or the guanine bases of the oligonucleotide may improve stability or introduce new functionalities. In this regard, the 8 position of a guanosine is particularly suitable for introduction of modifications since as it is positioned in the groove of the quadruplex structure. Modifications at this position should not interfere with structural assembly as would changes at Watson-Crick and Hoogsteen sites. In this study, we investigated the effect of an 8-methyl-2′-deoxyguanosine residue (M) on the structure and stability of tetramolecular parallel G-quadruplexes. In some cases, the presence of this residue resulted in the formation of unusual quadruplex structures containing all-syn tetrads. Furthermore, the modified nucleoside M at the 5′-end of the sequence accelerated quadruplex formation by 15-fold or more relative to the unmodified oligonucleotide, which makes this nucleobase an attractive replacement for guanine in the context of tetramolecular parallel quadruplexes.  相似文献   

6.
The thrombin-binding aptamer d(GGTTGGTGTGGTTGG) (TBA) is an efficient tool for the inhibition of thrombin function. We have studied conformations and thermodynamic stability of a number of modified TBA oligonucleotides containing thiophosphoryl substitution at different internucleotide sites. Using circular dichroism such modifications were found not to disrupt the antiparallel intramolecular quadruplex specific for TBA. Nevertheless, the presence of a single thiophosphoryl bond between two G-quartet planes led to a significant decrease in the quadruplex thermostability. On the contrary, modifications in each of the loop regions either stabilized an aptamer structure or did not reduce its stability. According to the thrombin time test, the aptamer with thio-modifications in both TT loops (LL11) exhibits the same antithrombin efficiency as the original TBA. This aptamer shows better stability against DNA nuclease compared to that of TBA. We conclude that such thio-modification patterns are very promising for the design of anticoagulation agents.  相似文献   

7.
8.
Several researches have been devoted to structure-activity relationship and to post-SELEX modifications of the thrombin binding aptamer (TBA), one of the first aptamers discovered by the SELEX methodology. However, no studies on TBA dealing with the effects of introduction of inversion of polarity sites have been reported yet. In this frame, we have undertaken the synthesis and the study of a mini-library composed of several TBA analogues containing a 3'-3' or a 5'-5' inversion of polarity site at different positions into the sequence. Particularly, in this article, we present preliminary results about their structural and biological properties.  相似文献   

9.
Abasic (AP) lesions are the most frequent type of damages occurring in cellular DNA. Here we describe the conformational effects of AP sites substituted for 2′-deoxyadenosine in the first (ap7), second (ap13) or third (ap19) loop of the quadruplex formed in K+ by the human telomere DNA 5′-d[AG3(TTAG3)3]. CD spectra and electrophoresis reveal that the presence of AP sites does not hinder the formation of intramolecular quadruplexes. NMR spectra show that the structural heterogeneity is substantially reduced in ap7 and ap19 as compared to that in the wild-type. These two (ap7 and ap19) sequences are shown to adopt the hybrid-1 and hybrid-2 quadruplex topology, respectively, with AP site located in a propeller-like loop. All three studied sequences transform easily into parallel quadruplex in dehydrating ethanol solution. Thus, the AP site in any loop region facilitates the formation of the propeller loop. Substitution of all adenines by AP sites stabilizes the parallel quadruplex even in the absence of ethanol. Whereas guanines are the major determinants of quadruplex stability, the presence or absence of loop adenines substantially influences quadruplex folding. The naturally occurring adenine-lacking sites in the human telomere DNA can change the quadruplex topology in vivo with potentially vital biological consequences.  相似文献   

10.
Modified thrombin-binding aptamers (TBAs) carrying uridine (U), 2'-deoxy-2'-fluorouridine (FU) and North-methanocarbathymidine (NT) residues in the loop regions were synthesized and analyzed by UV thermal denaturation experiments and CD spectroscopy. The replacement of thymidines in the TGT loop by U and FU results in an increased stability of the antiparallel quadruplex structure described for the TBA while the presence of NT residues in the same positions destabilizes the antiparallel structure. The substitution of the thymidines in the TT loops for U, FU and NT induce a destabilization of the antiparallel quadruplex, indicating the crucial role of these positions. NMR studies on TBAs modified with uridines at the TGT loop also confirm the presence of the antiparallel quadruplex structure. Nevertheless, replacement of two Ts in the TT loops by uridine gives a more complex scenario in which the antiparallel quadruplex structure is present along with other partially unfolded species or aggregates.  相似文献   

11.
Human telomeric G-quadruplex structures are known to be promising targets for an anticancer therapy. In the past decade, several research groups have been focused on the design of new ligands trying to optimize the interactions between these small molecules and the G-quadruplex motif. In most of these studies, the target structures were the single quadruplex units formed by short human DNA telomeric sequences (typically 21-26 nt). However, the 3′-terminal single-stranded human telomeric DNA is actually 100-200 bases long and can form higher-order structures by clustering several consecutive quadruplex units (multimers). Despite the increasing number of structural information on longer DNA telomeric sequences, very few data are available on the binding properties of these sequences compared with the shorter DNA telomeric sequences.In this paper we use a combination of spectroscopic (CD, UV and fluorescence) and calorimetric techniques (ITC) to compare the binding properties of the (TTAGGG)8TT structure formed by two adjacent quadruplex units with the binding properties of the (AG3TT)4 single quadruplex structure. The three side-chained triazatruxene derivative azatrux and TMPyP4 cationic porphyrin were used as quadruplex ligands. We found that, depending on the drug, the number of binding sites per quadruplex unit available in the multimer structure was smaller or greater than the one expected on the basis of the results obtained from individual quadruplex binding studies. This work suggests that the quadruplex units along a multimer structure do not behave as completely independent. The presence of adjacent quadruplexes results in a diverse binding ability not predictable from single quadruplex binding studies. The existence of quadruplex-quadruplex interfaces in the full length telomeric overhang may provide an advantageous factor in drug design to enhance both affinity and selectivity for DNA telomeric quadruplexes.  相似文献   

12.
Fluorescent dyes specific for quadruplex DNA.   总被引:7,自引:5,他引:2       下载免费PDF全文
Fluorescent dyes which are specific for duplex DNA have found a wide range of applications from staining gels to visualization of chromosomes. Porphyrin dyes have been found which are highly fluorescent in the presence of quadruplex but not duplex DNA. These dyes may offer a route to the specific detection of quadruplex DNA under biologically important conditions. There are three types of DNA quadruplex structures, and these may play important roles in telomere, centromere, triplet repeat, integration sites and other DNAs, and this first set of porphyrin dyes show some selectivity between the quadruplex types.  相似文献   

13.

Background

The abasic sites represent one of the most frequent lesions of DNA and most of the events able to generate such modifications involve guanine bases. G-rich sequences are able to form quadruplex structures that have been proved to be involved in several important biological processes.

Methods

In this paper, we report investigations, based on calorimetric, UV, CD and electrophoretic techniques, on 12 oligodeoxynucleotides analogues of the quadruplex forming human telomere sequence d[TA(G3T2A)3G3], in which each guanine has been replaced, one at a time, by an abasic site mimic.

Results

Although all data show that the modified sequences preserve their ability to form quadruplex structures, the thermodynamic parameters clearly indicate that the presence of an abasic site decreases their thermal stability compared to the parent unmodified sequence, particularly if the replacement concerns one of the guanosines involved in the formation of the central G-tetrad.

Conclusions

The collected data indicate that the effects of the presence of abasic site lesions in telomeric quadruplex structures are site-specific. The most dramatic consequences come out when this lesion involves a guanosine in the centre of a G-run.

General significance

Abasic sites, by facilitating the G-quadruplex disruption, could favour the formation of the telomerase primer. Furthermore they could have implications in the pharmacological approach targeting telomere.  相似文献   

14.
The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we have analyzed the selectivity of four ethidium derivatives and ethidium itself toward different G-quadruplex species, with electrospray mass spectrometry and competitive equilibrium dialysis and evaluated their inhibitory properties against telomerase. A selectivity profile may be obtained through electrospray ionization mass spectrometry (ESI-MS), which is in fair agreement with competitive equilibrium dialysis data. It also provides unambiguous data on the number of binding sites per nucleic acid (maximal number of two ethidium derivatives per quadruplex, in agreement with external stacking). Our experiments also demonstrate that one compound (4) is the most active and selective G-quadruplex ligand within this series and the most selective telomerase inhibitor in a modified TRAP-G4 assay.  相似文献   

15.
We have developed a new method, quadruplex priming amplification, to greatly simplify nucleic acid amplification and real-time quantification assays. The method relies on specifically designed guanine-rich primers, which after polymerase elongation are capable of spontaneous dissociation from target sites and forming DNA quadruplex. The quadruplex is characterized by significantly more favorable thermodynamics than the corresponding DNA duplexes. As a result, target sequences are accessible for the next round of priming and DNA amplification proceeds under isothermal conditions with improved product yield. In addition, the quadruplex formation is accompanied by an increase in intrinsic fluorescence of the primers, allowing simple and accurate detection of product DNA.  相似文献   

16.
2'-Deoxy-8-(propyn-1-yl)adenosine has been incorporated in synthetic oligodeoxyribonucleotides and its influence on thermal stability of duplex and quadruplex structures investigated by UV, CD and 1H NMR. The obtained results seem to indicate that the presence of the modified base negatively affects the stability of double stranded DNA whereas remarkably increases the stability of parallel quadruplex structures.  相似文献   

17.
Nanosecond scale molecular dynamics simulations have been performed on antiparallel Greek key type d(G7) quadruplex structures with different coordinated ions, namely Na+ and K+ ion, water and Na+ counter ions, using the AMBER force field and Particle Mesh Ewald technique for electrostatic interactions. Antiparallel structures are stable during the simulation, with root mean square deviation values of approximately 1.5 A from the initial structures. Hydrogen bonding patterns within the G-tetrads depend on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate different cations. However, alternating syn-anti arrangement of bases along a chain as well as in a quartet is maintained through out the MD simulation. Coordinated Na+ ions, within the quadruplex cavity are quite mobile within the central channel and can even enter or exit from the quadruplex core, whereas coordinated K+ ions are quite immobile. MD studies at 400K indicate that K+ ion cannot come out from the quadruplex core without breaking the terminal G-tetrads. Smaller grooves in antiparallel structures are better binding sites for hydrated counter ions, while a string of hydrogen bonded water molecules are observed within both the small and large grooves. The hydration free energy for the K+ ion coordinated structure is more favourable than that for the Na+ ion coordinated antiparallel quadruplex structure.  相似文献   

18.
The potential formation of G-quadruplexes in many regions of the genome makes them an attractive target for drug design. A large number of small molecules synthesized in recent years display an ability to selectively target and stabilize G-quadruplexes. To screen for G4 ligands, we modified a G4-FID (G-quadruplex Fluorescent Intercalator Displacement) assay. This test is based on the displacement of an “on/off” fluorescence probe, Thiazole Orange (TO), from quadruplex or duplex DNA matrices by increasing amounts of a putative ligand. Selectivity measurements can easily be achieved by comparing the ability of the ligand to displace TO from various quadruplex and duplex structures. G4-FID requires neither modified oligonucleotides nor specific equipment and is an isothermal experiment. This test was adapted for high throughput screening onto 96-well plates allowing the comparison of more than twenty different structures. Fifteen different known G4 ligands belonging to different families were tested. Most compounds showed a good G4 vs duplex selectivity but exhibited little, if any, specificity for one quadruplex sequence over the others. The quest for the “perfect” specific G4 ligand is not over yet!  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号